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All right, I know what you're thinking -- you're thinking "Why on Earth do we need a
new SAM Coupé Technical Manual? Isn't the one that SAMCo/MGT gave us originally good
enough?"

Unfortunately, the answer to that question is that it is not .

Since the technical manual was first printed (in fact, even up to version 3 of the
manual), a lot of new hardware has been produced, and that which has been documented
has been documented very sparsely indeed. Bugs and tricks have been discovered on the
machines (more by Demo programmers than Games programmers; the tricks tend to be
more a case of "but why would I ever even consider doing that" than "Oooh, that'd go down
just great in my new Asteroids/PacMan/Word-processor"). Let's face it; the machine is four
years old, and it's showing its age. It's time for the "First Generation" of coders as we have
been termed to share our obscure but often very useful  knowledge of tricks that make people
go "How have they managed to get it to do that???"

You'll find exercises at the end of every chapter to try as well – if you're an
experienced programmer then you'll probably find them of no use whatsoever. However, if
you're not experienced, or you just want to see if you can do them, then the exercises are
going to be a lot of help (and hopefully a lot of fun for you to do too). Note: If you find a better
way to do things than the one that I put in here, please feel free to be smug, and also to write
to me and tell me about it!

Oh, and one last thing. If you find any errors in here, firstly they're not intentional.
Secondly (the legal bit), I won't be held responsible for any damage or loss incurred (including
loss of data) through the use of the information in this manual, or the programs on the
accompanying disc. Thirdly, if you do find errors, let me know! That way I can fix them in
future versions.

Finally, thanks to you for supporting the SAM and for buying this manual. It'll help
keep a poor student/journalist in beer for a good few weeks at least!

6LPRQ�&RRNH
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Edited by
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Written by
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Entropy is a trademark of Simon Cooke. All rights reserved.



�*' �01((+%+#. ��� �172Ï �'%*0+%#. �#07#. 8ETN

K

�%%1/2#0;+0)��+5-
There is a disk to accompany this manual, which contains handy utilities, as well as

source code detailing many of the points shown here. If you have not received this disk with
your manual, and would like a copy, send a cheque for £3.00 to Simon Cooke, 18 Braemar
Drive, Sale, Cheshire, M33 4NJ. If however, you have received a disk and it develops an error
or becomes corrupted in some way, please send a cheque for £2.00 (to cover postage &
packing), with your original disk for a replacement, or send the original disk plus an S.A.E.
and a cheque for fifty pence.

Each disk is checked before we send it out, and there is a copy of the verification
program and logger on the disk, called "VERIFYME".

�+5-�05647%6+105

To load the interactive menu, press RESET (without the disk in the drive), then press
F9 to boot the disk.

Once the menu has loaded, press the appropriate letter key to load the utility which
you require.

More information on files, or the most recent updates to the disk are contained in the
READ ME! option.

�+5-��106'065
On the disk you will find:
� A copy of Vis!, the Entropy Hypertext Document reader.
� A copy of SAM Zip and SAM Unzip – compatible with the PC's PKZIP software!
� Documented source code explaining the use of many of the features / points covered in

this manual. (For MasterDOS  users, these are in the SOURCE directory).
� Q-DOS v1.1 - this is a patched version of SAMDOS which also includes system and

hardware identification code (as in this manual) to give a list of hardware / software
present when it is loaded. It also cleans the system vectors and allocation tables. Full
source code and all the files necessary to recreate it are held in the QDOS directory). Q-
DOS is PD.

� The SAM Coupé online directory - this is a list of all the software suppliers and hardware
suppliers currently alive and working on the SAM Coupé, as well as a list of the products
which they sell. This is updated whenever more information comes in.

� COMET to ASCII. This is a utility to convert Comet source code to ASCII format, and vice
versa. Handy for converting code to other computers in a readable format.

� Stefan Drissen's DOS GRAB program. This program allows you to take files stored on MS-
DOS 720k formatted disks and use them on the SAM.

� Much, much more – including a demo copy of Termite – the SAM Coupé's most advanced
terminal software. (Full version available from B.G. Services)
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ENGINE Z80B Microprocessor running at 6MHz.
CONTROL Customised VLSI 10,000-gate ASIC chip.
ROM 32k including SAM BASIC, disk bootstrap, BIOS. Upgradeable to 544k 

using SAM MultiROM expansion.
RAM 256k upgradeable to 512k (256x4 100ns DRAM) internal memory.

External memory upgradeable to 4Mb using 1Mb interface, to 1Gb using
Ryan interface.

SOUND Phillips SAA 1099 Synthesizer: 6 channel, 8 octave, stereo with envelope
and amplitude control, plus wave form choice. 4-bit DAC output through
software.

GRAPHICS Motorola MC 1377P Video Chip performs conversion from RGB to
composite video. ASIC serves as graphics processor / engine. All Modes
allow 128 colours to be displayed on screen by redefining line interrupt:
Mode 1 : 32x24 character cells per screen, each cell with 2 colour
capability; 16 colours selectable from 128; Spectrum attribute and display
map compatible.
Mode 2 : as Mode 1, but 32x192 cells, each cell with 2 colour capability;
16 colours selectable from 128; contiguous display map arrangement.
Mode 3 : up to 85 column text display, 512x192 pixel screen with each
pixel colour selectable; 4 colours per line selectable from 128.
Mode 4 : 256x192 pixel graphics screen; each pixel colours selectable; 16
colours per line selectable from 128.

INTERFACES UHF TV Channel 36, through power supply unit. Colour composite video,
digital and linear RGB, all through SCART. Atari-standard joystick (dual-
capacity with spliiter cable). Mouse interface socket. Light-pen/Light gun,
Coupé standard. Domestic cassette recorder. Midi-In, Midi-Out (Midi-
Through via software switch). Network, screened microphone cable via
external MGT interface to Expansion Port. 64-pin Expansion Port for
further peripherals.

DISK DRIVES 1 or 2 removable (originally) and internally mounted 3.5" ultra-slim Citizen 
drives, 1Mb unformatted, 780k formatted. Due to problems with supplier,
Citizen slim-line drives are now unavailable.

DC POWER Power Supply 4.75 volts to 5.25 volts.
CONSUMPTION Power consumption 11.2 Watts.
SHOCK Operating 3 G, non-operating 60 G.
VIBRATION Operating 5 to 500Hz / 0.5 G, non-operating 5 to 500Hz / 2 G.
ENVIRONMENT Ambient Temperature, operating 5 to 45C, storage -20 to 50C.
HUMIDITY Relative Humidity Wet Bulb Maximum 29.4C, nil condensation.
RELIABILITY MTBF: 10,000 POH. MTTR: 30 Mins. Component Life: >5 years.
WEIGHT 2.26Kg = 4.97 lb.
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Alright, I’m warning you now: This will not be a guide on how to program the Z80

microprocessor. For that, take a look at the excellent Programming the Z80 by Rodney Zaks,
or take a peek at the various tutorials which have been written by people such as Steve Taylor
in FRED disk mag. No, this is going to just throw a few tricks and tactics at you which I
gathered were the most difficult bits to sort out, in my nine years of programming the Z80.
Okay, so I’ll admit it, I learned most of it from 1992 onwards (when I got a really good
assembler – and no prizes for guessing what THAT was!), but it’s still all very valid stuff that
you’ll find useful.

�26+/+<+0)��LN�%1&'
As long as a program works, there are no good ways or bad ways of doing it. Unless

you count two factors, that is. These are aesthetics and speed.
Whereas a nice looking program might please people more than a fast one, on the

SAM (due to processor contention, and that it only runs at 6mhz) we really have to go for the
fast option. That means using tricks you may not have considered before, so here goes…

XOR A is equivalent to LD A,0 and it also clears the carry flag. Most often it is used to
set the accumulator to zero. Saves a byte of memory and 3 t-states of processor time.

OR A and AND A are equivalent to CP 0, and both reset the carry flag. Again, they
both save a byte and 3 t-states.

If you need to check if bits are set, then you may like to consider using a combination
of RRA’s and jumps that depend on the condition of the Carry flag – eg:

interrupt.handler: PUSH AF
IN A,(STAT)

RRA
JP NC,line.interrupt
RRA
JP NC,comms.interrupt
RRA
JP NC,midiin.interrupt
RRA
JP NC,frame.interrupt
RRA
JP NC,midiout.interrupt

POP AF
EI
RET

The code above checks the interrupt status register; if any of the bottom five bits are
reset, then it jumps off to service the interrupt concerned. The code above is much quicker
than using bit tests to do the same thing. The only thing you have to remember is that you are
losing the contents of the accumulator by doing this, so you can’t use the data in it again
unless you keep a copy in another register or in a memory location.

Look carefully at loops – if you can afford the registers, set up data outside of a loop,
and use it inside, rather than having to set up the data each time round the loop – you’ll save
a lot of time this way.

eg.

put.sprite: LD IX,image.address
LD HL,screen.coord
SCF ;turn screen coord into a screen
RR H ;address (MODE 4 screen), 

;located between &8000
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RR L ;and &E000
LD B,image.depth
LD C,image.width ;in bytes

image.loop:
PUSH HL
PUSH BC

image.loop1:
LD A,(IX)
LD (HL),A
INC HL
INC IX
DEC C
JR NZ,image.loop1

POP BC
POP HL
LD DE,128
ADD HL,DE
DJNZ image.loop

RET

Of course, I wouldn’t recommend that you use the index registers for that kind of hefty
data moving, but needs must as the devil drives. Anyway, here’s a better version of the same
code – for long images it takes less time as not only does it not refresh DE each time round
the loop, but it also takes into account the image width, and alters DE accordingly so that the
PUSH and POP HL are no longer needed. (Note: this alteration of DE will be covered under
Graphics Methods and Techniques: Sprites.)

put.sprite:
LD IX,image.addr
LD BC,image.width
LD HL,screen.coord
SCF
RR H
RR L
LD A,128
SUB C
LD E,A
LD D,0

image.loop:
PUSH BC

image.loop1:
LD A,(IX)
LD (HL),A
INC HL
INC IX
DEC C
JR NZ,image.loop1

ADD HL,DE
POP BC
DJNZ image.loop

RET

There’s a couple of tricks up there. First of all, if you compare that code with the
previous example, we’ve managed to get rid of a POP HL, a PUSH HL, and we’ve been able
to take the LD DE instruction out of the loop. Now, imagine that we’ve got a picture 64 bytes
across and 90 lines deep. By the time we’ve finished putting the image on the screen with the
original code, we’ll have made 64 PUSHes, 64 POPs, and 64 LD DE,128’s. Overall, we’ve
made a saving of about 2000 t-states! (In real terms, we’ve actually saved more than that, due
to the freaky way in which the SAM allocates timings to instructions – see  Instruction timings.)
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2000 t-states (or, taking into account the SAM’s idiosyncracies, 2300 t-states), by the
way, is about a 50th of the screen display. In other words, if you changed the border colour
before you entered this routine, and changed it back again afterwards, the coloured area
would take up 3 raster lines or so. (This figure, I reckon, has got to be wrong – from
experience I can tell you that it should take up more like 8 rasters).

Remember that initialising data from memory costs more than keeping it in other
registers – for example:

LD DE,128
LD HL,128 ;20 t-states in total

This takes up more processor time than the alternative:

LD DE,128
LD H,D
LD L,E ;18 t-states in total

What you shouldn’t do if you just want to get a copy of another register (unless you’re
copying to and from the index registers) is this:

LD DE,128
PUSH DE
POP HL ;a mindblowing 30 t-states

That’s a very wasteful way of doing it indeed, and as each PUSH and POP takes 20 t-
states to complete, you should steer clear of things like that where possible.

Where possible, keep everything in registers – it’s must faster than using memory.

If you can afford the memory space, don’t use loops – instead, repeat the block in the
middle as many times as you need. For this, you’ll need a good assembler to make it painless
(and if any assemblers on the SAM used Macros, it’d be even less heartache to do). This’ll
also save you a register most times too…

In a similar vein, you can unloop LDIR instructions. Replace them with a string of
LDI’s. If you wanted to be really fancy, and you knew in advance how many bytes you wanted
to move, you could use something like this:

ldir.unlooper:
LDI
LDI
LDI
…
LDI
JP PE,ldir.unlooper

If you enter this routine with BC holding the number of LDI’s you want to do – in this
respect it’s exactly the same as LDIR – and in the routine itself you have a number of LDIs
which will divide exactly into BC (otherwise your LDI routine will crash and run amok through
the memory, splattering bytes wherever it goes), then it’ll work. And it’ll save time too. It works
because whenever and LDI occurs, it increments DE and HL, and decrements BC. When it
decrements BC, it sets the parity flag to even if the result is zero, hence allowing us to use BC
as a counter without much overhead at all. I don't think I have to tell you that you could do this
with LDD and LDDR as well – or even the looped OUT and compare instructions.

Oh yes, and you may as well not bother with unlooping your code in parts of your
program which aren’t time-critical (eg sprite routines), namely because the memory overhead
is way too great to contend with.

There’s not many more speed-ups that I can tell you about. Of course, there’s
something called hard coding, which is not for the faint of heart – it involves writing routines to
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do a single, specific purpose. Good examples of this are the lemmings in Chris White’s
conversion of Lemmings – for speed, there’s a different routine to produce each lemming on
the screen. Of course, if you happen to decide that you want to change what the graphics look
like later, this causes all sorts of problems… but anyway, what it basically means is that
instead of doing something like this:

get.gfx.data: LD A,(IX)
LD (HL),A
INC IX
INC L

You now do this instead:

get.gfx.data: LD (HL),&53 ;this is hard-coded graphics data
INC L

As you can see, you save time this way, by including your data actually inside the
routine itself. But it’s very memory consuming, and doesn’t cope well with changes in
graphics.

There’s one more speed-up we can do, and most computer science lecturers will tell
you that you’re dead wrong doing this. Oh, and you can’t stick this kind of code in a ROM
either. What is it? It’s…

�'.(g/1&+(;+0)�%1&'
Self modifying code is tricky to work with, unless you’re used to the Z80 instruction

set. Even then, you can get caught out. And when you throw paging into the mix… well… you
have to know what your program’s up to.

What I tend to use self-modifying code for is two things really. The first of which is
because I’m too lazy to set up storage space for the BASIC system. So, at the start of one of
my routines, you’ll often see this:

start: DI ;disable interrupts, as we’re
;going to be playing with LMPR
;and the stack.

IN A,(lmpr)
LD (lmpr.store+1),A
IN A,(vmpr)
LD (vmpr.store+1),A
LD (sp.store+1),SP
LD A,33 ;page 1, ROM0 and ROM1 off.
OUT (lmpr),A
LD SP,alternate.stack

And then, somewhere else, you’ll see this:

ret.to.basic:
DI

lmpr.store: LD A,&00
OUT (lmpr),A

vmpr.store: LD A,&00
OUT (vmpr),A

sp.store: LD SP,&0000
EI
RET

In the above code fragments, what I’ve done is stored the contents of the LMPR
actually inside the LD A,&00 instruction. In hex, the object code of what we’ve got above is
this:

lmpr.store: 3E 00
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D3 FA
vmpr.store: 3E 00

D3 FC
sp.store: 31 00 00

What you should be able to see is that if we change the contents of the location in
memory which is lmpr.store+1, then we’ll be changing it from 3E 00 to 3E NN, where NN is
anything. Effectively, by changing the contents of lmpr.store+1, we can change it from LD A,0
to anything we want – and that’s how the start routine saves its variables.

Of course, it’s not just to save data and program space (which it does – to save a
variable using something along the lines of LD (lmpr.store),A and then getting it back using
LD A,(lmpr.store) then you’d need an extra two bytes – one for the data itself, and another to
form the 3-byte LD A,(address) opcode. Not much, but there will be a time when you’ll need
it.) It can save time as well. Take this routine for example:

LD HL,screen.coord
SRL H ;work out screen address for a
RR L ;mode 4 screen, paged in LOW.
LD (scr.addr+1),HL
…

intensive.loop:
scr.addr: LD HL,&0000

…
INC HL
LD (scr.addr+1),HL
…
DJNZ intensive.loop

Okay, so that’s not so much an example as a lot of teeny fragments, but it’ll do for our
purposes. Now, if you’re short on registers, using self-modifying code as above can save you
a lot of t-states. First of all, the actual place you store the data is in the part of the program
where the speed-up is needed the most. I don’t know where this will be – it’s very program-
specific – but it’s a good guess that it’ll be in an output routine of some sort. By storing the
data in the opcode itself, you save time that would be otherwise used by fetching a two-byte
address, getting the contents of that address and putting it in L, incrementing the address and
then getting the contents of that new address and putting it in H – which is effectively what the
processor does every time you do a LD HL,(address). Every time you need to use that data
elsewhere, you can either copy it into another self-modifying instruction (unlikely, but you can
do it if you need to use the same data in lots of places and you need the speed), or you just
refer to it by, eg, LD (scr.addr+1),HL.

It may take a while to get used to this way of working, but it can be worth it in the long
run. It’s something that you’ll get more and more practised in as time goes on. For more
examples of self-modifying code, see Keeping BASIC happy.

05647%6+10�6+/+0)5

06'44726�4176+0'5

�''2+0)������*#22;


#56��7.6+2.+%#6+10�#0&��+8+5+10



�*' �01((+%+#. ��� �172Ï �'%*0+%#. �#07#. 8ETN

EJ

�4#2*+%5
�'6*1&5

�0&
�'%*0+37'5



�*' �01((+%+#. ��� �172Ï �'%*0+%#. �#07#. 8ETN

EK

�*'��4#2*+%5��#4&9#4'

�*'��+&'1��'/14;��#)+0)��')+56'4�j����k

The VMPR (Video Memory paging register) is used to select the current screen
mode, and also to control which video page the ASIC looks at when it needs to display screen
memory. There is also an auxiliary Midi function which is controlled by bit 7 of the register
(see Midi).

Bits 5 and 6 of the register control the current screen mode;

Bit 6 Bit 5
0 0 Mode 1
0 1 Mode 2
1 0 Mode 3
1 1 Mode 4

Bits 4 to 0 select the screen page. In modes 1 and 2, this can be any value. However,
in screen modes 3 and 4, the ASIC looks at the nearest even page (ie in mode 3/4, the ASIC
treats bit 0 as if it were reset). Note: Screens may only be displayed from internal memory; the
ASIC has no provision for displaying a screen contained in external or other memory (such as
the MultiROM's private area).

The VMPR may be written to at any time; you are not limited in any way as to where
the change occurs. This may be used to offer split-mode screens (as in MasterBASIC ) or to
change the screen page being displayed part way along the screen. (See Split-Mode screen
displays)

�*'������j�1.174��11-g�2��#$.'k
The colour look-up table (CLUT) is a device used to facilitate easy colour changes,

and also to minimize the amount of screen memory required to display a given colour or
range of colours on the screen. It is written to using register &0nF8, where ‘n’ is the colour to
change, and &F8 is the base address of the CLUT.

It would actually be more accurate to say that the top 4 bits of the 8-bit CLUT address
are ignored; for example, writing to port &FFF8 writes to CLUT position 15, even though you
might expect it to try (and fail) to write to CLUT position 255.

The format of the CLUT registers are as follows:

Bits 6 and 2 control how much green a colour contains, bits 5 and 1 control how much
red it contains, and bits 4 and 0 control how much blue. Bit 3 is the bright control; if it is set, it
rougly corresponds to adding 0.5 to all  of the colours.

It may be easier to understand if the colours are thought of as having eight values:
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RED BLU GRN

7   7   7

6   6   6

5   5   5

4   4   4

3   3   3

2   2   2

1   1   1

0   0   0

RED1, GRN1 or BLU1 set

RED1, GRN1 or BLU1 reset

}
}

RED0, GRN0 or
BLU0 set

Setting RED1, GRN1 or BLU1 adds 4 units of brightness to that colour. Setting RED0,
GRN0 or BLU0 will add 2 units of brightness to the respective colour. Setting the BRGT bit will
add 1 unit of brightness to ALL of the colours. In the above diagram, the BRGT bit SET is
represented as a shaded area.

For example, if we were to set RED1, GRN1, GRN0 and BLU0 we would effectively
have a brightness of 4 for red, 6 for green and 2 for blue. If we were then to set BRGT, these
values would change to give a brightness of 5 for red, 7 for green and 3 for blue.

This way of representing the SAM's colour system will be used later. (see Colour
Fading; Representing 8-bit R,G,B on the SAM; Representing the SAM's palette in 8-bit R,G,B;
Luminance)

To output to a specific CLUT register, a 16-bit port address must be written to. The
high byte of this determines which register is written to, and the low byte signifies a write to
the CLUT (i.e. it must contain &F8).

e.g.
write.to.clut3:

LD BC,&03F8
LD A, colour ;this writes colour  to CLUT
OUT (C),A ;position 3

If it is necessary to write an entire palette to the CLUT, this may be done using the
OTDR instruction. B holds &10, which is the number of colours (16), and HL must point to the
end of the palette data (the 16th colour).

write.palette:
LD BC,&10F8
LD HL,palette+&0F
OTDR ;Set up the palette

When the OTDR instruction is encountered, B is decremented (to point to CLUT15).
The contents of the memory address pointed to by HL are output to this CLUT register, then
HL is decremented. If B has not reached zero, it loops around and continues sending data to
the CLUT.

The CLUT is a write-only set of registers, so it is necessary to keep a copy of this if
you are likely to need to look at the contents of these registers. Basic does this for you (see
Using the palette in BASIC).

On reset, the CLUT is not affected. (see Reset screens and how to generate them)

�%4''0��'/14;��#22+0)
The way that the contents of the SAM's memory relates to what you see on the

screen is known as "Screen Memory Mapping". The way that the memory is mapped to the
screen varies depending on the screen mode. Modes 1 and 2 are the most difficult to follow,
so we shall deal with them last.
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Note: Although BASIC tends to number lines with the bottom line on the screen being
zero, and the top line being, for example, 191, in machine code it is much easier to work the
other way around.

Mode 4 (16 Colour Mode)
This mode gives a screen 256 pixels wide by 192 pixels deep, in sixteen colours. It is

the start-up mode of the SAM Coupé, and it is organised as follows:

Screen Y address
Offset

X co-ordinate
0 1 2 3

&0000

&0080

&0100

&0180

0000

Screen X address offset

0

1

2

3

Y co-ordinate
0100

1000

1100

0101

1001

1101

0110

1010 1011

1110 1111

0111

0001 0010 0011

00 01

In the above example it is easy to see how the memory corresponds to the pixels
displayed. For example, the pixel at co-ordinate 0,0 is addressed as follows:

Y address offset: &0000
X address offset: &00
Address: &0000 + &00 = &000

From the diagram, pixel 0,0 corresponds to the left hand nybble of the byte at address
&0000.

To find a Y-Offset, take the Y co-ordinate and multiply by 128. To find an X-offset,
take the X co-ordinate and divide it by 2, discarding the remainder. Add these together to give
you the address in a page which contains the mode 4 byte.

Note: A nybble can contain data with values from 0 - 15; this gives 16 colours in all.

If the X Co-ordinate is originally even, then the CLUT value for the pixel may be found
in the left hand nybble; otherwise, if the co-ordinate is odd, then the pixel may be found in the
right-hand nybble.
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Border colours and screen on/off status are controlled by the border register (&FE). It

is analogous with that of the Spectrum, except where the Spectrum could only display 8
colours (all dimmed), the SAM can display any of the 16 colours in its CLUT in the border
area.

The border colour stems from current contents of the CLUT; the current MODE has
no effect whatsoever on it. It is also READ ONLY, so if the border colour needs to be known,
a copy of it should be kept whenever it is changed.

The Screen Off status may be read by reading the border register and checking bit 7,
and it may be altered by writing to the border register with bit 7 set to turn the screen off, and
bit 7 reset to enable the screen display circuitry.

The ability to turn the screen off is only available in screen modes 3 and 4; in modes 1
and 2 the screen off bit has no effect. It can be used to regain some of the time lost due to
video memory contention; COMET Assembler  turns the screen off during assembly in order
to complete the task as quickly as possible. It is important to note that although the LINE and
FRAME interrupts will still occur while the screen is off, the HPEN (YSCAN) and LPEN
(XSCAN) registers will not update at all so it is not possible to use them for synchronisation in
this instance. If the screen has to be restored at a given line, it is necessary to set up the LINE
interrupt with the line to restore the screen at, and either to poll the status port (if interrupts are
disabled) or to wait for the interrupt to occur. What actually happens when the screen is
turned of is that the video circuitry which reads the screen memory is cut out of the system,
and no colour (black) is sent out on the RGB lines. This ensures that no screen corruption or
flicker occurs due to video sync pulses being sent at the wrong time; the sync pulses continue
to be sent, it is just the RGB output which is stopped.

When the border colour register is written to, it will not change until the next screen
memory "sync" occurs. It is unknown whether this is due to an I/O wait condition or a memory
refresh/video contention wait state. The screen off condition is activated one pixel clock pulse
after this in the border area of the screen, and sometimes 8-12 screen pixels later when the
screen off occurs inside the memory-mapped screen area. (See Graphics in the border Area,
Hardware Oddities)

BORDER
(&FE)

CLUT8 CLUT4 CLUT2 CLUT1

BORDER
(&FE)

SOFF
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If any of you have seen demos such as ESI's Surprise , The Lyra 3  or Entropy's

Entro 2  (as well as a multitude of others), and on pressing reset have been surprised at the
appearance of a picture or message on your screen, then you'll know what I'm talking about.

Reset screens are generated when the reset button is pressed (or on power-up)
because the SAM ASIC sets most of its internal registers to zero. When the VMPR is set to
zero, it can be seen that what should be displayed is a Mode 1 screen, found in page zero of
the memory map. As the CLUT is not altered by reset, the picture will assume whatever
palette was set up before the reset occured. The screen remains displayed because the
memory refresh and video circuitry in the ASIC are allowed to run constantly when the RESET
line goes low.

With careful planning, spectacular and colourful effects can be produced -- the Reset
screen has even been used to display a winking SAM robot!

To install a RESET screen (sample code):

ORG HIGH ;this code is assumed to be paged in high

set.reset:
LD A,32 ;page 0, with RAM in section A
OUT (LMPR),A
LD HL,reset.screen
LD DE,&0000
LD BC,6912
LDIR

And that is really all there is to it. Note: Reset screens overwrite the BASIC system
area, and so are not feasible for use with BASIC programs. If reset screens are needed for
menu programs, it is usually a good idea to copy the 6912 bytes which will be overwritten to a
storage space for safe-keeping, and then to replace it when a return to BASIC has to be
made.

�#4&9#4'��&&+6+'5
While the screen is turned off, both vertical and horizontal synchronisation pulses are

created by the ASIC and fed through to the composite video generation circuitry.
It is generally known that the video circuitry can affect the speed at which the

processor goes about its business. What is less well known is why.
When Bruce Gordon designed the ASIC, Mode 1 was included so that Spectrum

software could be run with a minimum of hassle and overheads. As the SAM's standard
processor (the Z80B) runs at 6MHz as opposed to the 3MHz Z80A in the Spectrum, it was
necessary for Bruce to include extra delays in the ASIC to make the SAM run at
approximately Spectrum speeds. Even though the SAM still runs roughly 10-20% faster than
the Spectrum in Mode 1, there are extra delays inherent in this mode.

Although it is hard to test, from results gained by experimenting with border pixel
routines, it appears that Mode 2 operates slower than Mode 3 or 4 as well, but not to the
same degree as Mode 1.

When writing border pixel generation routines, it is interesting to note that writes to
the border register and to the CLUT in the border area are automatically synchronised to the
display itself. In modes 1 and 2, this synchronisation appears erratic, but it is in fact stable
(experiment with this yourself!). In modes 3 and 4, colour changes are synchronised to
approximately the nearest block of 8 pixels (mode 4 size), even though it is not possible to
change colours faster than in 16 pixel blocks. The use of, for example, LD R,A instruction to
delay for a block of 8 pixels, may be used to give smooth border scrollies. (See Graphics in
the Border area)

�'24'5'06+0)�L�$+6��X��X���8#.7'5�10�6*'����
;Convert N-bit palette to SAM palette
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;------------------------------------
;Entered with HL = SAM Palette to output
;             IX = RGB Palette input
;              C = Bits per rgb byte
;              B = Number of palette entries

;RGB palette is stored as R,G,B,0

;Rotates RGB values until their MSb is at bit 7, then masks off top 3
;bits bit 5 then becomes a BRIGHT counter (if 2 or more are set,
;bright is used)

;Falls over on palettes with less than 3 bits per RGB, but they're
;not that common. Will still work, but colors won't be exactly
;correct.

;Copyright (c) 1994 Simon Cooke

rgb_to_sam:
PUSH BC

LD A,8
SUB C

LD D,(IX+0)
LD E,(IX+1)
LD C,(IX+2)

OR A
adjust_rgb:

JR Z,end_adj

SLL D
SLL E
SLL C
DEC A
JR adjust_rgb

end_adj:
LD B,0 ;calculate half-bright bit

BIT 5,D
JR Z,notbrite1

INC B
notbrite1:

BIT 5,E
JR Z,notbrite2

INC B
notbrite2:

BIT 5,C
JR Z,notbrite3

INC B
notbrite3:

AND %00000010 ;mask bit 1 - if this is set, color has
  ;BRIGHT

RLCA
RLCA          ;bright is now in right place

  ;now convert the rest of the data
BIT 7,D
JR Z,no_rh

OR %00100000
no_rh:
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BIT 6,D
JR Z,no_rl

OR %00000010
no_rl:

BIT 7,E
JR Z,no_gh

OR %01000000
no_gh:

BIT 6,E
JR Z,no_gl

OR %00000100
no_gl:

BIT 7,C
JR Z,no_bh

OR %00010000
no_bh:

BIT 6,C
JR Z,no_bl

OR %00000001
no_bl:   ;finished converting palette to SAM format

LD (HL),A
INC HL
LD DE,3
ADD IX,DE
POP BC
DJNZ rgb_to_sam

RET

;Converts raw SAM palette data to 24 bits...
;Enters: A=SAM Palette number
;Exits:  C=RED 8bit, D=GRN 8bit, E=BLU 8bit

; SAM PALETTE: 76543210
;              xGRBHgrb

expand_sam:
PUSH HL
PUSH AF

bright:
AND %00001000
RRCA
RRCA
RRCA
LD C,A
LD E,A
LD D,A            ;BRIGHT=bit 0 of all...
POP AF

red:
BIT  5,A
JR Z,not_hired

SET  2,C
not_hired:

BIT 1,A
JR Z,blue

SET 1,C
blue:

BIT 4,A
JR Z,not_hiblu
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SET 2,E
not_hiblu:

BIT 0,A
JR Z,green

SET 1,E
green:

BIT 6,A
JR Z,not_higrn

SET 2,D
not_higrn:

BIT 2,A
JR Z,expand_rgb

SET 1,D

;We now have 3 separate RGB values, at 3 bits a piece.
;Turn these into full 8-bit values using a table.

expand_rgb:
LD L,C
LD H,0
PUSH DE
LD DE,rgb_spread
ADD HL,DE
POP DE
LD C,(HL)

LD L,D
LD H,0
PUSH DE
LD DE,rgb_spread
ADD HL,DE
POP DE
LD D,(HL)

LD L,E
LD H,0
PUSH DE
LD DE,rgb_spread
ADD HL,DE
POP DE
LD E,(HL)

POP HL
RET

;Conversion table for SAM rgb to 8-bit.

rgb_spread: DEFB 0,36,73,109,146,182,219,255
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Keyboard port address map

STATUS (&F9) BORDER (&FE)

7 6 5 4 3 2 1 0

11111110

11111101

11111011

11110111

11101111

11011111

10111111

01111111

11111111

FE

FD

FB

F7

EF

DF

BF

7F

FF

ADDRESS

SELECTOR

F 3 F 2 F 1

F 6 F 5 F 4

F 9

CAPS

DELETE

F 0

F 8 F 7

TAB ESC

+ -

" =

EDIT : ;

INV . ,

RIGHT LEFT UP DOWN CNTRL

V C X Z SHIFT

G F D S A

T R E W Q

5 4 3 2 1

6 7 8 9 0

Y U I O P

H J K L RETURN

B N M SYMBOL SPACE
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MasterDOS provides hook (command) codes which enable the machine code
programmer to use the DOS's facilities without having to return to or call SAM Basic.

If an error occurs, MasterDOS puts an error number into the A register; otherwise the
A register will contain zero on return.

Hook codes are accessed by an RST &08 instruction followed by the operation code.
eg.

load.data: RST &08 ;hook code
DEFB HLOAD ;HLOAD operation code
;program continues here

INIT   128 (&80) Look for an AUTO file on the current disk. No
action (or error) occurs if there is no AUTO file, otherwise
it is loaded (and executed if it is an auto-running Basic or
CODE file). This Hook can only be used in sections B and C of
the memory map.

HGTHD  129 (&81) Get file header. This routine should be called with
IX pointing to the UIFA, which should hold the file type
required (at IX+0) and the file name (at IX+1 to IX+10). The
routine looks for the file in the current directory on the
current drive and either returns with an error code, or
transfers the data from the file directory to IX+80, in UIFA
form. The calling code and the UIFA can be in sections B, C or
D of the memory map. (Note: this hook works correctly in
SAMDOS, provided that IX=&4B00.)

HVERY  131 (&83) Like HLOAD, but verify the data on the disk against
the data in memory. Error code 93 returned if verify failed.

HSAVE  132 (&84) Save the file whose UIFA is pointed to by IX. All
relevant data in the UIFA must be complete - for a CODE file,
type, name, start, length and execute address. If in doubt,
try a SAVE from BASIC and then look at &4B00-&4B47 to find the
required values.

HSKSF  133 (&85) Seek Safe. On some machines, pressing the Reset
button can corrupt the disk sector under the drive head. This
is often on the track containing the last sector of the last
file loaded. MasterDOS tries to minimise the problem by
parking the drive head on the last track in the directory,
after a LOAD or a SAVE. This track will be unused unless the
directory is fairly full. Using the HSKSF hook will move the
head of the current drive to the last track in the directory,
unless this would be track 4 (which contains the first sector
of DOS) in which case track 3 is used instead.

HAUTO  136 (&88) Like Hook 128, but an error code of 101 is returned
if there is no AUTO file.

HSKTD  137 (&89) Seek Track D. Move the drive head of the current
drive to the track specified in the D register.

HFMTK  138 (&8A) Format Track. Format the track under the drive
head, using the D register to supply the track number and the
E register as the number of the first sector (1-10). Later
sectors will be numbered 1 higher until 10 is reached and
numbering goes back to 1.
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HVAR   139 (&8B) Supply the address of a DVAR by putting it on the
floating point calculator stack. On entry, the FPCS should
hold the desired DVAR number. Note: it is probably easier to
page in DOS (the DOS page is held at &5BC2) and read the disk
variables directly. DVAR 0 is at an offset of &0220 within the
page - this will not change.

HEOF   140 (&8C) Supply the End-Of-File status (1 or 0) of a
specified stream. The stream number should be on the FPCS. It
will be replaced by the EOF status.

HPTR   141 (&8D) Supply the PTR value for a specified stream. The
stream number on the FPCS is replaced by the PTR value.

HPATH  142 (&8E) Supply the current PATH$ on the FPCS. Use CALL
&0124 (JSTKFETCH) to get page (A) offset (DE) and length (BC)
of the string.

HLDPG  143 (&8F) As Hook 130, but on entry the A register should
hold the page number of the destination address. This need not
be paged in.

HVEPG  144 (&90) As Hook 131, but on entry the A register holds the
page to verify against.

HSDIR  145 (&91) Select Directory. Similar to DIR="name" in Basic.
On entry, the registers hold details of the location and
length of the desired subdirectory name. DE is the offset, A
is the page of the name start, and BC is the name length.

HOFSM  146 (&92) Open a File Sector Map for an OPENTYPE file. IX
must point to the UIFA. The routine will create the map and
clear the disk buffer.

HOFLE  147 (&93) Open a file on the disk. IX must point to the UIFA.
The routine will create a sector address map, and save a 9-
byte header to the disk buffer.

HSBYT  148 (&94) Save the byte in the A register to the disk file
(If the buffer is full it will be written to the disk and the
byte will go into the start of the next buffer).

HWSAD  149 (&95) Write Single Sector. On entry, the A register is
the drive number (1-7) which is used to access the table at
DVAR 111 to get the actual drive to use. D holds the
destination track, and E the sector number. HL points to the
source in memory, which must be in sections B, C or D of the
memory map. 512 bytes will be written to disk.

HKSB   150 (&96) Save a blockof data to the disk file. The A
register holds the length to save in pages, and DE holds the
length MOD 16K. HL points to the start of the data to save,
paged into section C of the memory map.

HDBOP  151 (&97) Save BC bytes to the disk file. DE points to the
start of the data to save, paged into section C of the memory
map. Used by DOS to write strings to OPENTYPE files.

HCFSM  152 (&98) Close a file. This routine writes the last buffer
to a disk file and creates a directory entry for it. IX should
point to the UIFA.

HORDER 153 (&99) Sort list into ASCII order. HL should point to the
start of the list in sections B, C or D of the memory map. The
BC register should hold the length of each item in the list,
and the DE register the number of items. The A register



�*' �01((+%+#. ��� �172Ï �'%*0+%#. �#07#. 8ETN

G

specifies the number of characters to sort on. No paging is
performed so the entire list must be paged in by the user
before this hook is called.

HGFLE  154 (&9E) Get a file from the disk. The IX register must
point to the UIFA. The return is made with the first sector of
the file loaded into the disk buffer and RPT pointing to the
first byte.

HRSAD  155 (&A0) Read Single Sector. On entry, the A register is the
drive number (1-7) which is used to access the table at DVAR
111 to get the actual drive to use. D holds the source track,
and E the sector. HL poitns to the destination in memory,
which must be in sections B, C or D of the memory map. 512
bytes will be read from the disk.

HLDBK  161 (&A1) Load a block of data from the current disk file. HL
points to the destination of the data in memory, paged into
section C of the memory map. The A register is the length to
load, in pages, and DE holds the length MOD 16K.

HMRSAD 162 (&A2) Read Multiple Sectors. Equivalent to READ AT in
Basic. The A register is the drive to user (1-7 using DVAR 111
table), D holds the track, E the sector, C the page and HL the
offset (&8000-&BFFF) of the destination. IX holds the number
of sectors to load.

HMWSAD 163 (&A3) Write Multiple Sectors. Equivalent to WRITE AT in
Basic. As above, but C and HL hold the source address, rather
than the destination.

HREST  164 (&A4) Restore. Move drive head to track 0. The disk need
not be formatted.

HPDIR  165 (&A5) Print directory. If the A register holds 2, print a
simple directory. If it holds 4, print a detailed directory.
Neither option does a CLS first. The current stream is used to
output.

HERAZ  166 (&A6) ERASE a file from disk. The file name should be at
IX+1 to IX+10.

HCHRD  168 (&A8) Read character from the disk file whose UIFA is
pointed to by IX. The character and flags are passed out in
the alternate BC register: EXX, PUSH BC, EXX, POP AF gives the
character in A, and the carry flag set if the read was OK,
else we hit the end of file.

(Information provided by Dr. Andy Wright)
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PicView is a file format devised by Entropy member Colin Piggot. It caters for
screens bigger than the standard SAM screen size.

PICVIEW SUPER SCREEN$ FILE

128 byte header:

000-015 (ASCII) "PICVIEW: (C) CGP:" <PV Identification>
016-019 (ASCII) "PVS$" <Picture type>
020-021 (WORD) WIDTH <Image Width (Pixels)>
022-023 (WORD) HEIGHT <Image Height (Pixels)>
024-039 (BYTE) PALETTE <Palette (colour) value for

each of the 16 colours that
may be displayed>

040-059 (ASCII) NAME <Image Name>
060-079 (ASCII) NOTES <Image Notes>
080-099 (ASCII) PNOTES <Palette Notes>
100-102 (MIXED) RVERSION <Version of PicView
required

to display picture>
103-105 (MIXED) MVERSION <Version of PicView which

created this picture>
106-127 RESERVED FOR FUTURE EXPANSION

128-End of file Graphics data (as for Mode 4 SAM Screen, length
(WIDTH+1) DIV 2 * (HEIGHT*128))

Bytes 100-102 provides information detailing which version of PicView is required to display
the PVS$ file, whereas bytes 103-105 detail which version of PicView created the PVS$ file.

The version numbers are stored as a byte giving the main version number (0-255), followed
by the ASCII period character ("."), followed by a byte giving the part or minor version number
(0-255). For example, revision 10.23 of the PicView software would be stored as a string of
bytes, value 10, 46, 23.

To determine whether a file is in PicView format or not, and  if your software should be able to
display it, check that bytes 16-19 hold "PVS$" -- if they do not, then you are not looking at a
PicView SuperScreen$ file. Also, ensure that the RVERSION number is not higher than your
software can cope with. The above PicView file format information is correct for version 2.0;
your software may assume that files created with version 2.0 or less (that means that byte 100
of the header contains 0, 1 or 2, byte 101 contains 46 and byte 102 contains zero) will be
compatible with the information above.

(Information provided by Colin Piggot)
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The SAM Coupé uses a slight variation of ASCII as its standard method of encoding

text. This stems from the ZX Spectrum, which used certain codes to change colours and
other attributes, including moving the PRINT position (AT). Another addition was the use of
character code 127 (the DEL control code in ASCII, the greek letter Delta on the PC) as a
copyright symbol.
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7

3

5

2

4

6

1

7

3

5

2

4

6

1

NMI MIDI OUT MIDI IN

7

3

5

2

4

6

1
8

1 2 3 4 5

6 7 8 9

JOYSTICK MOUSE RESET EXPANSION CONNECTOR

EAR/MICEXPANSION CONNECTOR

3

5

2

4

1

LIGHT PEN ON/OFF

5

4

3

2

1

6

POWER INPUT

21 19 1

20 2

SAM SCART

18

MIDI IN MIDI OUT ATARI JOYSTICK MOUSE

1 Net  - Loop 1 Net  - Loop 1 Up 1 Down
2 No Connection 2 GND 2 Down 2 Up
3 Net  + Loop 3 Net  + Loop 3 Left 3 CNTRL
4 Midi + In 4 Midi + Out 4 Right 4 Left
5 Midi - In 5 Midi - Out 5 0 Volts 5 Right
6 Net  - Loop 6 Net  - Loop 6 Fire 6 Int.
7 Net  + Loop 7 Net  + Loop 7 +5 Volts 7 RDMSEL

8 STROBE1 (active high) 8 +5V
9 STROBE2 (active high) Scrn -

     GND

LIGHT PEN  SAM SCART POWER INPUT

1 +5 Volts  1 Audio Right 13 Red Earth 1 +5 Volts
2 Audio Left  2 SPEN Input 14 CSYNC Earth 2 0v Signal GND
3 0 Volts  3 Audio Left 15 Red Lin Out 3 0v Digitl GND
4 SPEN Input  4 Audio Ground 16 CSYNC 4 Comp. Vid O/P
5 Audio Right  5 Blue Earth 17 Cmp Vid Earth 5 +12 Volts

 6 Blue TTL Out 18 +12v Power In 6 Sound Output
 7 Blue Lin Out 19 Cmp Vid Out   (mono)
 8 Red TTL Out 20 Bright TTL Out
 9 Green Earth 21 GND
10 Green TTL Out
11 Green Lin Out
12 +5v Power In
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Pin 1C
Pin 1A

Pin 32C
Pin 32A

Rear View Of SAM

IORQL
MREQL
HALTL

2
3
4
5
6
7

1

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A C

NMIL
INTL
CD1
CD0
CD7
CD2
+5 VOLTS*
CD6
CD5
CD3
CD4
CPU CLK
A15
A14
A13
A12
A11
DISC 2L
ROMCSL
EARMIC
DISC 1L
PRINTL
BLUE 1
ROMCSRL
AUDIO RIGHT
AUDIO LEFT
COMPOSITE VID
GREEN 0
0 VOLTS

DBDIRL
RDL
WRL

BUSACKL
WAITL

BUSREQL

CM1L
REFRESHL
0 VOLTS*

RESETL

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
EXTINTL

XMEML
8 MHz
RED 1

GREEN 1
CSYNCL

SPEN
BLUE 0

BRIGHT
+5 VOLTS

RED 0

Pin out of Expansion Connector

*Not to be used as a supply rail - reference only.

The SAM Coupé edge connector is a standard Euroconnector socket with rows A-C
fitted. All identifiers ending with L are active low.
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MOUSE PROTOTYPE

 5
 4

CON2
8PIN

1
2
3
4
5
6
7
8

MS1
MS2
MS4
MS8

/STRB
5V
0V

COUPÉ CONNECTION

1
6

7

8

9

2

3

4

5

XB
BUT1
XA
5V
YA
0V
YB
BUT3
BUT2

CON1
DB9

MOUSE CONNECTION
ATARI STD.

5V

BUT1

BUT2

BUT3

BUT4

R7
10K

R3
10K

10K
R8

R2
10K

CNTC  9
 0V   7

CNTB 10
CNTA 11

X1   12
X10  13
X100 14
Y1   15
Y10   1
Y100  2
BUT1  3
 5V   4 5

6

Z

Z
_

I0
I1
I2
I3
I4
I5
I6
I7

A
B
C
E
_

CNTC  9
 0V   7

CNTB 10
CNTA 11

X2   12
X20  13
X200 14
Y2   15
Y20   1
Y200  2
BUT2  3
 5V   4 5

6

Z

Z
_

I0
I1
I2
I3
I4
I5
I6
I7

A
B
C
E
_

CNTC  9
 0V   7

CNTB 10
CNTA 11

X4   12
X40  13
X400 14
Y4   15
Y40   1
Y400  2
BUT3  3
 5V   4 5

6

Z

Z
_

I0
I1
I2
I3
I4
I5
I6
I7

A
B
C
E
_

CNTC  9
 0V   7

CNTB 10
CNTA 11

X8   12
X80  13
XSIGN14
Y8   15
Y80   1
YSIGN 2
BUT4  3
 5V   4 5

6

Z

Z
_

I0
I1
I2
I3
I4
I5
I6
I7

A
B
C
E
_

Z5
HCT151N

Z6
HCT151N

HCT151N

HCT151N

Z7

Z8

HCT191N
Z1

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

Y1
Y2
Y4
Y8

/YRC1

 0V

/YCLK
CLEAR
 YB
/CNTD

HCT191N
Z2

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

Y10
Y20
Y40
Y80

/YRC2

 0V

/YCLK
/YRC1
 YB
/CNTD

HCT191N
Z3

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

Y100
Y200
Y400
YSIGN 0V

/YCLK
/YRC2
 YB
/CNTD

HCT191N
Z4

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

X1
X2
X4
X8

/XRC1

 0V

/XCLK
CLEAR
 XB
/CNTD

HCT191N
Z10

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

X10
X20
X40
X80

/XRC2

 0V

/XCLK
/XRC1
 XB
/CNTD

HCT191N
Z11

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14
 4
 5
11

3
2
6
7

13
12

X100
X200
X400
XSIGN 0V

/XCLK
/XRC2
 XB
/CNTD

1

2
3

STRB1

MS1

MS2

MS4

MS8

6

8

11

4

5

9

 10

 12

 13

Z9:A
HCT03N

Z9:B

Z9:C

Z9:D

Z12:A
HCT14N

HCT132N
Z14:A

3 /YCLK

 R5
100R

Z12:B
HCT14N

HCT132N
Z14:B

6 /XCLK

 R4
100R

10nF

C3

10nF

C2

YA

0V

YB

XA

0V

XB

1 2

3 4

1

2

3

4

HCT191N

RC
TC

Q3
Q2
Q1
Q0

P1
P0

P2
P3

CLK
CE
U/D
PL

__
_

15
 1
10
 9

14

11

3
2
6
7

13
12

 CNTA
 CNTB
 CNTC
/CNTD

0V

CLEAR

5V

/STRB2

Z13

Title

MGT 017
Number Revision

A
Date: 15-Oct 1991 Designer: BGordon

Redrawn for this manual by Simon Cooke

 5
 4

74LS123

 Q

 Q

RCext

Cext

A
B
CLR

_

15

14

11

13

4

0V

5V
/STRB2

Z15:A

CLEAR

Z12:F
HCT14N

13 12

Z12:C
HCT14N

5 6

R6

1K

/STRB

STRB1

5V

R1

C1

 /STRB2
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