IPv6 CONSORTIUM TEST SUITE

Border Gateway Protocol 4+ Over Internet Protocol Version 6 Multi-System Interoperability Test Suite

Technical Document

Version 2.0

University of New Hampshire InterOperability Laboratory IPv6 Consortium http://www.iol.unh.edu 121 Technology Drive, Suite 2 Durham, NH 03824 Phone: +1-603-862-2804 Fax: +1-603-862-4181

TABLE OF CONTENTS

TABLE OF CONTENTS	i
MODIFICATION RECORD	
ACKNOWLEDGEMENTS	iii
INTRODUCTION	iv
TEST ORGANIZATION	v
REFERENCES	vi
Test BGP4+_INTEROP.1.1: Transit-AS, External BGP peers	1
Test BGP4+_INTEROP.1.2: Non-Transit-AS, External BGP Peers	
Test BGP4+_INTEROP.2.1: Transit-AS, Internal and External BGP Peers	6
Test BGP4+ INTEROP.2.2: Non-Transit-AS. Internal and External BGP Peers	9

MODIFICATION RECORD

Version 0.1 August 7, 2003

• Initial Version Version 0.2 June 10, 2004

• Tests 2.1 and 2.2, added configuration on the RUT to include setting next-hop to self for internal peers.

Version 1.0 March 14, 2005

Removed TR5 from Test 2.1, and 2.2
Added updated pictures to the Test Suite.

Changed the names of the Test Routers and Test Nodes in all tests.

Version 1.1 June 17, 2005

Re-worded test procedures.

• Re-ordered observable results.

Changed TR3 to be TR2 in step 6 of test 2.2

Version 2.0 March 2, 2006

Re-worded test procedures.

• Re-numbered test 2.1 and test 2.2 to test 1.3 and test 1.4 respectively

• Changed the RUT to be in AS 1 in test 1.2 and test 1.4

ACKNOWLEDGEMENTS

The University of New Hampshire would like to acknowledge the efforts of the following individuals in the development of this test suite:

Ethan Burns University of New Hampshire
Eric Barrett University of New Hampshire
Andrew Gadzik University of New Hampshire
Sagun Shakya University of New Hampshire
Fanny Xu University of New Hampshire

INTRODUCTION

Overview

The University of New Hampshire's InterOperability Laboratory (IOL) is an institution designed to improve the interoperability of standards based products by providing an environment where a product can be tested against other implementations of a standard. This suite of tests has been developed to help implementers evaluate the functionality of their BGP4+ based products. This test suite has been designed to test interoperability of the device under test with other BGP4+ capable devices. This test suite focuses on testing configurations of the network that could cause problems when deployed if the device under test does not operate properly with the devices that it is connected to.

The tests do not determine if a product conforms to the BGP4+ standard but they are designed as interoperability tests. These tests provide one method to isolate problems within the BGP4+ capable device that will affect the interoperability performance. Successful completion of all tests contained in this suite does not guarantee that the tested device will operate with other BGP4+ capable devices. However, these tests do provide a reasonable level of confidence that the RUT will function well in most BGP4+ environment.

Abbreviations and Acronyms

Acrony	ms	used	in	this	Test	Suite:
	1113	uscu	111			

N: Network

RUT: Router Under Test
TR: Testing Router
TN: Testing Node

AS: Autonomous System

ASN: Autonomous System Number

When several entities of the same type are present in a test configuration, a number is appended to the acronym to yield a label for each entity. For example, if there were three testing routers in the test configuration, they would be labeled TR1, TR2 and TR3.

External BGP connection: Internal BGP connection:

TEST ORGANIZATION

This document organizes tests by group based on related test methodology or goals. Each group begins with a brief set of comments pertaining to all tests within that group. This is followed by a series of description blocks; each block describes a single test. The format of the description block is as follows:

Test Label: The test label and title comprise the first line of the test block. The test label is

composed by concatenating the short test suite name, the group number, and the test number within the group, separated by periods. The **Test Number** is the group and test number, also separated by a period. So, test label BGP4+_INTEROP.1.2 refers to the second test of the first test group in the BGP4+ InterOperability suite.

The test number is 1.2.

Purpose: The Purpose is a short statement describing what the test attempts to achieve. It is

usually phrased as a simple assertion of the feature or capability to be tested.

References: The References section lists cross-references to the specifications and

documentation that might be helpful in understanding and evaluating the test and

results.

Resource Requirements:

The Resource Requirements section specifies the software, hardware, and test

equipment that will be needed to perform the test.

Discussion: The Discussion is a general discussion of the test and relevant section of the

specification, including any assumptions made in the design or implementation of

the test as well as known limitations.

Test Setup: The Test Setup section describes the configuration of all devices prior to the start

of the test. Different parts of the procedure may involve configuration steps that deviate from what is given in the test setup. If a value is not provided for a protocol parameter, then the protocol's default is used for that parameter.

Procedure: This section of the test description contains the step-by-step instructions for

carrying out the test. These steps include such things as enabling interfaces, unplugging devices from the network, or sending packet from a test station. The test procedure also cues the tester to make observations, which are interpreted in

accordance with the observable results given for that test part.

ObservableThis section lists observable results that can be examined by the tester to verify that the RUT is operating properly. When multiple observable results are possible, this

the RUT is operating properly. When multiple observable results are possible, this section provides a short discussion on how to interpret them. The determination of a pass or fail for each test is usually based on how the RUT's behavior compares to

the results described in this section.

Possible Problems: This section contains a description of known issues with the test procedure, which

may affect test results in certain situations.

REFERENCES

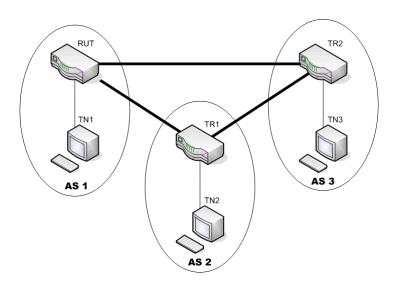
The following documents are referenced in this text:

- [draft-ietf-idr-bgp4-26] "A Border Gateway Protocol 4 (BGP-4)", INTERNET DRAFT
- [RFC 2858] "Multiprotocol Extensions for BGP-4", Request for Comments 2858

Test BGP4+_INTEROP.1.1: Transit-AS, External BGP peers

Purpose: To verify that a transit-AS BGP4+ router correctly communicates routes to other external BGP4+ router peers, sends packets via the shortest path based on shortest AS path, and routes packets correctly when a neighboring external BGP4+ router peer is removed from the configuration.

References:


• [RFC 2858] – Section 2

Resource Requirements:

• Utility Program: traceroute

Discussion: This test verifies that the RUT can successfully communicate route information to other external BGP4+ router peers. An AS is called transit if it carries any traffic that neither originates nor terminates at that AS, while an AS is called non-transit if it only carries traffic that either originates or terminates at that AS. The RUT resides in a transit AS since the AS carries transit traffic in some cases.

Test Setup:

Procedure:

Part A: External BGP Peer Establishments

- 1. Configure the RUT and TR1 to be peers.
- 2. Configure TR1 and TR2 to be peers.
- 3. Perform Traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part B: External BGP Peer Establishment, Shorter AS Path

- 4. Configure the RUT and TR2 to be peers.
- 5. Perform traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part C: Advertising AS Path Change

- 6. Configure the RUT to prepend its own AS number three times on outgoing UPDATES to TR2.
- 7. Perform Traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part D: Accepting AS Path Change

- 8. Configure the RUT to prepend its own ASN only once on outgoing UPDATES to TR2.
- 9. Configure TR2 to prepend its own AS number three times on outgoing UPDATES to the RUT.
- 10. Perform traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part E: External BGP Peer Removal

- 11. Configure TR1 to disable TR2 as its peer.
- 12. Configure TR2 to prepend its own AS number three times on outgoing UPDATES to the RUT.
- 13. Perform Traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part F: External BGP Peer Reestablishment

- 14. Configure the TR1 and TR2 to be peers.
- 15. Configure TR2 to prepend its own AS number three times on outgoing UPDATES to the RUT.
- 16. Perform traceroute from TN1 to TN2, TN1 to TN3, TN2 to TN1, TN2 to TN3, TN3 to TN1, and TN3 to TN2.

Part G: BGP Router Removal

- 17. Disable BGP on TR1.
- 18. Perform traceroute from TN1 to TN3, and TN3 to TN1.

Observable Results:

• In Part A, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR1->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->TR1->RUT->TN1

TN3->TR2->TR1->TN2

• In Part B, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->RUT->TN1

TN3->TR2->TR1->TN2

• In Part C, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->TR1->RUT->TN1

TN3->TR2->TR1->TN2

• In Part D, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR1->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->RUT->TN1

TN3->TR2->TR1->TN2

• In Part E, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->RUT->TR2->TN3

TN3->TR2->RUT->TN1

TN3->TR2->RUT->TR1->TN2

• In Part F, traceroute results should be as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR1->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->RUT->TN1

TN3->TR2->TR1->TN2

• In Part G, traceroute results should be as follows:

TN1->RUT->TR2->TN3

TN3->TR2->RUT->TN1

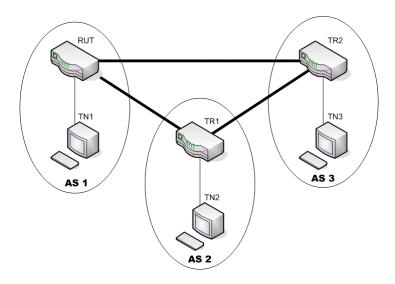
Possible Problems:

• None

Test BGP4+_INTEROP.1.2: Non-Transit-AS, External BGP Peers

Purpose: To verify that a non-transit-AS BGP4+ router correctly communicates routes to other external BGP4+ router peers, sends packets via the shortest path based on shortest AS path, and routes packets correctly when neighboring external BGP4+ router peer is removed from the configuration.

References:


• [RFC 2858] – Section 2

Resource Requirements:

• Utility Program: traceroute

Discussion: This test verifies that the RUT can successfully communicate route information to other external BGP4+ router peers. An AS is called transit if it carries any traffic that neither originates nor terminates at that AS, while an AS is called non-transit if it only carries traffic that either originates or terminates at that AS. The RUT resides in a non-transit AS since the AS doesn't carry transit traffic in this test at all.

Test Setup:

Procedure:

Part A: External BGP Peer Establishments

- 1. Configure the RUT and TR1 to be peers.
- 2. Configure the RUT and TR2 to be peers.
- 3. Configure the TR1 and TR2 to be peers.
- 4. Perform Traceroute from TN2 to TN1, TN2 to TN3, TN1 to TN2, TN1 to TN3, TN3 to TN2, and TN3 to TN1.

Part B: External BGP Peer Removal

- 5. Configure the RUT to disable TR2 as its peer.
- 6. Perform Traceroute from TN2 to TN1, TN2 to TN3, TN1 to TN2, TN1 to TN3, TN3 to TN2, and

TN3 to TN1.

Observable Results:

• In Part A, traceroute results are as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->RUT->TN1

TN3->TR2->TR1->TN2

• In Part B, traceroute results are as follows:

TN1->RUT->TR1->TN2

TN1->RUT->TR1->TR2->TN3

TN2->TR1->RUT->TN1

TN2->TR1->TR2->TN3

TN3->TR2->TR1->RUT->TN1

TN3->TR2->TR1->TN2

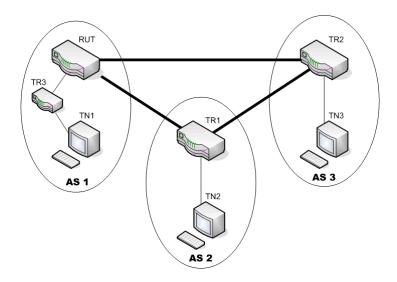
Possible Problems:

• None

Test BGP4+_INTEROP.1.3: Transit-AS, Internal and External BGP Peers

Purpose: To verify that a transit-AS BGP4+ router correctly communicates routes to other external and internal BGP4+ router peers, sends packets via the shortest path based on shortest AS path, and routes packets correctly when a neighboring external BGP4+ router is removed from the configuration.

References:


• [RFC 2858] – Section 2

Resource Requirements:

• Utility Program: traceroute

Discussion: This test verifies that the RUT can successfully communicate route information to other internal and external BGP4+ router peers. An AS is called transit if it carries any traffic that neither originates nor terminates at that AS, while an AS is called non-transit if it only carries traffic that either originates or terminates at that AS. The RUT resides in a transit AS since the AS carries transit traffic in some cases.

Test Setup:

Procedure:

Part A: Internal and External BGP Peer Establishments

- 1. Configure the RUT and TR3 to be peers.
- 2. Configure the RUT as next-hop-self
- 3. Configure the RUT and TR1 to be peers.
- 4. Configure the TR1 and TR2 to be peers.
- 5. Perform Traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Part B: External BGP Peer Establishment, Shorter AS Path

6. Configure the RUT and TR2 to be peers.

7. Perform traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Part C: Advertising AS Path Change

- 8. Configure the RUT to prepend its own AS number three times on outgoing UPDATES to TR2.
- 9. Perform traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Part D: Accepting AS Path Change

- 10. Configure the RUT to prepend its own AS number only once on outgoing UPDATES to TR2.
- 11. Configure TR2 to prepend its own AS number three times on outgoing UPDATES to the RUT.
- 12. Perform traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Part E: External BGP Peer Removal

- 13. Configure TR1 to disable TR2 as its peer.
- 14. Configure TR2 to prepend its own AS number three times on outgoing UPDATES to the RUT.
- 15. Perform traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Observable Result:

• In Part A, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR1->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->TN2

• In Part B, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->RUT->TR3->TN1

TN3->TR2->TR1->TN2

• In Part C, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->TN2

• In Part D, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR1->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->RUT->TR3->TN1

TN3->TR2->TR1->TN2

• In Part E, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR2->TN3 TN2->TR1->RUT->TR2->TN3 TN2->TR1->RUT->TR3->TN1 TN3->TR2->RUT->TR3->TN1 TN3->TR2->RUT->TR1->TN2

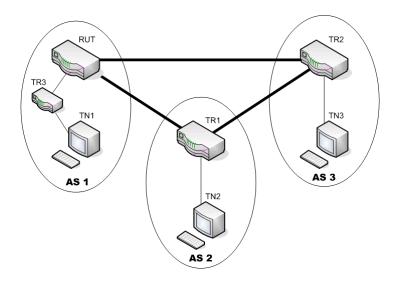
Possible Problems:

• None

Test BGP4+_INTEROP.1.4: Non-Transit-AS, Internal and External BGP Peers

Purpose: To verify that a non-transit-AS BGP4+ router correctly communicates routes to other external and internal BGP4+ router peers, sends packets via the shortest path based on shortest AS path, and routes packets correctly when a neighboring external BGP4+ router is removed from the configuration.

References:


• [RFC 2858] – Section 2

Resource Requirements:

• Utility Program: traceroute

Discussion: This test verifies that the RUT can successfully communicate route information to other internal and external BGP4+ router peers. An AS is called transit if it carries any traffic that neither originates nor terminates at that AS, while an AS is called non-transit if it only carries traffic that either originates or terminates at that AS. The RUT resides in a non-transit AS since the AS doesn't carry transit traffic in this test at all.

Test Setup:

Procedure:

Part A: Internal and External BGP Peer Establishments

- 1. Configure the RUT and TR3 to be peers.
- 2. Configure the RUT as next-hop-self
- 3. Configure the RUT and TR1 to be peers.
- 4. Configure the RUT and TR2 to be peers.
- 5. Configure the TR1 and TR2 to be peers.
- 6. Perform Traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Part B: External BGP Peer Removal

- 7. Configure the RUT to disable TR2 as its peer.
- 8. Perform traceroute from TN2 to TN3, TN2 to TN1, TN3 to TN2, TN3 to TN1, TN1 to TN2, TN1 to TN3.

Observable Results:

• In Part A, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->RUT->TR3->TN1

TN3->TR2->TR1->TN2

• In Part B, traceroute results are as follows:

TN1->TR3->RUT->TR1->TN2

TN1->TR3->RUT->TR1->TR2->TN3

TN2->TR1->TR2->TN3

TN2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->RUT->TR3->TN1

TN3->TR2->TR1->TN2

Possible Problems:

None