

Modification Record

Version 1.7.6	December 22, 2005
	Correct expected MTU value in ICMP Packet Too Big message for
	6.1.5 Packet Too Big Forwarding.
Version 1.7.5	September 20, 2005
	Correct the maximum MTU value for 6.1.4 Packet Too Big
	Transmission.
Version 1.7.4	June 13, 2005
	Fix typos.
Version 1.7.3	June 7, 2005
	Removed test for Packet Too Big Forwarding (Known Original
	Host) for SGW.
Version 1.7.2	April 20, 2005
	Fix typos.
Version 1.7.1	April 18, 2005
	Change Security Policy for 5.3.2.
Version 1.7	April 8, 2005
	Add Sequence Number Increment Test.
	Add ICMP Error Test.
Version 1.6	March 1, 2005
	Change Keys
	Add Select SPD test for tunnel mode
Version 1.5	November 26, 2004
	Change packet description of 5.1.4
Version 1.4	November 19, 2004
	Change Host to End-Node,
	Default algorithms changed to (3DES-CBC, HMAC-SHA1) for
	Architecture test.
	Editorial fix
Version 1.3	September 24, 2004
Version 1.2	September 22, 2004
Version 1.1	September 13, 2004
Version 1.0	September 8, 2004

Acknowledgement

IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test specification.

- TAHI Project

- IRISA

- University of New Hampshire - Interoperability Laboratory (UNH-IOL)

Introduction

The IPv6 forum plays a major role in bringing together industrial actors, to develop and deploy the next generation of IP protocols. Contrary to IPv4, which started with a small closed group of implementers, the universality of IPv6 leads to a huge number of implementations. Interoperability has always been considered as a critical feature in the Internet community.

Due to the large number of IPv6 implementations, it is important to provide the market a strong signal proving the level of interoperability across various products. To avoid confusion in the mind of customers, a globally unique logo program should be defined. The IPv6 logo will give confidence to users that IPv6 is currently operational. It will also be a clear indication that the technology will still be used in the future. To summarize, this logo program will contribute to the feeling that IPv6 is available and ready to be used.

The IPv6 Logo Program consists of three phases:

Phase 1 :

In a first stage, the Logo will indicate that the product includes IPv6 mandatory core protocols and can interoperate with other IPv6 implementations.

Phase 2 :

The "IPv6 ready" step implies a proper care, technical consensus and clear technical references. The IPv6 ready logo will indicate that a product has successfully satisfied strong requirements stated by the IPv6 Logo Committee (v6LC).

To avoid confusion, the logo "IPv6 Ready" will be generic. The v6LC will define the test profiles with associated requirements for specific functionalities.

Phase 3 : Same as Phase 2 with IPsec mandated.

Requirements

To obtain the IPv6 Ready Logo Phase-2 for IPsec (IPsec Logo), the Node Under Test (NUT) must satisfy following requirements.

Equipment Type:

We define two possibilities for equipment types, they are as follows:

End-Node:

A node who can use IPsec only for itself. Host and Router can be an End-Node.

SGW (Security Gateway):

A node who can provide IPsec tunnel mode for nodes behind it. Router can be a SGW.

Security Protocol:

A NUT is required to pass all of the ESP tests regardless the equipment type. The IPv6 Ready Logo Program does not focus on AH.

Mode:

The mode requirement depends on the type of NUT.

End-Node:

If the NUT is an End-Node, it must pass all the Transport mode tests. If the NUT supports the Tunnel mode, it also must pass all the Tunnel mode tests. (i.e., Tunnel mode is ADVANCED functionality for End-Node)

SGW:

If the NUT is a SGW, it must pass all the Tunnel mode tests.

Encryption Algorithm:

IPv6 Logo Committee had defined 2 encryption algorithm categories: BASE ALGORITHM and ADVANCED ALGORITHM. All NUTs must pass the BASE ALGORITHM tests to obtain an IPsec Logo. A NUT which supports algorithms listed as ADVANCED

ALGORITHM, must pass all corresponding tests.

The algorithm requirement is independent from NUT type.

BASE ALGORITHM: 3DES-CBC

ADVANCED ALGORITHM: AES-CBC NULL DES-CBC

Authentication Algorithm:

IPv6 Logo Committee had defined BASE ALGORITHM and ADVANCED ALGORITHM. All NUTs have to pass all the test of BASE ALGORITHM to obtain the IPsec Logo. The NUTs, which support the algorithms that are listed as ADVANCED ALGORITHM, have to pass all the corresponding tests.

The algorithm requirement is independent from NUT type.

BASE ALGORITHM: HMAC-SHA1 ADVANCED ALGORITHM: AES-XCBC-MAC-96 NULL HMAC-MD5

Category:

All NUTs are required to support BASIC. ADVANCED is required for all NUTs which support ADVANCED encryption and/or authentication algorithms. Each test description contains a Category section which lists the requirements to satisfy the test.

References

This test specification focus on following IPsec related RFCs.

RFC1829 : The ESP DES-CBC Transform

RFC1851 : The ESP Triple DES Transform

RFC2401 : Security Architecture for the Internet Protocol

RFC2403 : The Use of HMAC-MD5-96 within ESP and AH

RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH

 $\mathsf{RFC2405}$: The ESP DES-CBC Cipher Algorithm With Explicit IV

RFC2406 : IP Encapsulating Security Payload (ESP)

RFC2410 : The NULL Encryption Algorithm and Its Use With IPsec

RFC2463 : Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)

RFC3602 : The AES-CBC Cipher Algorithm and Its Use with IPsec

RFC3566 : The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec

----T0C----

Modification Record			
Acknowledgement			
Introduction	3		
Requirements	4		
References	6		
References	6		
1. Test Details	9		
2. Test Topology	10		
For End-Node : Transport and Tunnel Mode with End-Node Test	10		
For End-Node : Tunnel Mode with SGW Test	11		
For SGW : Tunnel Mode with End-Node Test	12		
For SGW : Tunnel Mode Test	13		
3. Description	14		
4. Required Tests	15		
For End-Node :	15		
For Router	16		
5. End-Node Test	17		
5.1. Architecture	17		
5.1.1. Select SPD	18		
5.1.2. Sequence Number Increment	23		
5.1.3. Packet Too Big Reception	26		
5.1.4. Bypass Policy	30		
5.1.5. Discard Policy	34		
5.1.6. Transport Mode Padding	38		
5.1.7. Non-Registered SPI	42		
5. 1. 8. ICV	46		
5.2. Algorithm Test	50		
5.2.1. Transport Mode ESP=3DES-CBC HMAC-SHA1	51		
5.2.2. Transport Mode ESP=3DES-CBC AES-XCBC	54		

	5.2.3.	Transport Mode ESP=3DES-CBC NULL	57
	5. 2. 4.	Transport Mode ESP=3DES-CBC HMAC-MD5	60
	5. 2. 5.	Transport Mode ESP=AES-CBC(128-bit) HMAC-SHA1	63
	5. 2. 6.	Transport Mode ESP=NULL HMAC-SHA1	66
	5. 2. 7.	Transport Mode ESP=DES-CBC HMAC-SHA1	69
	5.3. Tu	unnel Mode	72
	5.3.1.	Tunnel Mode with End-Node	72
	5. 3. 2.	Tunnel Mode with SGW	76
	5.3.3.	Select SPD for 2 Hosts behind 1 SGW	80
	5.3.4.	Tunnel Mode Padding	86
6.	SGW Test		91
	6.1. A	rchitecture	91
	6.1.1.	Select SPD	92
	6. 1. 2.	Select SPD for 2 Hosts behind 1 SGW	99
	6. 1. 3.	Sequence Number Increment	106
	6. 1. 4.	Packet Too Big Transmission	110
	6. 1. 5.	Packet Too Big Forwarding (Unknown Original Host)	115
	6. 1. 6.	Bypass Policy	121
	6.1.7.	Discard Policy	125
	6. 1. 8.	Tunnel Mode Padding	129
	6.1.9.	Non-Registered SPI	134
	6. 1. 10.	I CV	138
	6. 1. 11.	Tunnel Mode with End-Node	142
	6.2. A	lgorithm Test	146
	6. 2. 1.	Tunnel Mode ESP=3DES-CBC HMAC-SHA1	147
	6. 2. 2.	Tunnel Mode ESP=3DES-CBC AES-XCBC	151
	6. 2. 3.	Tunnel Mode ESP=3DES-CBC NULL	155
	6. 2. 4.	Tunnel Mode ESP=3DES-CBC HMAC-MD5	159
	6. 2. 5.	Tunnel Mode ESP=AES-CBC(128-bit) HMAC-SHA1	163
	6. 2. 6.	Tunnel Mode ESP=NULL HMAC-SHA1	167
	6. 2. 7.	Tunnel Mode ESP=DES-CBC HMAC-SHA1	171

1. Test Details

This chapter contains detailed information, including terminology, which is described below.

Terminology:

TN : Tester Node
NUT : Node Under Test (Target Implementation)
SGW : Security Gateway

Required Application:

All tests use ICMP Echo Request and Echo Reply messages by default. ICMP is independent from any implemented application and this adds clarity to the test. If the NUT can not apply IPsec for ICMPv6 packets, it is acceptable to use other protocols rather than ICMPv6. In this case, the device must support either ICMPv6, TCP or UDP. The application and port number are unspecified when TCP or UDP packets are used. The test coordinator should support any ports associated with an application used for the test. Applicants must mention the specific protocol and port that was used to execute the tests.

IPsec Configuration:

Manual key configuration is used by default and is a minimal requirement. IKE is an acceptable alternative to use when IPsec is tested. When IKE is used, the encryption key and authentication key are negotiated dynamically. In that case, dynamic keys are used rather than the static keys specified in this document. The tester should support the alternative of using IKE with dynamic keys to execute the tests.

Topology:

In "2. Test Topology" the network topology for the test is shown.

2. Test Topology

Below are logical Network Topologies for test samples.

For End-Node: Transport and Tunnel Mode with End-Node Test

- 1. Set global address to NUT by RA (NUT_LinkO)
- 2. Set MTU to NUT by RA (MTU value is 1500 for LinkO)
- 3. Make IPsec transport mode between NUT and HOST1 and HOST2

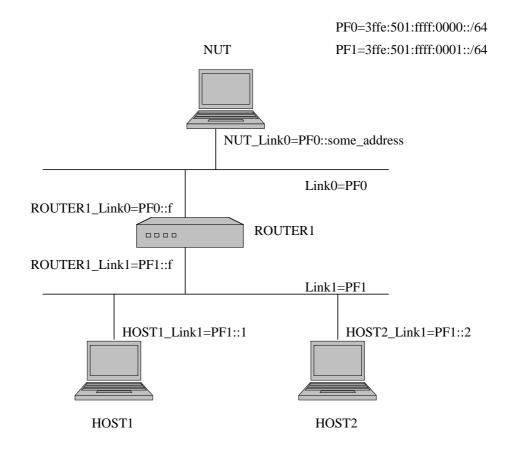


Fig. 1 Topology for End-Node: Transport and Tunnel mode with End-Node

For End-Node: Tunnel Mode with SGW Test

- 1. Set global address to NUT by RA (NUT_LinkO)
- 2. Set MTU to NUT by RA (MTU value is 1500 for LinkO)
- 3. Make IPsec tunnel mode between NUT and SGW1.

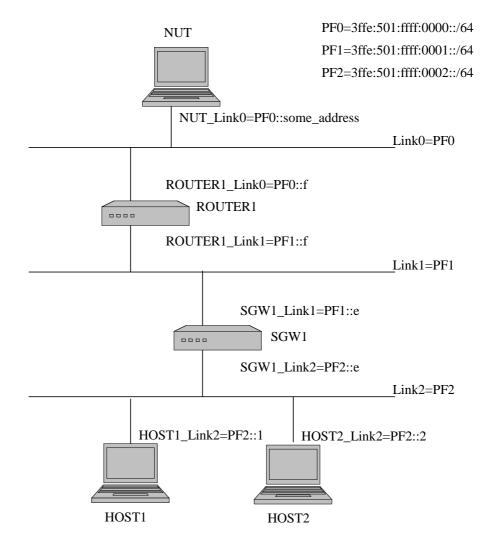


Fig. 2 Topology for End-Node: Tunnel mode with SGW

For SGW: Tunnel Mode with End-Node Test

- 1. Set global address to NUT manually (NUT_LinkO, NUT_Link1)
- 2. Set routing table to NUT manually (ROUTER1_Link1 for Link2)
- 3. Set MTU to NUT manually for LinkO and Link1 (MTU value is 1500 for LinkO and Link1)
- 4. Make IPsec tunnel mode between NUT and HOST2.

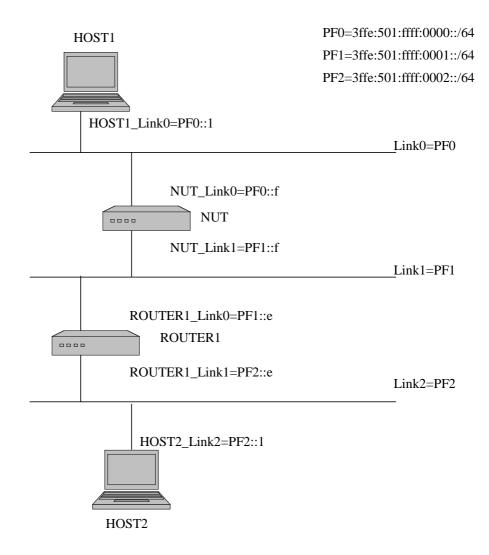
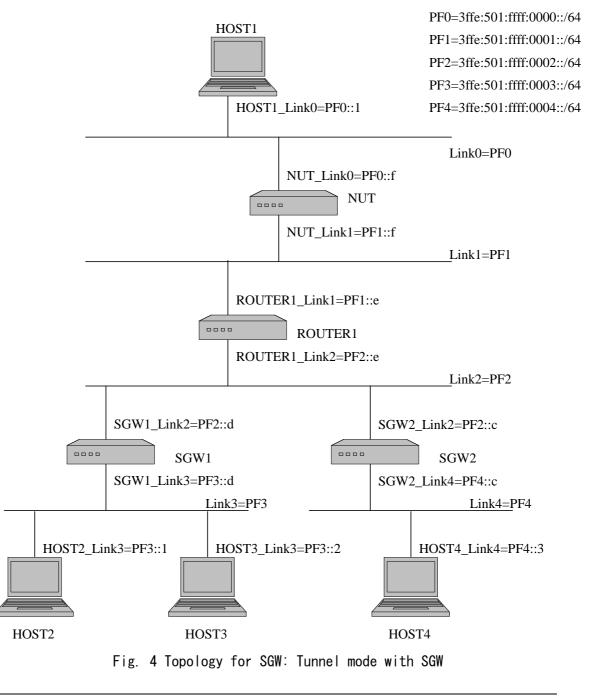



Fig. 3 Topology for SGW: Tunnel mode with End-Node

For SGW: Tunnel Mode Test

- 1. Set global address to NUT manually (NUT_LinkO, NUT_Link1)
- 2. Set routing table to NUT manually (ROUTER1_Link1 for Link2, Link3 and Link4)
- 3. Set MTU to NUT manually for LinkO and Link1 (MTU value is 1500 for LinkO and Link1)
- 4. Make IPsec tunnel mode between NUT and SGW1 and SGW2

3. Description

Each test specification consists of following parts.

- Purpose: The Purpose is the short statement describing what the test attempts to achieve. It is usually phrased as a simple assertion of the future or capability to be tested.
- Category: The Category shows what classification of device must satisfy the test.
- Initialization: The Initialization describes how to initialize and configure the NUT before starting each test. If a value is not provided, then the protocol's default value is used.
- Packets: The Packets describes the simple figure of packets which is used in the test. In this document, the packet name is represented in *Italic* style font.
- Procedure: The Procedure describes step-by-step instructions for carrying out the test.
- Judgment: The Judgment describes expected result. If we can observe as same result as the description of Judgment, the NUT passes the test.
- References: The References section contains some parts of specification related to the tests. It also shows the document names and section numbers.

4. Required Tests

The following table lists which tests a device is required to pass based on category.

For End-Node:

Test Title	Category	Note
Select SPD	BASIC	
Sequence Number Increment	BASIC	
Packet Too Big Reception	BASIC	
Bypass Policy	ADVANCED	Either of Bypass or Discard Policy is
Discard Policy	ADVANCED	required
Transport Mode Padding	BASIC	
Non-Registered SPI	BASIC	
ICV	BASIC	
Transport Mode ESP=3DES-CBC HMAC-SHA1	BASIC	
Transport Mode ESP=3DES-CBC AES-XCBC	ADVANCED	
Transport Mode ESP=3DES-CBC NULL	ADVANCED	
Transport Mode ESP=3DES-CBC HMAC-MD5	ADVANCED	
Transport Mode ESP=AES-CBC (128-bit)	ADVANCED	
HMAC-SHA1		
Transport Mode ESP=NULL HMAC-SHA1	ADVANCED	
Transport Mode ESP=DES-CBC HMAC-SHA1	ADVANCED	
Tunnel Mode with End-Node	ADVANCED	
Tunnel Mode with SGW	ADVANCED	
Select SPD for 2 Hosts behind 1 SGW	ADVANCED	
Tunnel Mode Padding	ADVANCED	

For SGW:

Test Title	Category	Note
Select SPD	BASIC	
Select SPD for 2 Hosts behind 1 SGW	BASIC	
Sequence Number Increment	BASIC	
Packet Too Big Transmission	BASIC	
Packet Too Big Forwarding(Unknown Original	BASIC	
Host)		
Bypass Policy	ADVANCED	Either of Bypass or Discard Policy is
Discard Policy	ADVANCED	required
Tunnel Mode Padding	BASIC	
Non-Registered SPI	BASIC	
ICV	BASIC	
Tunnel Mode with End-Node	BASIC	
Tunnel Mode ESP=3DES-CBC HMAC-SHA1	BASIC	
Tunnel Mode ESP=3DES-CBC AES-XCBC	ADVANCED	
Tunnel Mode ESP=3DES-CBC NULL	ADVANCED	
Tunnel Mode ESP=3DES-CBC HMAC-MD5	ADVANCED	
Tunnel Mode ESP=AES-CBC (128-bit) HMAC-SHA1	ADVANCED	
Tunnel Mode ESP=NULL HMAC-SHA1	ADVANCED	
Tunnel Mode ESP=DES-CBC HMAC-SHA1	ADVANCED	

5. End-Node Test

This Chapter describes the test specification for End-Node. The test specification consists of 2 sections. One is regarding "IPsec Architecture" and another part is regarding "Encryption and Authentication Algorithms".

Architecture

Scope:

Following tests focus on IPsec Architecture.

Overview:

Tests in this section verify that a node properly process and transmit based on the Security Policy Database and Security Association Database.

5.1.1. Select SPD

Purpose:

Verify that a NUT (End-Node) selects appropriate SPD (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA1-I
	<	SA1-0
HOST2_Link1		NUT
	>	SA2-I
	<	SA2-0

Security Association Database (SAD) for SA1-I

-	
source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA1-I

source address	HOST1_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA1-0 $\,$

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport

Security Association Database (SAD) for SA2-I

5	. ,
source address	HOST2_Link1
destination address	NUT_Link0
SPI	0x3000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin02
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in02

Security Policy Database (SPD) for SA2-1

source address	HOST2_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA2-0

NUT_Link0		
HOST2_Link1		
0x4000		
transport		
ESP		
3DES-CBC		
ipv6readylogo3descbcout2		
HMAC-SHA1		
ipv6readylogsha1out2		

Security Policy Database (SPD) for SA2-0

source address	NUT_LinkO	
destination address	HOST2_Link1	
upper spec	any	
direction	Out	
protocol	ESP	
mode	transport	

Packets:

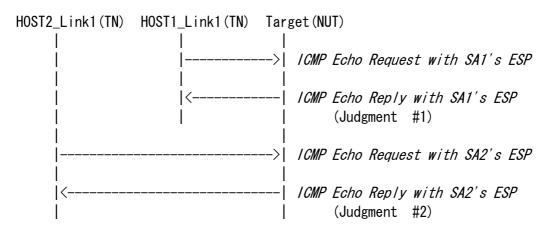
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC

ICMP Echo Request with SA1's ESP

	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with SA1' s ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Request)


ICMP Echo Request with SA2' s ESP

IP Header	Source Address	HOST2_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with SA2' s ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST2_Link1
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
ICMP	Туре	129 (Echo Request)

Procedure:

PartA: SA1

- 1. HOST1 sends "ICMP Echo Request with SA1's ESP"
- 2. Observe the packet transmitted by NUT

PartB: SA2

- 3. Host2 sends "ICMP Echo Request with SA2's ESP"
- 4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with SA1's ESP"*.

PartB: Judgment #2 Step-4: NUT transmits *"ICMP Echo Reply with SA2's ESP"*.

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.4.1

5.1.2. Sequence Number Increment

Purpose:

Verify that a NUT (End-Node) increases sequence number correctly, starting with 1. (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1 Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

HOST1_Link1		
NUT_LinkO		
0x1000		
transport		
ESP		
3DES-CBC		
ipv6readylogo3descbcin01		
HMAC-SHA1		
ipv6readylogsha1in01		

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-0

-		

Security Policy Database (SPD) for SA-0

source address	NUT_LinkO	
destination address	HOST1_Link1	
upper spec	any	
direction	Out	
protocol	ESP	
mode	transport	

Packets:

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Sequence	$1^{st} = 1, 2^{nd} = 2$
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Sequence	$1^{st} = 1, 2^{nd} = 2$
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

Procedure:

HOST1_Link1(TN)	Target	: (NUT)
 	 >	ICMP Echo Request with ESP
 < 		<i>ICMP Echo Reply with ESP</i> (Judgment #1)
 	 > 	ICMP Echo Request with ESP
 < 	 	<i>ICMP Echo Reply with ESP</i> (Judgment #2)

1. HOST1 sends "ICMP Echo Request with ESP"

2. Observe the packet transmitted by NUT

3. HOST1 sends "ICMP Echo Request with ESP"

4. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits an *"ICMP Echo Reply with ESP" with an ESP Sequence Number of 1.*

Judgment #2 Step-4: NUT transmits an *"ICMP Echo Reply with ESP" with an ESP Sequence Number of 2.*

References:

RFC2401 : Security Architecture for the Internet Protocol RFC2406 : IP Encapsulating Security Payload (ESP), Section 3.3.3

5.1.3. Packet Too Big Reception

Purpose:

Verify that a NUT (End-Node) process the ICMP Error Message (Packet Too Big) correctly. (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig. 1. Router1's interface to Link1 has an MTU value of 1280.

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	HOST1_Link1	
destination address	NUT_LinkO	
SPI	0x1000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1	
destination address	NUT_Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-0

······································		
NUT_LinkO		
HOST1_Link1		
0x2000		
transport		
ESP		
3DES-CBC		
ipv6readylogo3descbcout1		
HMAC-SHA1		
ipv6readylogsha1out1		

Security Policy Database (SPD) for SA-0

source address	NUT_LinkO	
destination address	HOST1_Link1	
upper spec	any	
direction	Out	
protocol	ESP	
mode	transport	

Packets:

ICMP Echo Request with ESP

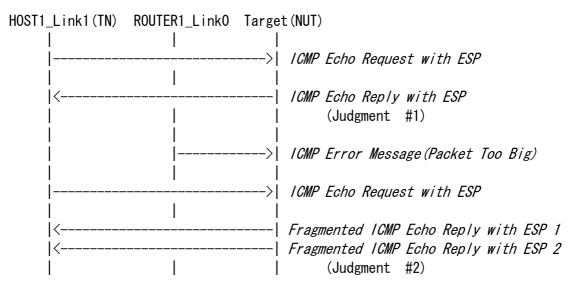
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
	Payload Length	1460
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

Source Address	NUT_LinkO	
Destination Address	HOST1_Link1	
Payload Length	1460	
SPI	0x2000	
Algorithm	3DES-CBC	
KEY	ipv6readylogo3descbcout1	
Authentication Algorithm	HMAC-SHA1	
Authentication Key	ipv6readylogsha1out1	
Туре	129 (Echo Reply)	
	Source Address Destination Address Payload Length SPI Algorithm KEY Authentication Algorithm Authentication Key	

ICMP Error Message (Packet Too Big)

IP Header	Source Address	Router_Link1
	Destination Address	NUT_LinkO
ICMP	Туре	2 (Packet Too Big)
	MTU	1280
	Data	1232Byte of ICMP Echo Reply with
		ESP


Fragmented ICMP Echo Reply with ESP 1

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

Fragmented ICMP Echo Reply with ESP 2

IP Header	Source Address	NUT_Link0		
	Destination Address	HOST1_Link1		
	Payload Length	236		
Fragment	Offset	154		
	More Flag	0		
Data	Data	Rest of ICMP Echo Reply with ESP		

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT
- 3. ROUTER1 sends "ICMP Error Message (Packet Too Big)
- 4. HOST1 sends "ICMP Echo Request with ESP"
- 5. Observe the packet transmitted by $\ensuremath{\text{NUT}}$

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

Judgment #2

Step-5: NUT transmits "Fragmented ICMP Echo Reply with ESP 1" and "Fragmented ICMP Echo Reply with ESP 2"

References:

RFC2401 : Security Architecture for the Internet Protocol Section 6.1.2

5. 1. 4. Bypass Policy

Purpose:

Verify that a NUT (End-Node) select bypass or discard policies

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support Bypass Policy, regardless of explicitly or implicitly) SGW : N/A

NOTE: NUT needs to pass at least either of "Bypass Policy" or "Discard Policy" tests.

Initialization:

Use common topology described as Fig.1 Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-0

-

Security Policy Database (SPD) for SA-0

source address	NUT_LinkO	
destination address	HOST1_Link1	
upper spec	any	
direction	Out	
protocol	ESP	
mode	transport	

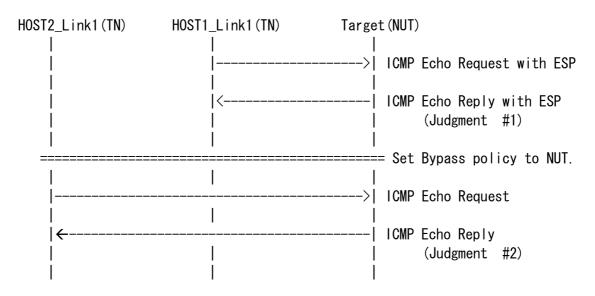
Packets:

ICMP Echo Request with ESP

Tenn Lerre nega				
IP Header	Source Address	HOST1_Link1		
	Destination Address	NUT_LinkO		
	Payload Length	1460		
ESP	SPI	0x1000		
	Algorithm	3DES-CBC		
	KEY	ipv6readylogo3descbcin01		
	Authentication Algorithm	HMAC-SHA1		
	Authentication Key	ipv6readylogsha1in01		
ICMP	Туре	128 (Echo Request)		

ICMP Echo Reply with ESP

Source Address	NUT_LinkO		
Destination Address	HOST1_Link1		
Payload Length	1460		
SPI	0x2000		
Algorithm 3DES-CBC			
КЕҮ	ipv6readylogo3descbcout1		
Authentication Algorithm	HMAC-SHA1		
Authentication Key ipv6readylogshalout1			
Туре	129 (Echo Reply)		
	Source Address Destination Address Payload Length SPI Algorithm KEY Authentication Algorithm Authentication Key		


ICMP Echo Request

IP Header	Source Address HOST2_Link1		
	Destination Address	NUT_LinkO	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Reply

IP Header	Source Address	NUT_Link0		
	Destination Address	HOST2_Link1		
ICMP	Туре	129 (Echo Reply)		

Procedure:

PartA: Confirmation

- 1. Host1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

PartB: Bypass policy

3. Set Bypass policy for above ICMP Echo Request to NUT as following example

					-	
Evomplo 1.	Coourity	Doliov	Dotobooo	(CDD)	for	naliov-Rynaaa
	Securily	FUILGV	Dalabase	(OFD)	101	policy=Bypass

source address	HOST2_Link1
destination address	NUT_Link0
upper spec	any
direction	in
policy	bypass (none)

Example 2: Security Policy Database (SPD) for policy=Bypass as default policy

source address	any
destination address	any
upper spec	any
direction	in
policy	bypass (none)

4. HOST1 sends "ICMP Echo Request"

5. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1. Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

PartB: Judgment #2. Step-5: NUT transmits *"ICMP Echo Reply"*

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.4.1

5. 1. 5. **Discard Policy**

Purpose:

Verify that a NUT (End-Node) select bypass or discard policies

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support Discard Policy, regardless of explicitly or implicitly) SGW : N/A

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

Initialization:

Use common topology described as Fig.1 Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1	
destination address	NUT_Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-O

source address	NUT_Link0	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

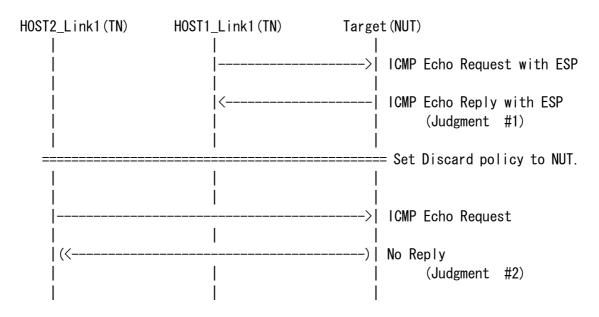
Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport

Packets:

Source Address	HOST1_Link1
Destination Address	NUT_LinkO
Payload Length	1460
SPI	0x1000
Algorithm	3DES-CBC
KEY	ipv6readylogo3descbcin01
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1in01
Туре	128 (Echo Request)
	Destination Address Payload Length SPI Algorithm KEY Authentication Algorithm Authentication Key

Source Address	NUT_LinkO	
Destination Address	HOST1_Link1	
Payload Length	1460	
SPI	0x2000	
Algorithm	3DES-CBC	
КЕҮ	ipv6readylogo3descbcout1	
Authentication Algorithm HMAC-SHA1		
Authentication Key	ipv6readylogsha1out1	
Туре	129 (Echo Reply)	
	Source Address Destination Address Payload Length SPI Algorithm KEY Authentication Algorithm Authentication Key	


ICMP Echo Request

IP Header	Source Address	HOST2_Link1	
	Destination Address	NUT_LinkO	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Reply

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST2_Link1
ICMP	Туре	129 (Echo Reply)

Procedure:

PartA: Confirmation

1. Host1 sends "ICMP Echo Request with ESP"

2. Observe the packet transmitted by NUT

PartB: Discard policy

3. Set Discard policy for above ICMP Echo Request to NUT as following example

Example 1: Security Policy Database (SPD) for policy=Discard

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
policy	discard

Example 2: Security Policy Database (SPD) for policy=Discard as default policy

source address	any
destination address	any
upper spec	any
direction	in
policy	discard

4. HOST1 sends "ICMP Echo Request"

5. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1. Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

PartB: Judgment #2. Step-5: NUT transmits nothing

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.4.1

5.1.6. Transport Mode Padding

Purpose:

Verify that a NUT (End-Node) supports padding & padding byte handling (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

source address	HOST1_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-O

source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

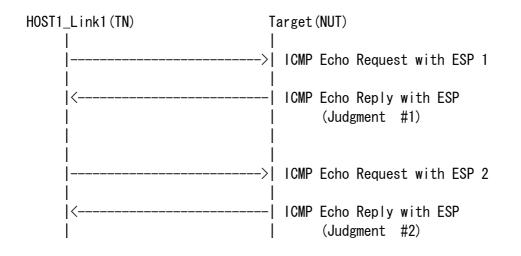
Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport

Packets:

I CMP	Echo	Request	with	ESP	1
-------	------	---------	------	-----	---

IP Header	Source Address	HOST1_Link1	
	Destination Address	NUT_LinkO	
ESP	SPI	0x1000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcin01	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01	
	Padding	Sequential	
	Padding Length	7	
ICMP	Туре	128 (Echo Request)	
	Data Length	7	


ICMP Echo Request with ESP 2

Temm Lette Hequeet		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	Sequential
	Padding Length	255
ICMP	Туре	128 (Echo Request)
	Data Length	7

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	Padding Length	7+8n (0 <= n <= 31)
ICMP	Туре	129 (Echo Reply)
	Data Length	7

Procedure:

PartA: Padding 7
1. HOST1 sends *"ICMP Echo Request with ESP 1"*2. Observe the packet transmitted by NUT

PartB: Padding 255

- 3. HOST1 sends "ICMP Echo Request with ESP 2"
- 4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits "ICMP Echo Reply with ESP"

PartB: Judgment #2
Step-4: NUT transmits "ICMP Echo Reply with ESP"

References:

RFC2406 : IP Encapsulating Security Payload (ESP) Section 2.4

5.1.7. Non-Registered SPI

Purpose:

Verify that a NUT (End-Node) can behave when No valid Security Association is configured.

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

	•
source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

	•
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport

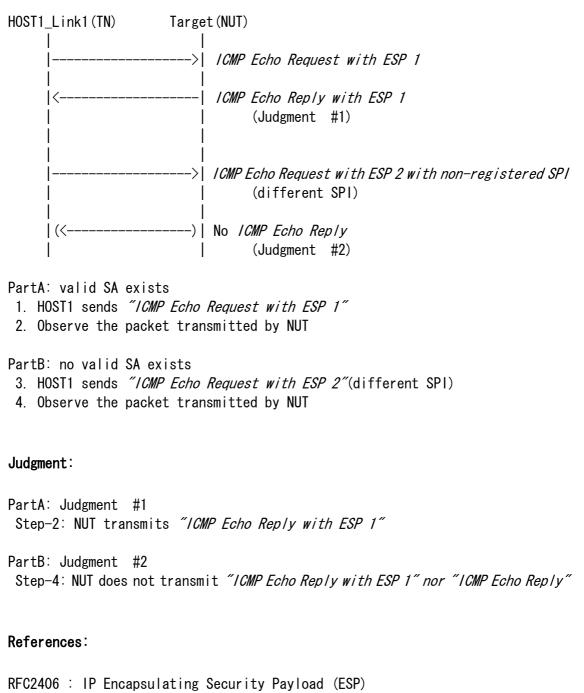
Packets:

Tenni Lerre negacee		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Request with ESP 1

ICMP Echo Reply with ESP 1

1,2		
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)


ICMP Echo Request with ESP 2 with non-registered SPI

Source Address	HOST1_Link1
Destination Address	NUT_LinkO
SPI	0x9000 (Different from SA-I's
	SPD)
Algorithm	3DES-CBC
Кеу	ipv6readylogo3descbcin01
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1in01
Туре	128 (Echo Request)
	Source Address Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key

ICMP Echo Reply

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ICMP	Туре	129 (Echo Reply)

Procedure:

45

Section 3.4.2

5. 1. 8. ICV

Purpose:

Verify that a NUT (End-Node) can detect the modification by examining the ICV (End-Node transport mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_Link0
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

	•
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

5	
source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport

Packets:

I CMP	Echo	Request	with	ESP	1
-------	------	---------	------	-----	---

TOMI LONG NEGUESE		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Sequence number	1
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)
	Data	"EchoData"

Telli Leffe Hepty H		
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)
	Data	"EchoData"

ICMP Echo Request with ESP 2

TOMI LOND NEQUEST		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Sequence number	2
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	ICV	aaaaaaaaaaaaaaaaa
ICMP	Туре	128 (Echo Request)
	Data	"cracked" ("EchoData" is
		original)

ICMP Echo Reply

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ICMP	Туре	129 (Echo Reply)

Procedure:

PartA: send correct packet

- 1. HOST1 sends "ICMP Echo Request with ESP 1"
- 2. Observe the packet transmitted by NUT

PartB: send modified packet

- 3. HOST1 sends "ICMP Echo Request with ESP 2" (ICV is modified)
- 4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits "ICMP Echo Reply with ESP 1"

PartB: Judgment #2 Step-4: NUT does not transmit *"ICMP Echo Reply with ESP 1" nor "ICMP Echo Reply"*

49

References:

RFC2406 : IP Encapsulating Security Payload (ESP) Section 3.4.3

5.2. Algorithm Test

Scope:

Following tests focus on Encryption and Authentication Algorithms.

Overview:

Tests in this section verify that the NUT properly decrypt the received packet s and encrypts the transmitting packets using Encryption algorithms specified in the SAD.

And they verify that the NUT properly processes the authentication algorithms specified in the SAD.

5.2.1. Transport Mode ESP=3DES-CBC HMAC-SHA1

Purpose:

End-Node transport mode, ESP=3DES-CBC HMAC-SHA1

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

HOST1_Link1
NUT_LinkO
0x1000
transport
ESP
3DES-CBC
ipv6readylogo3descbcin01
HMAC-SHA1
ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

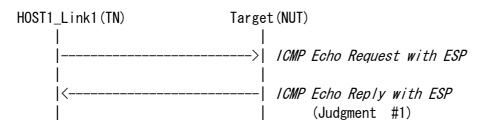
Security Association Database (SAD) for SA-0

-		

Security Policy Database (SPD) for SA-0

source address	NUT_LinkO	
destination address	HOST1_Link1	
upper spec	any	
direction	Out	
protocol	ESP	
mode	transport	

Packets:


ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply with ESP

IP Header	Source Address	NUT_Link0
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC1851 : The ESP Triple DES Transform RFC2401 : Security Architecture for the Internet Protocol RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP)

5. 2. 2. Transport Mode ESP=3DES-CBC AES-XCBC

Purpose:

End-Node transport mode, ESP=3DES-CBC AES-XCBC

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support AES-XCBC as an authentication algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	AES-XCBC-MAC-96
ESP authentication key	ipv6readaesxin01

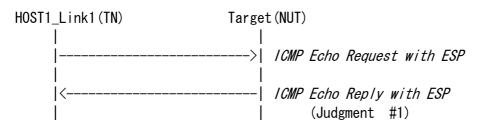
	•
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	AES-XCBC-MAC-96
ESP authentication key	ipv6readaesxout1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

Telli Lerie Hegueet		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcin01
	Authentication Algorithm	AES-XCBC-MAC-96
	Authentication Key	ipv6readaesxin01
ICMP	Туре	128 (Echo Request)

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	AES-XCBC-MAC-96
	Authentication Key	ipv6readaesxout1
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC1851 : The ESP Triple DES Transform RFC2401 : Security Architecture for the Internet Protocol RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP) RFC3566 : The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec

56

5. 2. 3. Transport Mode ESP=3DES-CBC NULL

Purpose:

End-Node transport mode, ESP=3DES-CBC NULL

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support NULL as an authentication algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

······································		
HOST1_Link1		
NUT_LinkO		
0x1000		
transport		
ESP		
3DES-CBC		
ipv6readylogo3descbcin01		
NULL		

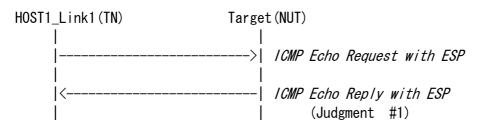
source address	HOST1_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-O

source address	NUT_LinkO
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	NULL
ESP authentication key	

Security Policy Database (SPD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	NULL
	Authentication Key	
ICMP	Туре	128 (Echo Request)

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	NULL
	Authentication Key	
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC1851 : The ESP Triple DES Transform RFC2401 : Security Architecture for the Internet Protocol RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP) RFC2410 : The NULL Encryption Algorithm and Its Use With IPsec

5. 2. 4. Transport Mode ESP=3DES-CBC HMAC-MD5

Purpose:

End-Node transport mode, ESP=3DES-CBC HMAC-MD5

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support HMAC-MD5 as an authentication algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-MD5
ESP authentication key	ipv6readymd5in01

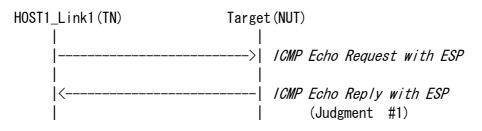
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-MD5
ESP authentication key	ipv6readymd5out1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

Source Address	HOST1_Link1
Destination Address	NUT_LinkO
SPI	0x1000
Algorithm	3DES-CBC
KEY	ipv6readylogo3descbcin01
Authentication Algorithm	HMAC-MD5
Authentication Key	ipv6readymd5in01
Туре	128 (Echo Request)
	Destination Address SPI Algorithm KEY Authentication Algorithm Authentication Key

	201	
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	KEY	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-MD5
	Authentication Key	ipv6readymd5out1
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC1851 : The ESP Triple DES Transform RFC2401 : Security Architecture for the Internet Protocol RFC2403 : The Use of HMAC-MD5-96 within ESP and AH RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP)

5. 2. 5. Transport Mode ESP=AES-CBC (128-bit) HMAC-SHA1

Purpose:

End-Node transport mode, ESP=AES-CBC (128-bit) HMAC-SHA1

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support AES-CBC (128-bit) as an encryption algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP algorithm key	ipv6readaescin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

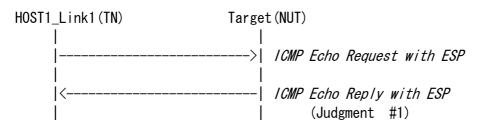
source address	HOST1_Link1
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP algorithm key	ipv6readaescout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	AES-CBC(128-bit)
	Кеу	ipv6readaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	AES-CBC(128-bit)
	Кеу	ipv6readaescout1
	Authentication Algorithm	HMAC-MD5
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC2401 : Security Architecture for the Internet Protocol
RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH
RFC2406 : IP Encapsulating Security Payload (ESP)
RFC3602 : The AES-CBC Cipher Algorithm and Its Use with IPsec

5. 2. 6. Transport Mode ESP=NULL HMAC-SHA1

Purpose:

End-Node transport mode, ESP=NULL HMAC-SHA1

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support NULL as an encryption algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1
destination address	NUT_LinkO
SPI	0x1000
mode	transport
protocol	ESP
ESP algorithm	NULL
ESP algorithm key	
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

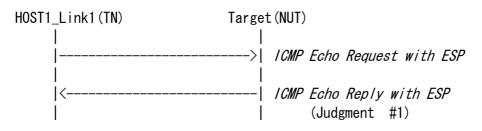
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	transport

Security Association Database (SAD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	transport
protocol	ESP
ESP algorithm	NULL
ESP algorithm key	
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

IP Header	Source Address	HOST1_Link1	
	Destination Address	NUT_LinkO	
ESP	SPI	0x1000	
	Algorithm	NULL	
	Кеу		
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01	
ICMP	Туре	128 (Echo Request)	

IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	NULL
	Кеу	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC2401 : Security Architecture for the Internet Protocol RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH RFC2406 : IP Encapsulating Security Payload (ESP) RFC2410 : The NULL Encryption Algorithm and Its Use With IPsec

68

5. 2. 7. Transport Mode ESP=DES-CBC HMAC-SHA1

Purpose:

End-Node transport mode, ESP=DES-CBC HMAC-SHA1

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support DES-CBC as an encryption algorithm) SGW : N/A

Initialization:

Use common topology described as Fig.1

Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

HOST1_Link1	
NUT_Link0	
0x1000	
transport	
ESP	
DES-CBC	
idesin01	
HMAC-SHA1	
ipv6readylogsha1in01	

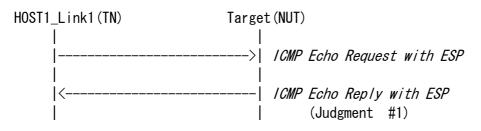
source address	HOST1_Link1	
destination address	NUT_LinkO	
upper spec	any	
direction	in	
protocol	ESP	
mode	transport	

Security Association Database (SAD) for SA-O

source address	NUT_LinkO	
destination address	HOST1_Link1	
SPI	0x2000	
mode	transport	
protocol	ESP	
ESP algorithm	DES-CBC	
ESP algorithm key	idesout1	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1out1	

Security Policy Database (SPD) for SA-O

source address	NUT_Link0
destination address	HOST1_Link1
upper spec	any
direction	Out
protocol	ESP
mode	transport


Packets:

ICMP Echo Request with ESP

· · · · · · · · · · · · · · · · · · ·		
IP Header	Source Address	HOST1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	DES-CBC
	Кеу	idesin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
ICMP	Туре	128 (Echo Request)

IP Header	Source Address	NUT_LinkO	
	Destination Address	HOST1_Link1	
ESP	SPI	0x2000	
	Algorithm	DES-CBC	
	Кеу	idesout1	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out1	
ICMP	Туре	129 (Echo Reply)	

Procedure:

- 1. HOST1 sends "ICMP Echo Request with ESP"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Reply with ESP"*

References:

RFC1829 : The ESP DES-CBC Transform RFC2401 : Security Architecture for the Internet Protocol RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP)

5.3. Tunnel Mode

5.3.1. Tunnel Mode with End-Node

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with End-Node correctly. (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support Tunnel Mode) SGW : N/A

Initialization:

Use common topology described as Fig.1 Set NUT's SAD and SPD as following:

HOST1_Link1		NUT
	>	SA-I
	<	SA-0

source address	HOST1_Link1	
destination address	NUT_Link0	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Socurity	Policy	Database	(CDD)	for	۱_۸2
Security	FULLCY	Dalabase	(SFD)	TOT	SA-I

tunnel source address	HOST1_Link1
tunnel destination address	NUT_LinkO
source address	HOST1_Link1
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	tunnel

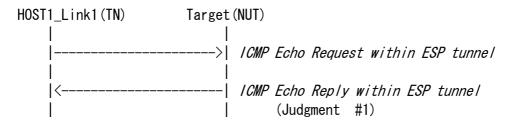
Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	HOST1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

NUT_LinkO		
HOST1_Link1		
NUT_LinkO		
HOST1_Link1		
any		
Out		
ESP		
tunnel		

Packets:


IP Header Source Address		HOST1_Link1	
	Destination Address	NUT_LinkO	
ESP	SPI	0x1000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcin01	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01	
IP Header	Source Address	HOST1_Link1	
	Destination Address	NUT_LinkO	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Request within ESP tunnel

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT LinkO
IF fieader	Source Address	
	Destination Address	HOST1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link1
ICMP	Туре	129 (Echo Reply)

Procedure:

1. HOST1 sends "ICMP Echo Request with ESP tunnel"

2. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step2: NUT transmits the packet *"ICMP Echo Reply within ESP tunnel"*.

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.1

5.3.2. Tunnel Mode with SGW

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with SGW correctly (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support Tunnel Mode) SGW : N/A

Initialization:

Use common topology described as Fig.2 Set NUT's SAD and SPD as following:

HOST1	 SGW1		NUT
		>	SA-I
		<	SA-0

Security Association Database (SAD) for SA-I

SGW1_Link1
NUT_LinkO
0x1000
tunnel
ESP
3DES-CBC
ipv6readylogo3descbcin01
HMAC-SHA1
ipv6readylogsha1in01

IPsec

Security Policy Database (SPD) for SA-I

tunnel source address	SGW1_Link1
tunnel destination address	NUT_LinkO
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

NUT_LinkO
SGW1_Link1
NUT_LinkO
Link2
any
Out
ESP
tunnel

Packets:

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP tunnel

ICMP Echo Reply within ESP tunnel

IP Header	Source Address	NUT_LinkO
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link2
ICMP	Туре	129 (Echo Reply)

Procedure:

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT

Judgment:

Judgment #1

Step2: NUT transmits the packet "ICMP Echo Reply within ESP tunnel".

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.1

5.3.3. Select SPD for 2 Hosts behind 1 SGW

Purpose:

Verify that a NUT (End-Node) can build IPsec tunnel mode with SGW correctly (End-Node tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : ADVANCED (This test is required for all End-Node NUTs which support Tunnel Mode) SGW : N/A

Initialization:

Use common topology described as Fig.2 Set NUT's SAD and SPD as following:

_	> > <	SA1-I
HOST2_Link2 SGW1	> >	SA2-1

Security Association Database (SAD) for SA1-I		
source address	SGW1_Link1	
destination address	NUT_LinkO	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

C	Dalian	Databaaa		£	041 1
Security	POILCY	Database	(3PD)	IOT	SAITI

tunnel source address	SGW1_Link1
tunnel destination address	NUT_LinkO
source address	HOST1_Link2
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

	•
source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

0
NUT_LinkO
SGW1_Link1
NUT_Link0
HOST1_Link2
any
Out
ESP
tunnel

Security Association Database (SAD) for SA2-I

source address	SGW1_Link1	
destination address	NUT_Link0	
SPI	0x3000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin02	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in02	

Security	Policy	Database	(SPD)	for	SA2-1
Security	FULLGY	Dalabase	(OFD)	101	SAZ-I

	-
tunnel source address	SGW1_Link1
tunnel destination address	NUT_LinkO
source address	HOST2_Link2
destination address	NUT_LinkO
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-0

source address	NUT_LinkO
destination address	SGW1_Link1
SPI	0x4000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

6
NUT_LinkO
SGW1_Link1
NUT_LinkO
HOST2_Link2
any
Out
ESP
tunnel

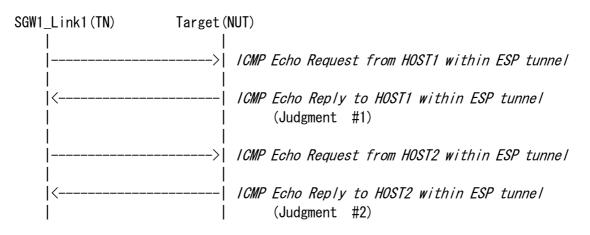
Packets:

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST1 within ESP tunnel

ICMP Echo Reply to HOST1 within ESP tunnel

IP Header	Source Address	NUT_LinkO
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link2
ICMP	Туре	129 (Echo Reply)


ICMP Echo Request from HOST2 within ESP tunnel

IP Header	Source Address	SGW1_Link1	
	Destination Address	NUT_LinkO	
ESP	SPI	0x3000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcin02	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in02	
IP Header	Source Address	HOST2_Link2	
	Destination Address	NUT_LinkO	
ICMP	Туре	128 (Echo Request)	

ICMP Ed	cho Repl	i to	HOST2	within	ESP	tunnel
---------	----------	------	-------	--------	-----	--------

IP Header	Source Address	NUT_LinkO
	Destination Address	SGW1_Link1
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST2_Link2
ICMP	Туре	129 (Echo Reply)

Procedure:

PartA: SA1

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT

PartB: SA2

- 3. SGW1 sends "ICMP Echo Request from HOST2 within ESP tunnel"
- 4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits the packet "ICMP Echo Reply to HOST1 within ESP tunnel".
PartB: Judgment #2
Step-4: NUT transmits the packet "ICMP Echo Reply to HOST2 within ESP tunnel".

84

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.1

5.3.4. Tunnel Mode Padding

Purpose:

Verify that a NUT (End-Node) supports padding & padding byte handling (End-Node Tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : BASIC (A requirement for all End-Node NUTs) SGW : N/A

Initialization:

Use common topology described as Fig.2 Set NUT's SAD and SPD as following:

HOST1	 SGW1		NUT
		>	SA-I
		<	SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link1	
destination address	NUT_LinkO	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

	-
tunnel source address	SGW1_Link1
tunnel destination address	NUT_LinkO
source address	Link2
destination address	NUT_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link0
destination address	SGW1_Link1
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

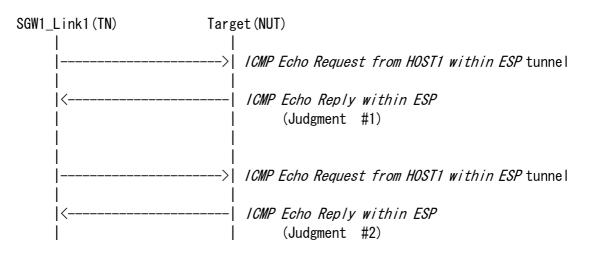
Security Policy Database (SPD) for SA-0

	•
tunnel source address	NUT_LinkO
tunnel destination address	SGW1_Link1
source address	NUT_LinkO
destination address	Link2
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

Packets:

IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	sequential
	Padding Length	7
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_LinkO
ICMP	Туре	128 (Echo Request)
	Data Length	7

ICMP Echo Request within ESP tunnel 1


ICMP Echo Request within ESP tunnel 2

TOM LONG NEGUEDE		
IP Header	Source Address	SGW1_Link1
	Destination Address	NUT_LinkO
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	sequential
	Padding Length	255
IP Header	Source Address	HOST1_Link2
	Destination Address	NUT_LinkO
ICMP	Туре	128 (Echo Request)
	Data Length	7

ICMP	Echo	Rep/v	within	ESP	tunne l
1 0 1111	20110	nopry		207	carnior

IP Header	Source Address	NUT_LinkO
	Destination Address	SGW1_Link1
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_Link2
ICMP	Туре	129 (Echo Reply)
	Data Length	7

Procedure:

PartA: Padding 7

- 1. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 2. Observe the packet transmitted by NUT

PartB: Padding 255

- 3. SGW1 sends "ICMP Echo Request from HOST1 within ESP tunnel"
- 4. Observe the packet transmitted by $\ensuremath{\text{NUT}}$

Judgment:

PartA: Judgment #1 Step-2: NUT transmits the packet *"ICMP Echo Reply to HOST1 within ESP tunnel"*. PartB: Judgment #2 Step-4: NUT transmits the packet *"ICMP Echo Reply to HOST1 within ESP tunnel"*.

References:

RFC2406 : IP Encapsulating Security Payload Section 2.4

6. SGW Test

This Chapter describes the test specification for SGW. The test specification consists of 2 parts. One is regarding "IPsec Architecture" and another part is regarding to "Encryption and Authentication Algorithms".

6.1. Architecture

Scope:

Following tests focus on IPsec Architecture.

Overview:

Tests in this section verify that a node properly process and transmit based on the Security Policy Database and Security Association Database.

Select SPD 6. 1. 1.

Purpose:

Verify that a NUT (SGW) selects appropriate SPD (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_LinkO
	>	SA1-I
	<	SA1-0
HOST4_Link4 SGW2		NUT HOST1_LinkO
	>	SA2-I
	<	SA2-0

Security Association Database (SAD) for SA1-I	
source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security	Policy	Database	(SPD)	for	SA1-I
000001105	101103	Ducubuoo			0/11 1

	•
tunnel source address	SGW1_Link2
tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

	8
tunnel source address	NUT_Link1
tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA2-1

SGW2_Link2
NUT_Link1
0x3000
tunnel
ESP
3DES-CBC
ipv6readylogo3descbcin02
HMAC-SHA1
ipv6readylogsha1in02

Security	Policy	Database	(SPD)	for	SA2-1

tunnel source address	SGW2_Link2	
tunnel destination address	NUT_Link1	
source address	Link4	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA2-0

source address	NUT_Link1
destination address	SGW2_Link2
SPI	0x4000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

NUT_Link1		
SGW2_Link2		
Link0		
Link4		
any		
Out		
ESP		
tunnel		

Packets:

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within SA1's ESP

ICMP Echo Request from HOST2

IP Header	Source Address	HOST2_Link3	
	Destination Address	HOST1_Link0	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Reply to HOST2

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within SA1's ESP

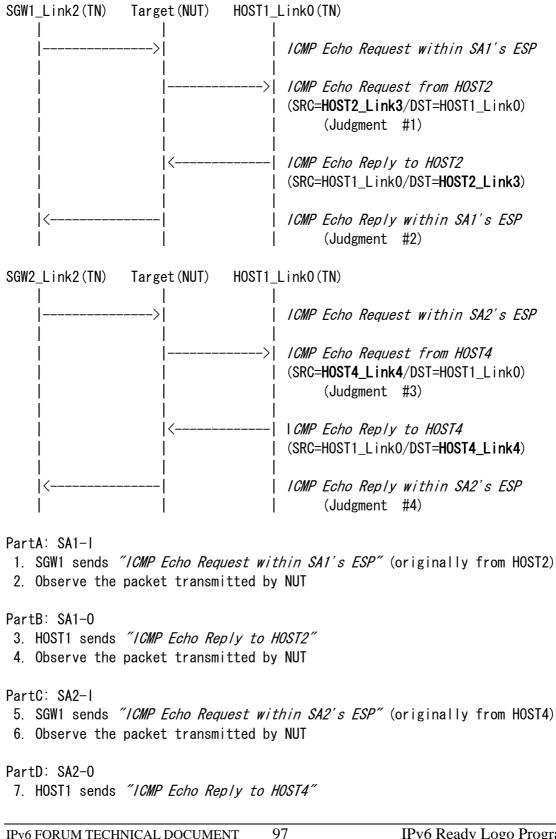
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Request within SA2's ESP

IP Header	Source Address	SGW2_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)


ICMP Echo Reply to HOST4

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST4_Link4
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within SA2's ESP

IP Header	Source Address	NUT_Link1	
	Destination Address	SGW2_Link2	
ESP	SPI	0x4000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcout2	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out2	
IP Header	Source Address	HOST1_Link0	
	Destination Address	HOST4_Link4	
ICMP	Туре	129 (Echo Reply)	

Procedure:

8. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits "ICMP Echo Request from HOST2"

PartB: Judgment #2 Step-4: NUT transmits *"ICMP Echo Reply within SA1's ESP"*

PartC: Judgment #3
Step-6: NUT transmits "ICMP Echo Request from HOST4"

PartD: Judgment #4 Step-8: NUT transmits *"ICMP Echo Reply within SA2's ESP"*

References:

RFC2401: Security Architecture for IP Section 4.4.1

6.1.2. Select SPD for 2 Hosts behind 1 SGW

Purpose:

Verify that a NUT (SGW) selects appropriate SPD (SGW tunnel mode, ESP=3DES-CBC)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_LinkO
	>	SA1-I
	<	SA1-0
HOST3_Link3 SGW1		NUT HOST1_LinkO
	>	SA2-I
	<	SA2-0

Security Association Database (SAD) for SA1-I		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP algorithm key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

•	-			~	
Security	Policy	Database	(SPD)	for	SA1-I

	•
tunnel source address	SGW1_Link2
tunnel destination address	NUT_Link1
source address	HOST2_Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA1-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA1-0

tunnel source address	NUT_Link1		
tunnel destination address	SGW1_Link2		
source address	Link0		
destination address	HOST2_Link3		
upper spec	any		
direction	Out		
protocol	ESP		
mode	tunnel		

Security Association Database (SAD) for SA2-1

_Link2 Link1
Link1
00
el
-CBC
readylogo3descbcin02
-SHA1
readylogsha1in02

Security	Policy	Database	(SPD)	for	SA2-1

tunnel source address	SGW1_Link2		
tunnel destination address	NUT_Link1		
source address	HOST3_Link3		
destination address	Link0		
upper spec	any		
direction	in		
protocol	ESP		
mode	tunnel		

Security Association Database (SAD) for SA2-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x4000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout2
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out2

Security Policy Database (SPD) for SA2-0

NUT_Link1		
SGW1_Link2		
Link0		
HOST3_Link3		
any		
Out		
ESP		
tunnel		

Packets:

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within SA1's ESP

ICMP Echo Request from HOST2

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply to HOST2

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within SA1's ESP

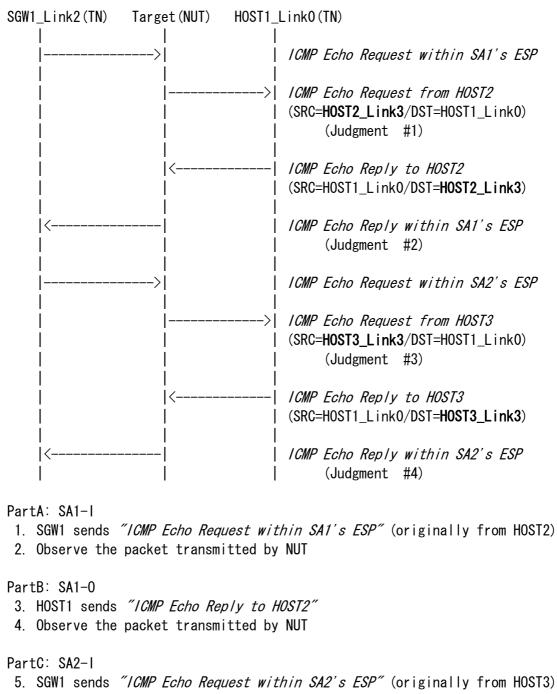
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Request within SA2's ESP

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x3000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin02
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in02
IP Header	Source Address	HOST3_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST3

IP Header	Source Address	HOST3_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)


ICMP Echo Reply to HOST3

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST3_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within SA2's ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x4000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout2
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out2
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST3_Link3
ICMP	Туре	129 (Echo Reply)

Procedure:

6. Observe the packet transmitted by NUT

PartD: SA2-0

- 7. HOST1 sends "ICMP Echo Reply to HOST3"
- 8. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits "ICMP Echo Request from HOST2"
PartB: Judgment #2
Step-4: NUT transmits "ICMP Echo Reply within SA1's ESP"
PartC: Judgment #3
Step-6: NUT transmits "ICMP Echo Request from HOST3"
PartD: Judgment #4
Step-8: NUT transmits "ICMP Echo Reply within SA2's ESP"

References:

RFC2401: Security Architecture for IP Section 4.4.1

6.1.3. Sequence Number Increment

Purpose:

Verify that a NUT (SGW) increases sequence number correctly, starting with 1. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

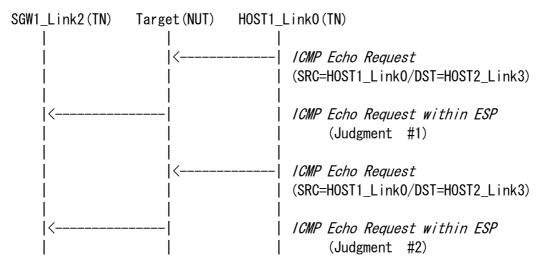
Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_LinkO	
Tunnel destination address	HOST1_Link1	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	


ICMP Echo Request

Temm Lente Hequeet		
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Sequence	$1^{st} = 1, 2^{nd} = 2$
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	128 (Echo Request)
	Data Length	7

Procedure:

PartA: SA-I

1. HOST1 sends "ICMP Echo Request"

2. Observe the packet transmitted by NUT

PartB: SA-O

- 3. HOST1 sends "ICMP Echo Request"
- 4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
 Step-2: NUT transmits an "ICMP Echo Request within ESP" with an ESP Sequence
number of 1

PartB: Judgment #2 Step-4: NUT transmits an *"ICMP Echo Request within ESP"* with an ESP Sequence number of 2

References:

RFC2401 : Security Architecture for the Internet Protocol RFC2406 : IP Encapsulating Security Payload (ESP), Section 3.3.3

6.1.4. Packet Too Big Transmission

Purpose:

Verify that a NUT (SGW) transmits the ICMP Error Message (Packet Too Big) correctly. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Tunnel source address	NUT_LinkO	
Tunnel destination address	HOST1_Link1	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	

ICMP Echo Request

Tem Lette Hegaeee		
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
	Payload Length	1460
ICMP	Туре	128 (Echo Request)

ICMP Error Message (Packet Too Big)

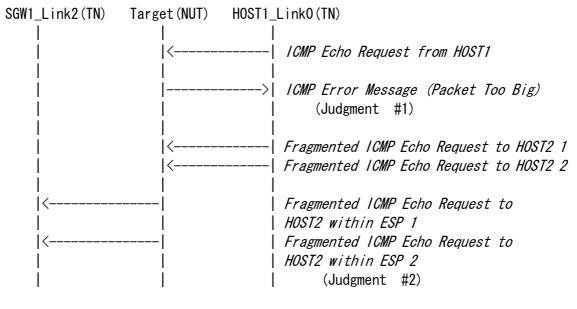
	(, , , , , , , , , , , , , , , , , , ,	
IP Header	Source Address	NUT_LinkO
	Destination Address	HOST1_LinkO
ICMP	Туре	2 (Packet Too Big)
	MTU	1280 <= n <= 1430 (e.g., 1280)
	Data	1232Byte of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request to Host2 1

Tragmoneou Tom Eono Neguooe co Noocz T		
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
	Payload Length	<i>1stPL</i> (=MTU-40) (e.g., 1240)
Fragment	Offset	0
	More Flag	1
ICMP	Туре	128 (Echo Request)

Fragmented ICMP Echo Request to Host2 2

Tragmented Tem Lene hequeet to heetz z		
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
	Payload Length	<i>2ndPL</i> (=1476-1stPL)
Fragment	Offset	(1stPL-8)/8
	More Flag	0
Data	Data	Rest of <i>ICMP Echo Request</i>


Tragmented Tom Lene Neguest to Hostz Within Lor T		
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
	Payload Length	1stPL
Fragment	Offset	0
	More Flag	1
ICMP	Туре	128 (Echo Request)

Fragmented ICMP Echo Request to Host2 within ESP 1

Fragmented ICMP Echo Request to Host2 within ESP 2

TTuginerreed Tenni Ee	Tragmented Tom Lond Request to Hostz Within Lon Z		
IP Header	Source Address	NUT_Link1	
	Destination Address	SGW1_Link2	
ESP	SPI	0x2000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcout1	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out1	
IP Header	Source Address	HOST1_LinkO	
	Destination Address	HOST2_Link3	
	Payload Length	2ndPL	
Fragment	Offset	(1stPL-8)/8	
	More Flag	0	
Data	Data	Rest of <i>ICMP Echo Request</i>	

Procedure:

- 1. HOST1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. HOST1 sends "Fragmented ICMP Echo Request to HOST2 1" and "Fragmented ICMP Echo Request to HOST2 2"
- 4. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Error Message (Packet Too Big)"*

Judgment #2 Step-4: NUT transmits *"Fragmented ICMP Echo Request within ESP 1"* and *"Fragmented ICMP Echo Request within ESP 2"*

References:

RFC1851 : The ESP Triple DES Transform RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH

6.1.5. Packet Too Big Forwarding (Unknown Original Host)

Purpose:

Verify that a NUT (SGW) forwards the ICMP Error Message (Packet Too Big) correctly when NUT can not determine the original host. (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig. 4. Router1's interface to Link2 has an MTU value of 1356.

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-1 <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Tunnel source address	NUT_Link1	
Tunnel destination address	SGW1_Link2	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	

ICMP Echo Request

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1360
ICMP	Туре	128 (Echo Request)

ICMP Error Message to NUT (Packet Too Big)

IP Header	Source Address	ROUTER1_Link2
	Destination Address	NUT_Link1
ICMP	Туре	2 (Packet Too Big)
	MTU	1356
	Data	1232Byte of <i>ICMP Echo Request</i>

ICMP Error Message to HOST1 (Packet Too Big)

IP Header	Source Address	ROUTER1_Link2 or NUT_Link1
	Destination Address	HOST1_LinkO
ICMP	Туре	2 (Packet Too Big)
	MTU	1280 - 1286
	Data	1232Byte of <i>ICMP Echo Request</i>

Fragmented ICMP Echo Request 1

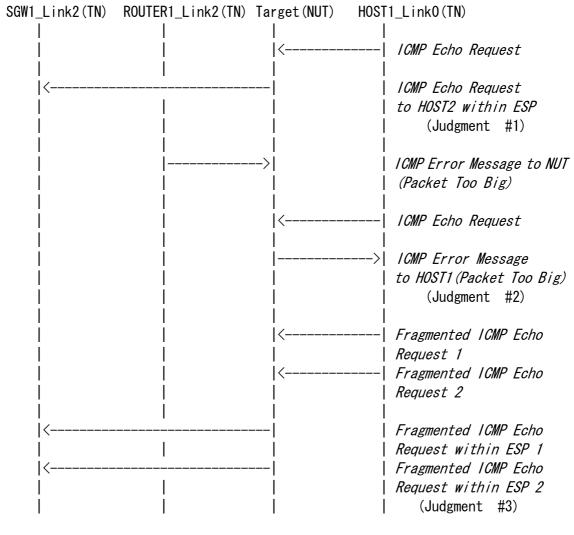
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ICMP	Туре	128 (Echo Request)

Fragmented ICMP Echo Request 2

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
	Payload Length	136
Fragment	Offset	154
	More Flag	0
Data	Data	Rest of ICMP Echo Request

ICMP Echo Request within ESP

Temm Lette Hequeet		-
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1360
ICMP	Туре	128 (Echo Request)


Fragmented ICMP Echo Request within ESP 1

IP Header	Source Address	NUT_Link1
ii iidadoi	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
	Payload Length	1240
Fragment	Offset	0
	More Flag	1
ICMP	Туре	128 (Echo Request)

Fragmented ICMP Echo Request within ESP 2

Source Address	NUT_Link1
Destination Address	SGW1_Link2
SPI	0x2000
Algorithm	3DES-CBC
Кеу	ipv6readylogo3descbcout1
Authentication Algorithm	HMAC-SHA1
Authentication Key	ipv6readylogsha1out1
Source Address	HOST1_LinkO
Destination Address	HOST2_Link3
Payload Length	136
Offset	154
More Flag	0
Data	Rest of <i>ICMP Echo Request</i>
	Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key Source Address Destination Address Payload Length Offset More Flag

Procedure:

- 1. HOST1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT
- 3. ROUTER1 sends "ICMP Error Message to NUT (Packet Too Big)"
- 4. HOST1 sends "ICMP Echo Request"
- 5. Observe the packet transmitted by $\ensuremath{\mathsf{NUT}}$
- 6. HOST1 sends "Fragmented ICMP Echo Request 1" and "Fragmented ICMP Echo Request 2"
- 7. Observe the packet transmitted by NUT

Judgment:

Judgment #1 Step-2: NUT transmits *"ICMP Echo Request within ESP"* Judgment #2 Step-5: NUT transmits *"ICMP Error Message to HOST1 (Packet Too Big)"*

Judgment #3

Step-7: NUT transmits "Fragmented ICMP Echo Request within ESP 1" and "Fragmented ICMP Echo Request within ESP 2"

References:

RFC2401 : Security Architecture for the Internet Protocol Section 6.1.2

6. 1. 6. Bypass Policy

Purpose:

Verify that a NUT (SGW) select bypass or discard policies

Category:

 $\mathsf{End}\text{-}\mathsf{Node}~:~\mathsf{N/A}$

SGW : ADVANCED (This test is required for all SGW NUTs which support Bypass Policy, regardless of explicitly or implicitly)

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------> SA-I <----- SA-0

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Tunnel source address	SGW1_Link2		
Tunnel destination address	NUT_Link1		
source address	Link3		
destination address	Link0		
upper spec	any		
direction	in		
protocol	ESP		
mode	tunnel		

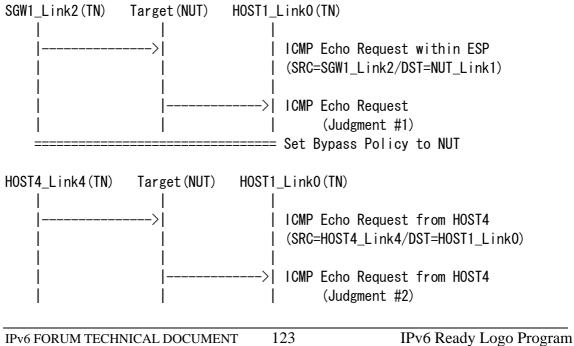
Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP


ICMP Echo Request from HOST2

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

Procedure:

PartA: Confirmation

- 1. SGW1 sends "ICMP Echo Request within ESP"
- 2. Observe the packet transmitted by NUT

PartB: Bypass Policy

- 3. Set Bypass Policy for above ICMP Echo Reply to NUT as following example
- 4. SGW1 sends "ICMP Echo Request from HOST4"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=bypass (none)

source address	HOST4_Link4
destination address	HOST1_Link0
upper spec	any
direction	out
policy	bypass (none)

Example 2: Security Policy Database (SPD) for policy=bypass (none) as default policy

source address	any
destination address	any
upper spec	any
direction	out
policy	bypass (none)

Judgment:

PartA: Judgment #1
 Step-2: NUT transmits "ICMP Echo Request"

PartB: Judgment #2 Step-5: NUT transmits *"ICMP Echo Request from HOST4"*

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.4.1

Discard Policy 6.1.7.

Purpose:

Verify that a NUT (SGW) select bypass or discard policies

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support Discard Policy, regardless of explicitly or implicitly)

NOTE: NUT need to pass at least either of "Bypass Policy" or "Discard Policy" tests.

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ----- NUT -- HOST1_Link0 -----> SA-I <----- SA-0

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

125

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

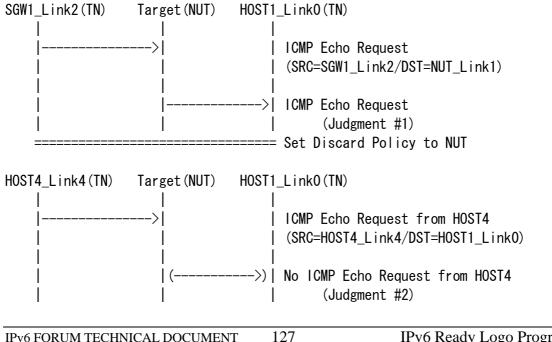
Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP


ICMP Echo Request

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request from HOST4

IP Header	Source Address	HOST4_Link4
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

Procedure:

PartA: Confirmation

- 1. SGW1 sends "ICMP Echo Request"
- 2. Observe the packet transmitted by NUT

PartB: discard policy

- 3. Set discard policy for above ICMP Echo Reply to NUT as following example
- 4. HOST4 sends "ICMP Echo Request from HOST4"
- 5. Observe the packet transmitted by NUT

Example 1: Security Policy Database (SPD) for policy=discard

source address	HOST4_Link4
destination address	HOST1_Link0
upper spec	any
direction	out
policy	discard

Example 2: Security Policy Database (SPD) for policy=discard as default policy

source address	any
destination address	any
upper spec	any
direction	out
policy	discard

Judgment:

- PartA: Judgment #1
 Step-2: NUT transmits "ICMP Echo Request"
- PartB: Judgment #2 Step-5: NUT does not transmits *"ICMP Echo Request from HOST4"*

References:

RFC2401 : Security Architecture for the Internet Protocol Section 4.4.1

6.1.8. Tunnel Mode Padding

Purpose:

Verify that a NUT (SGW) supports padding & padding byte handling (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------> SA-1 <----- SA-0

Security Association Database (SAD) for SA-I

SGW1_Link2	
NUT_Link1	
0x1000	
tunnel	
ESP	
3DES-CBC	
ipv6readylogo3descbcin01	
HMAC-SHA1	
ipv6readylogsha1in01	

129

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

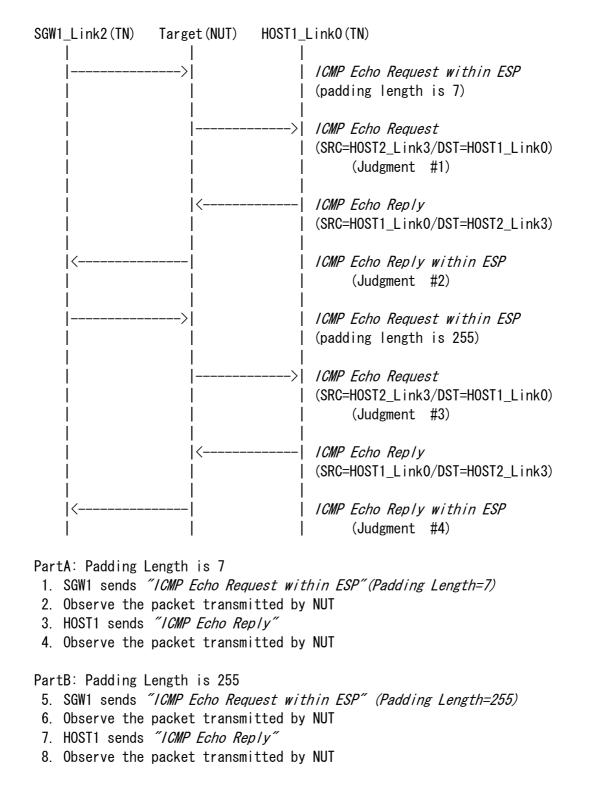
Tunnel source address	NUT_LinkO
Tunnel destination address	HOST1_Link1
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
	Padding	Sequential
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)
	Data Length	7

ICMP Echo Request within ESP

ICMP Echo Request

Tem Lene negacet		
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)


ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-MD5
	Authentication Key	ipv6readylogsha1out1
	Padding	Sequential
	Padding Length	7+8n (0 <= n <= 31)
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)
	Data Length	7

Procedure:

Judgment:

PartA: Padding Length is 7
Judgment #1
Step-2: NUT transmits "/CMP Echo Request"
Judgment #2
Step-4: NUT transmits "/CMP Echo Reply within ESP"
PartB: Padding Length is 255
Judgment #3
Step-6: NUT transmits "/CMP Echo Request"
Judgment #4
Step-8: NUT transmits "/CMP Echo Reply within ESP"

References:

RFC2406 : IP Encapsulating Security Payload (ESP) Section 2.4

Non-Registered SPI 6.1.9.

Purpose:

Verify that a NUT (SGW) can behave when No valid Security Association is configured.

Category:

End-Node : N/A : BASIC (A requirement for all SGW NUTs) SGW

Initialization:

Use common topology described as Fig.4 Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ----- NUT -- HOST1_Link0 -----> SA-I <----- SA-0

source address SGW1_Link2 destination address NUT_Link1 SPI 0x1000 mode tunnel protocol ESP ESP algorithm 3DES-CBC ESP algorithm key ipv6readylogo3descbcin01 ESP authentication HMAC-SHA1 ESP authentication key ipv6readylogsha1in01

134

Security Association Database (SAD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

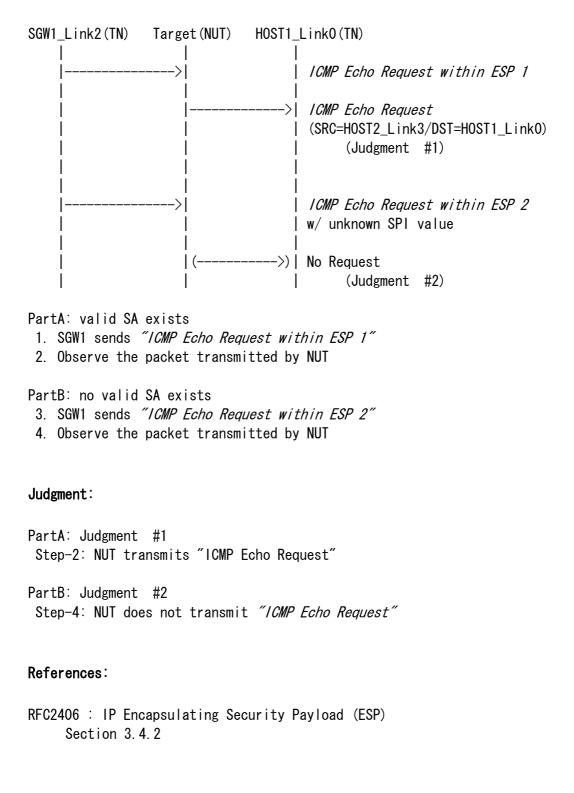
Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Sequence Number	1
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP 1


ICMP Echo Request

IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP 2 with non-registered SPI

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	Ox9000 (different from SA-I's
		SPD)
	Sequence Number	1
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

Procedure:

6. 1. 10. ICV

Purpose:

Verify that a NUT (SGW) can detect the modification by examining the ICV (SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1)

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------> SA-1 <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

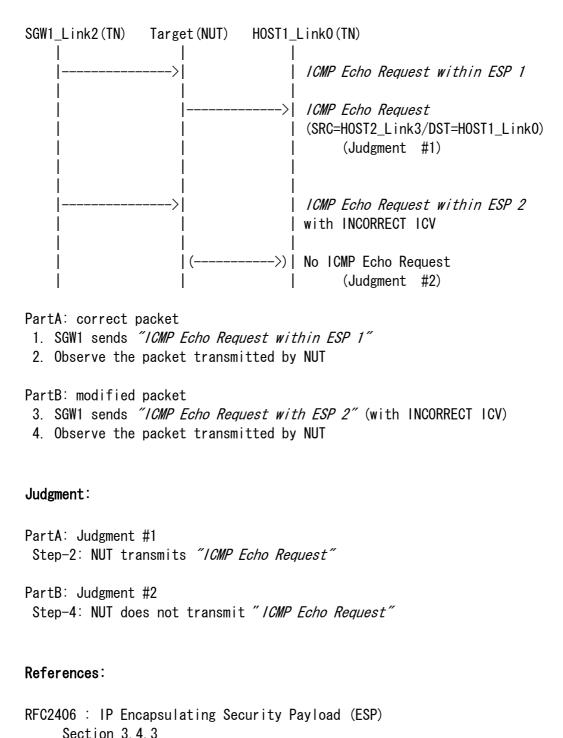
Security Association Database (SAD) for SA-O

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

NUT_Link1		
SGW1_Link2		
Link0		
Link3		
any		
Out		
ESP		
tunnel		

TOMI LONG REQUES		
IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Sequence number	1
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)
	Data	"PadLen is zero"

I CMP	Fcho	Request	within	ESP	1
	LUIIU	NEQUESL	WILIIII	LOF	Ι.


ICMP Echo Request

Telli Eene Requeee		
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)
	Data	"PadLen is zero"

ICMP Echo Request within ESP 2

IP Header Source Address		SGW1_Link2		
	Destination Address	NUT_Link1		
ESP	SPI	0x1000		
	Sequence number	2		
	Algorithm	3DES-CBC		
	Кеу	ipv6readylogo3descbcin01		
	Authentication Algorithm	HMAC-SHA1		
	Authentication Key	ipv6readylogsha1out1		
	ICV	aaaaaaaa		
IP Header	Source Address	HOST2_Link3		
	Destination Address	HOST1_Link0		
ICMP	Туре	128 (Echo Request)		
	Data	"crackedcracked" ("PadLen is		
		zero" is original)		

Procedure:

6.1.11. Tunnel Mode with End-Node

Purpose:

Verify that a NUT (SGW) can build IPsec tunnel mode with End-Node correctly, $\ensuremath{\mathsf{ESP}}\xspace=3\ensuremath{\mathsf{DESP}}\xspace$

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.3 Set NUT's SAD and SPD as following:

> HOST2 ----- NUT -- HOST1 -----> SA-1 <----- SA-0

Security Association Database (SAD) for SA-I

HOST2_Link2
NUT_Link1
0x1000
tunnel
ESP
3DES-CBC
ipv6readylogo3descbcin01
HMAC-SHA1
ipv6readylogsha1in01

Security	Policy	Database	(SPD)	for	SA-I
occurrcy	TOTICY	Databast		101	

	-
tunnel source address	HOST2_Link2
tunnel destination address	NUT_Link1
source address	HOST2_Link2
destination address	HOST1_Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

Security Association Database (SAD) for SA-0

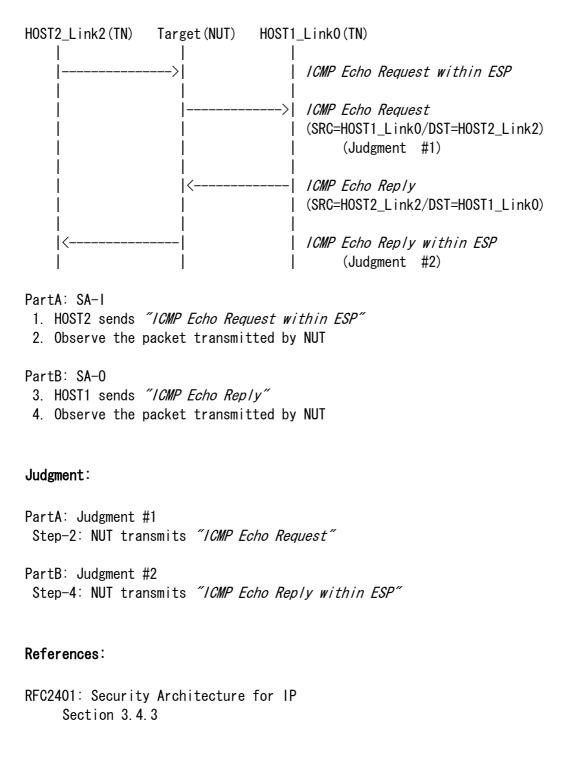
source address	NUT_Link1
destination address	HOST2_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP algorithm key	ipv6readylogo3descbcout1
ESP authentication	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

0
NUT_Link1
HOST2_Link2
HOST1_Link0
HOST2_Link2
any
Out
ESP
tunnel

IP Header	Source Address	HOST2_Link2	
	Destination Address	NUT_Link1	
ESP	SPI	0x1000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcin01	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01	
IP Header	Source Address	HOST2_Link2	
	Destination Address	HOST1_Link0	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Request within ESP tunnel

ICMP Echo Request


, ,		
IP Header	Source Address	HOST2_Link2
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link2
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP tunnel

Telli Lette Hepty II			
IP Header	Source Address	NUT_Link1	
	Destination Address	HOST2_Link2	
ESP	SPI	0x2000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcout1	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1out1	
IP Header	Source Address	HOST1_LinkO	
	Destination Address	HOST2_Link2	
ICMP	Туре	129 (Echo Reply)	

6.2. Algorithm Test

Scope:

Following tests focus on Encryption and Authentication Algorithms.

Overview:

Tests in this section verify that the NUT properly decrypt the received packet s and encrypts the transmitting packets using Encryption algorithms specified in the SAD.

And they verify that the NUT properly processes the authentication algorithms specified in the SAD.

6. 2. 1. Tunnel Mode ESP=3DES-CBC HMAC-SHA1

Purpose:

SGW tunnel mode, ESP=3DES-CBC HMAC-SHA1

Category:

End-Node : N/A SGW : BASIC (A requirement for all SGW NUTs)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------ SA-1 <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2		
destination address	NUT_Link1		
SPI	0x1000		
mode	tunnel		
protocol	ESP		
ESP algorithm	3DES-CBC		
ESP key	ipv6readylogo3descbcin01		
ESP authentication	HMAC-SHA1		
ESP authentication key	ipv6readylogsha1in01		

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2
Tunnel destination address	NUT_Link1
source address	Link3
destination address	Link0
upper spec	any
direction	in
protocol	ESP
mode	tunnel

a		n	(0.1.0)	~	~ ~ ~
Security	Association	Database	(SAD)	tor	SA-0

source address	NUT_Link1		
destination address	SGW1_Link2		
SPI	0x2000		
mode	tunnel		
protocol	ESP		
ESP algorithm	3DES-CBC		
ESP key	ipv6readylogo3descbcout1		
ESP authentication	HMAC-SHA1		
ESP authentication key	ipv6readylogsha1out1		

Security	Policy	Database	(SPD)	for	SA-0
----------	--------	----------	-------	-----	------

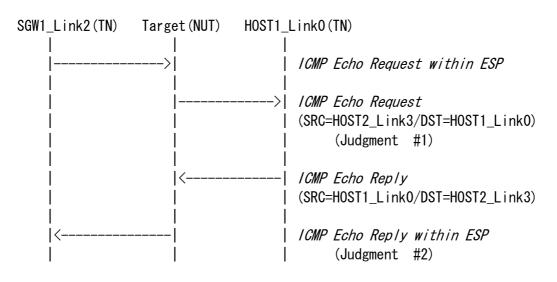
	•
Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

ICMP Echo Request within ESP

Telli Leffe Hegaeee			
IP Header	Source Address	SGW1_Link2	
	Destination Address	NUT_Link1	
ESP	SPI	0x1000	
	Algorithm	3DES-CBC	
	Кеу	ipv6readylogo3descbcin01	
	Authentication Algorithm	HMAC-SHA1	
	Authentication Key	ipv6readylogsha1in01	
IP Header	Source Address	HOST2_Link3	
	Destination Address	HOST1_Link0	
ICMP	Туре	128 (Echo Request)	

ICMP Echo Request

IP Header	Source Address	HOST2_Link3		
	Destination Address	HOST1_Link0		
ICMP	Туре	128 (Echo Request)		


ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

Procedure:

PartA: SA-I

1. SGW1 sends "ICMP Echo Request within ESP"

2. Observe the packet transmitted by NUT

PartB: SA-0
3. HOST1 sends *"ICMP Echo Reply"*4. Observe the packet transmitted by NUT

Judgment:

PartA: Judgment #1
Step-2: NUT transmits "/CMP Echo Request"

PartB: Judgment #2
Step-4: NUT transmits "ICMP Echo Reply within ESP"

References:

RFC1851 : The ESP Triple DES Transform RFC2401 : Security Architecture for the Internet Protocol RFC2404 : The Use of HMAC-SHA-1-96 within ESP and AH RFC2405 : The ESP DES-CBC Cipher Algorithm With Explicit IV RFC2406 : IP Encapsulating Security Payload (ESP)

6. 2. 2. Tunnel Mode ESP=3DES-CBC AES-XCBC

Purpose:

SGW tunnel mode, ESP=3DES-CBC AES-XCBC

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support AES-XCBC as an authentication algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 -----> SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcin01
ESP authentication	AES-XCBC
ESP authentication key	ipv6readaesxin01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	AES-XCBC
ESP authentication key	ipv6readaesxout1

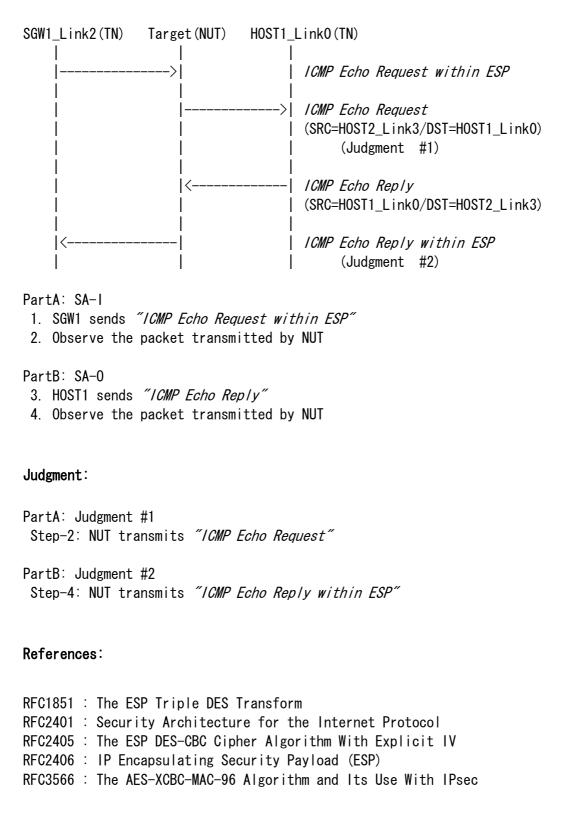
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1	
Tunnel destination address	SGW1_Link2	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	AES-XCBC
	Authentication Key	ipv6readaesxin01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

Source Address	NUT_Link1	
Destination Address	SGW1_Link2	
SPI	0x2000	
Algorithm	3DES-CBC	
Кеу	ipv6readylogo3descbcout1	
Authentication Algorithm	AES-XCBC	
Authentication Key	ipv6readaesxout1	
Source Address	HOST1_LinkO	
Destination Address	HOST2_Link3	
Туре	129 (Echo Reply)	
	Source Address Destination Address SPI Algorithm Key Authentication Algorithm Authentication Key Source Address Destination Address	

6. 2. 3. Tunnel Mode ESP=3DES-CBC NULL

Purpose:

SGW tunnel mode, ESP=3DES-CBC NULL

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support NULL as an authentication algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_Link0
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	NULL	
ESP authentication key		

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	NULL
ESP authentication key	

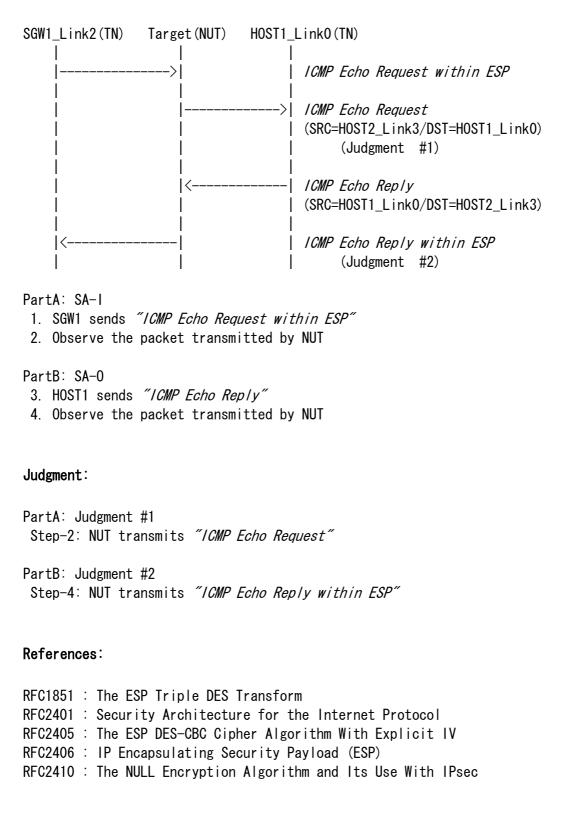
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	NULL
	Authentication Key	
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2 Link3
		-
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

TOMM LONG NOPTY W		
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	NULL
	Authentication Key	
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

6. 2. 4. Tunnel Mode ESP=3DES-CBC HMAC-MD5

Purpose:

SGW tunnel mode, ESP=3DES-CBC HMAC-MD5

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support HMAC-MD5 as an authentication algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_Link0
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	3DES-CBC	
ESP key	ipv6readylogo3descbcin01	
ESP authentication	HMAC-MD5	
ESP authentication key	ipv6readymd5in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	3DES-CBC
ESP key	ipv6readylogo3descbcout1
ESP authentication	HMAC-MD5
ESP authentication key	ipv6readymd5out1

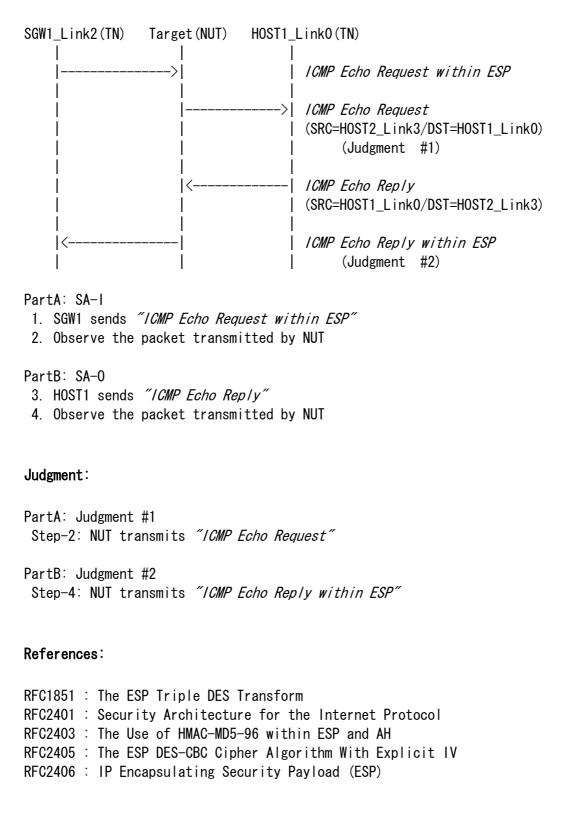
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1
Tunnel destination address	SGW1_Link2
source address	Link0
destination address	Link3
upper spec	any
direction	Out
protocol	ESP
mode	tunnel

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcin01
	Authentication Algorithm	HMAC-MD5
	Authentication Key	ipv6readymd5in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2 Link3
		-
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	3DES-CBC
	Кеу	ipv6readylogo3descbcout1
	Authentication Algorithm	HMAC-MD5
	Authentication Key	ipv6readymd5out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

6.2.5. Tunnel Mode ESP=AES-CBC (128-bit) HMAC-SHA1

Purpose:

SGW tunnel mode, ESP=DES-CBC HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support AES-CBC (128-bit) as an encryption algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_Link0
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

cooline from bucubuce (chb) for on t		
source address	SGW1_Link2	
destination address	NUT_Link1	
SPI	0x1000	
mode	tunnel	
protocol	ESP	
ESP algorithm	AES-CBC(128-bit)	
ESP key	ipv6readaescin01	
ESP authentication algorithm	HMAC-SHA1	
ESP authentication key	ipv6readylogsha1in01	

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2		
Tunnel destination address	NUT_Link1		
source address	Link3		
destination address	Link0		
upper spec	any		
direction	in		
protocol	ESP		
mode	tunnel		

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	AES-CBC(128-bit)
ESP key	ipv6readaescout1
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

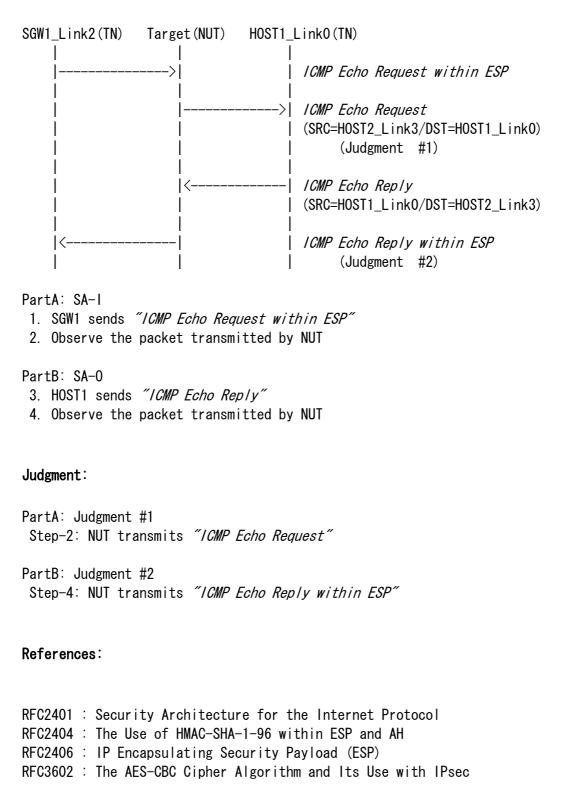
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1		
Tunnel destination address	SGW1_Link2		
source address	Link0		
destination address	Link3		
upper spec	any		
direction	Out		
protocol	ESP		
mode	tunnel		

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	AES-CBC(128-bit)
	Кеу	ipv6readaescin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	AES-CBC(128-bit)
	Кеу	ipv6readaescout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

6. 2. 6. Tunnel Mode ESP=NULL HMAC-SHA1

Purpose:

SGW tunnel mode, ESP=NULL HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support NULL as an encryption algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 SGW1		NUT HOST1_Link0
	>	SA-I
	<	SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	NULL
ESP key	
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

167

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	NULL
ESP key	
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

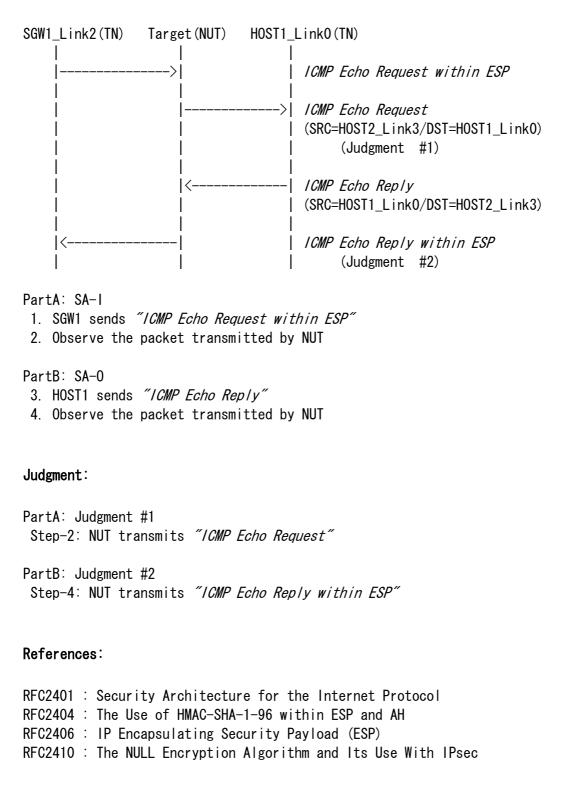
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1	
Tunnel destination address	SGW1_Link2	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	NULL
	Кеу	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	NULL
	Кеу	
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

6. 2. 7. Tunnel Mode ESP=DES-CBC HMAC-SHA1

Purpose:

SGW tunnel mode, ESP=DES-CBC HMAC-SHA1

Category:

End-Node : N/A

SGW : ADVANCED (This test is required for all SGW NUTs which support DES-CBC as an encryption algorithm)

Initialization:

Use common topology described as Fig.4

Set NUT's SAD and SPD as following:

HOST2_Link3 -- SGW1 ------ NUT -- HOST1_Link0 ------ SA-I <----- SA-0

Security Association Database (SAD) for SA-I

source address	SGW1_Link2
destination address	NUT_Link1
SPI	0x1000
mode	tunnel
protocol	ESP
ESP algorithm	DES-CBC
ESP key	idesin01
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1in01

Security Policy Database (SPD) for SA-I

Tunnel source address	SGW1_Link2	
Tunnel destination address	NUT_Link1	
source address	Link3	
destination address	Link0	
upper spec	any	
direction	in	
protocol	ESP	
mode	tunnel	

Security Association Database (SAD) for SA-0

source address	NUT_Link1
destination address	SGW1_Link2
SPI	0x2000
mode	tunnel
protocol	ESP
ESP algorithm	DES-CBC
ESP key	idesout1
ESP authentication algorithm	HMAC-SHA1
ESP authentication key	ipv6readylogsha1out1

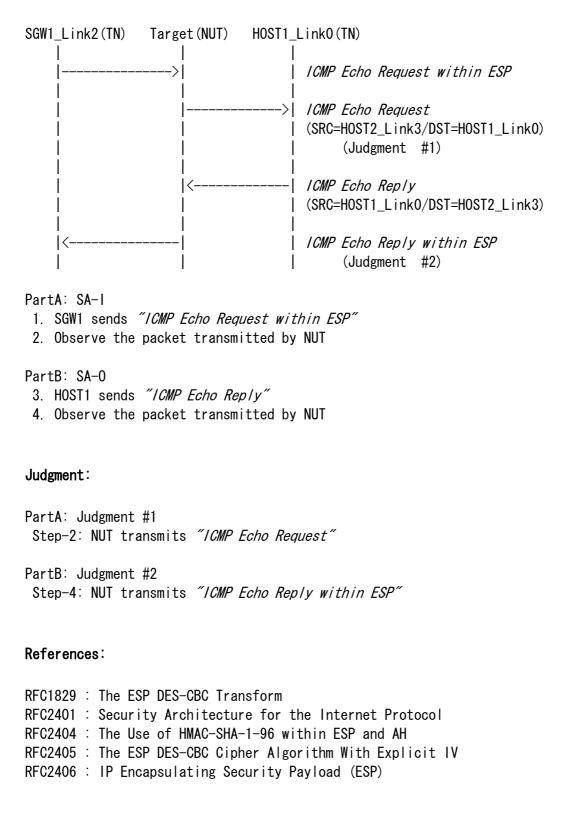
Security Policy Database (SPD) for SA-0

Tunnel source address	NUT_Link1	
Tunnel destination address	SGW1_Link2	
source address	Link0	
destination address	Link3	
upper spec	any	
direction	Out	
protocol	ESP	
mode	tunnel	

IP Header	Source Address	SGW1_Link2
	Destination Address	NUT_Link1
ESP	SPI	0x1000
	Algorithm	DES-CBC
	Кеу	idesin01
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1in01
IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_Link0
ICMP	Туре	128 (Echo Request)

ICMP Echo Request within ESP

ICMP Echo Request


IP Header	Source Address	HOST2_Link3
	Destination Address	HOST1_LinkO
ICMP	Туре	128 (Echo Request)

ICMP Echo Reply

IP Header	Source Address	HOST1_LinkO
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

ICMP Echo Reply within ESP

TOMI LONG NOPTY II		
IP Header	Source Address	NUT_Link1
	Destination Address	SGW1_Link2
ESP	SPI	0x2000
	Algorithm	DES-CBC
	Кеу	idesout1
	Authentication Algorithm	HMAC-SHA1
	Authentication Key	ipv6readylogsha1out1
IP Header	Source Address	HOST1_Link0
	Destination Address	HOST2_Link3
ICMP	Туре	129 (Echo Reply)

