

************************** CONTENTS *****************************

INTRODUCTION 1
COPYRIGHT RESTRICTIONS 1
MAKING A WORKING COPY 2
LATE NEWS 2
STARTING TO USE THE PROGRAM 2
PICK SPRITE Option 3
EDIT SPRITE DETAILS Option 3
EDIT GRAPHICS Option 10
SELECT MASKING Option 12
EDIT PALETTES Option 14
GRAB FRAME Option 14
ANIMATE SPRITE Option 15
SPRITE vs. SPRITE COLLISIONS Option 15
SPRITE vs. BLOCK COLLISIONS Option 16
RUN GAME Option 16
OTHER WAYS TO RUN A GAME 17
EDIT MODULES Option 17
EDIT GAME DETAILS Option 18
EDIT PATHS Option 19
EDIT SOUNDS Option 20
EDIT KEYS Option 21
EDIT ANIMATION SEQUENCE Option 21
EDIT BLOCKS Option 22
SELECT OUTLINES Option 23
LOAD SPRITE Option 23
SAVE SPRITE Option 24
LOAD GAME Option 24
SAVE GAME Option 24
Stand-alone CODE Games 24
LOAD SCREEN Option 25
SAVE SCREEN Option 25
EXIT TO BASIC Option 26
MEMORY MANAGER Option 26
WHEN YOU ARE SHORT OF MEMORY 26
CLEAR SUBMENU Option 27

THE GAMES MASTER CONTROL LANGUAGE 26

Introduction 28
The Coordinate System 29
Sprite Planes 29
Sprite Numbers 29
GMCL Expressions 30
GMCL Commands 31
GMCL Functions 44

EXAMPLE PROGRAMS 45

DEMO PROGRAMS 45

UTILITY PROGRAMS 45

SPRITE FILE FORMAT 45

INTRODUCTION

Games Master is a complete games development package for the SAM
Coupe. It allows you to create and modify sprite graphics, and
tell the computer how to move and animate them. Other parts of
the program allow you to edit sound effects, control keys, load
and save games and sprites, set up collision actions, etc.
Because the computer does most of the work, you need to do very
little programming and can produce results quickly. What
programming you do will probably be using the Games Master
Control language (GMCL for short). You can use Basic or machine
code subroutines if you like, but you probably won't need to.

I am always glad to hear from users. If you have any comments,
suggestions for improvements or problems, please write to

BETASOFT, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM, 814 6LQ..

I would like to put together a compilation disk of programs
written using the Games Master system, including contributions
from users. This would be sent to users for a small fee. Prizes (
and fame!) would be given for the best contributions. Please
send in anything you feel might be suitable.

COPYRIGHT RESTRICTIONS

Most of the editing is done using a large Basic program called (
logically enough) the EDITOR. This program is copyright and you
MUST NOT give copies to anyone else. The games you produce with
the Editor will be self-contained machine code (unless you have
used Basic subroutines) and you are free to copy these games and
give them away or sell them, provided that you mention that the
program was produced using Games Master in your documentation or
packaging. However, the sprite driver and other routines which
are part of each game must only be used as part of a game
produced by Games Master - you cannot use them in any other
product.

(C) 1992 Andrew J.A. Wright
First Edition, April 1992. All Rights Reserved.

This program took me a lot of time and effort to write, and I
hope it reflects that. The price is very reasonable. Please do
not give away my work - let your friends buy their own copy, so
that I can make a living and continue to develop new products for
this excellent machine! The disks and their contents are i
ndividually marked and copies can be traced to their source.

1

MAKING A WORKING COPY OF GAMES MASTER

You should use a working copy or copies of the supplied disk for
day-to-day use, rather than the original disk. To make a working
copy, turn on the computer and load your DOS. Have ready a
formatted disk. Place the Games Master disk in drive 1. If you
are using MasterDOS on a 2-drive system, place the blank
formatted disk in drive 2 and then use BACKUP "dl" TO "d2" to
copy the disk. On a 1-drive system use BACKUP "d1" TO "d1" and
swap the disks when you are prompted to. You might want to erase
SAMDOS from the completed copy and replace it with MasterDOS or
the MasterDOS/MasterBasic combination. This will improve the
speed and reliability of disk operations and, with MasterBasic,
the speed of the Editor program will be increased.

If you are using SAMDOS, you should order a copy of MasterDOS
from Betasoft (only 15.99) but in the meantime on a 2-drive
system put the blank disk in drive 2 and use FORMAT "d2" TO "dl"
or on a 1-drive system use COPY "dl:*" TO "d1:*" and swap the
disks in response to the prompts.

Ensure that you keep the original Games Master disk in a safe
place - though naturally I will replace it if anything bad
happens to it. Just return the disk and enclose a stamped
addressed envelope. If you live abroad forget the stamp but
enclose an International Postal Reply Coupon instead.

If you bought this product directly from Betasoft, you are
already recorded as a customer with possible upgrade privileges.
If you bought it elsewhere, it would be a good idea to send me
your name and address and tell me where you got the product. This
information may be used to tell you about future products.

LATE NEWS

If there IS any Late News, for example, additions to the program
or manual, they will be described in the file called "readme" on
the Games Master disk - just LOAD "readme".

STARTING TO USE THE PROGRAM

To load the program, place the working disk in drive 1 and press
F9. The Editor and supporting machine code will load and run. You
will be presented with a superficially somewhat formidable main
menu which provides all the major editor features in an easily-
accessible way. In general, you move the cursor bar to the option
you want using the cursor arrow keys and press RETURN. Most
options can be abandoned by pressing F9, or by pressing just
RETURN when you are prompted to input a value or file name.

As a simple exercise to get something moving on the screen, we
will load a sprite from the ready-defined selection on the disk.
A sprite is a computer thingy that combines graphic data with
other information that controls how it moves and acts on the
screen. Select the LOAD SPRITE option on the upper right-hand
side of the menu. You will be presented with a list of numbered
entries, each of which can hold a sprite. You are asked to select
a free entry, using the cursor keys, and then press RETURN. In
this case you can just press return, since the cursor bar will

2

point to entry 1 already, and all the entries are free (there are
no sprite names listed in them.)

You will now see a directory of files that end in ".s" - these
are all sprite files, and contain the data that defines a single
sprite. Now type in "egship" or "egship.s" in response to the
request for a file name. The file will load, and you will be
returned to the main menu. From there, you can have a look at the
sprite you have just loaded by selecting EDIT GRAPHICS. The left
and right cursor keys let you look through the different views of
the same sprite; these are called "frames". They can be placed on
the screen in various "animation sequences" to make a sprite
flash, or appear to walk, flap its wings, rotate, etc. For now,
we will avoid altering the graphics in any way - just press F9
and then "N" or F9 again to return to the main menu.

You can examine the non-graphical properties of the selected
sprite by using the EDIT SPRITE PROPERTIES option. You will see
the first of two pages of data about the sprite, much of which we
will ignore for now. Notice, however, that ANIMATION SEQUENCE is
set to 0. This means that there is no animation sequence assigned
to the sprite, and the current frame will be displayed all the
time it is on-screen. The appearance of the sprite won't change.
As you know from looking at the graphics, and from the current
display, the sprite has seven frames, and we will use them later
on. For the moment, we will leave the sprite non-animated. It
will, however, move around the screen. MOVEMENT TYPE is set to 1 (
SIMPLE) which means that the X SPEED and Y SPEED values shown
will be used to move the sprite to successive new positions on
the screen. BOUNCES is set to YES, which means that the sprite
bounces off obstructions, and EDGE LIMITED is set to YES, meaning "
treat the screen edge as an obstruction". Perhaps you can guess
that this combination should make the sprite move around the
screen, bouncing off the edges when it hits them. Now press F9 to
return to the main menu, and select EDIT MODULES.

Our sprite is ready to go - but we still have to tell the
computer to start it off. To do this we need to use a single
command in Games Master Control Language. Enter 1 as the module
to edit (this is the default so you can just press return) and
you will see a blank module, which is an empty page into which
you can type GMCL commands. The cursor is the white square at the
top left of the screen. You do not need and cannot use line
numbers, so just type PLACE 1,10,20,4. This means "place sprite 1
at x coordinate 10, y coordinate 20, sprite plane 4. The sprite
plane determines whether sprites can collide with other sprites
or blocks, or pass over or under them, but don't worry about it
for now. Press F7 to compile the module; the command will be
translated into machine code and you will be returned to the main
menu. Finally we are ready to run the "game". Select RUN GAME.
The program will execute module 1, the sprite will be set going,
and you should see the sprite bouncing around the screen. Module

is no longer being executed - you have told the computer "Place
sprite one at these coordinates and then keep handling it,
according to its properties". After that, no further commands are
needed to keep the sprite moving.

Now leave the game by pressing F9, and let's modify things to be
a little more interesting. Select EDIT SPRITE PROPERTIES and move
the cursor bar down to ANIM. SEQUENCE using the up and down

3

cursors, then press the right cursor until the value increases
to 7. Use the left cursor to decrease the value if you overshoot.
Now press F7 to use the new values and return to the main menu.
(F9 would have thrown away any changes before returning to the
main menu.)

We have made the sprite animated, using animation sequence 7, but
what does that mean? There is nothing in the sprite data to say
what animation sequence 7 is; instead, animation sequences are
part of the overall game, and can be edited in isolation from the
sprites. In a way this is a pity, because it means that a
sprite's behaviour is not determined solely by the sprite data,
but also by more general game data. However, there are advantages
in doing things this way. Animation sequences can be complex
without expanding the size of the sprite data, since only a
single value determines which complex sequence from the games's
list of sequences is used. Sequences can be shared by many
sprites, some of which can be at a different position in the
sequence, and a single change to a sprite's data can select
another sequence and change its behaviour completely.

Many of the most common animation sequences are ready-programmed,
so you need to do very little. Sequence 7 is one of these. If you
select EDIT ANIM SEQ and enter 7, you will see that this sequence
is defined to use frames 1 to 6 in sequence, then 5 to 2, with a "
time" of 1. The "time" is the number of times to use each frame
before going on to the next one. In this case the computer will
use frame 1 just once, move the sprite, use frame 2 just once,
move the sprite, etc. If the "time" was 10, the animation (i.e.
alterations of the sprite's appearance, as distinct from its
position) would be much slower, because the same frame would be
used during 10 sprite moves. Different frames can have different
times, allowing, say, a giant eye to be unchanging for 20 moves,
and then blink quickly by using 2 or 3 "blinking" frames for just
I move each. When the end of the animation sequence is reached,
it will repeat automatically.

A list of the ready-programmed animation sequences is given in
the section on the EDIT ANIM SEQ option, which also explains how
to use the MODULE column to cause actions at particular points in
the animation. This is just a quick run-through, though, so back
to the main menu now!

Run the game again using the RUN GAME option. The sprite should
be animated, as well as moving. Go back to the SPRITE PROPERTIES
option and test the effect of altering X SPEED and Y SPEED - if
you make the values negative, the initial direction of motion
will be reversed. Try setting EDGE LIMITED to NO. Next you can
switch to manual control by increasing MOVEMENT to 2 (PLAYER). As
supplied, the program will control the sprite using the cursor
keys.

Perhaps by now you would like some company for your single
sprite, so use the LOAD SPRITE option to load "egstar". This
sprite will become the "selected sprite" which EDIT GRAPHICS,
EDIT SPRITE PROPERTIES, etc. refer to. (To return to editing "
egship" you would have to use the PICK SPRITE option on the main
menu to make it the "selected sprite" once more.) If you look you
will see that "egstar" has only a single frame, and is not
animated, although it is moving. It is not edge-limited so it

4

will wrap round if it goes off-screen. Use EDIT MODULES to edit
module 1. On the line after the PLACE command you entered before,
type: PLACE 2,50,60,4 and on the line below that type: PLACE
2,66,110,4. (These particular coordinates are not important.)

It appears that we are telling the same sprite, number 2, to be
in two different places at the same time Press F7 to compile the
module, then run the game, and you will see that this is exactly
what happens! Games Master can handle multiple copies of the same
basic sprite - you just have to use multiple PLACE (or other)
commands. These commands make active copies from the unchanged
master copies of the sprites that you load. Now try adding more
copies of sprite 2 to module 1, perhaps using a final value (
plane number) of 1 or 2, which will let the new copies pass
under any sprite with a higher plane number, or a plane number of
8, 16 or 32, which will let the new copies pass over the existing
sprites. You will learn more about the significance of these
numbers later on.

To complete this trivial demonstration, let's make the "egstar"
sprites make a noise when they hit the "egship". Select the SPR
vs. SPR COLLISIONS option from the main menu. You will see a
table of possible collision pairs. Move the cursor down by one
row, so that it is on the row dealing with collisions of "egstar"
with other sprites. We are already in the right column, since
column 1 relates to sprite 1 ("egship"). Any module number you C
type now will be the module that will be executed when sprite 2
hits sprite 1. I usually use module numbers over 30 for collision
handling, but you can use any number between 2 and 128. (Module 1
is already in use, of course.) After typing the module number,

place the cursor over the number, if it has moved, and press F8.
The module will be ready for editing. (This is another way into
the main menu EDIT MODULES option - you could use that instead if
you preferred.) Now type SOUND 1, press F7 to compile, and you
will return to the collision table, from which you can exit using
F9, unless you want to specify more collision actions.

Running the game now will produce a sound on any egstar/egship
collision, using pre-programmed sound 1. You can use a different
pre-programmed sound, or edit sound 1 using the EDIT SOUNDS
option if you like. If you have your sound output correctly
connected to a system able to produce stereo sound, the perceived
stereo position of the sound should vary according to where on
the screen the collision occurs.

To end this brief tour of Games Master, save the game using the
SAVE GAME option. You can either use the SAVE DATA option, which
saves just the game data, or the FULL GAME or AUTO GAME options,
which save the machine code needed to handle the sprites as well,
and allow the game to run without the Editor being loaded.

The rest of this manual deals with all the main menu options, in
greater depth, followed by an explanation of the Games Master
Control Language. Example programs and demos are included on the
disk, along with sprite files and utility programs.

5

PICK SPRITE Option

This option allows you to alter the "selected sprite" that EDIT
GRAPHICS, EDIT SPR DETAILS, GRAB FRAME, ANIMATE SPRITE and SAVE
SPRITE work on. You are shown a page of 32 numbered entries, each
of which can hold a sprite name up to eight characters long.
Extra pages can be examined by using the Fl and F3 keys. The
cursor bar can be moved with the cursor keys. RETURN selects an
entry. F8 can also be used to enter a new name or alter an
existing one. The display also shows the amount of free memory
available for holding more sprites. The name and number of the
selected sprite are shown on the main menu under PICK SPR.

EDIT SPRITE DETAILS Option

This option both displays details of the selected sprite, and
allows you to edit most of them, using the up and down cursors to
move the cursor bar, and left and right cursors to decrease or
increase numbers, or toggle YES to NO and vice versa. F7 confirm
all the changes you have made, and F9 abandons them. There are
two pages of details.

FRAMES cannot be altered. It shows the total number of Frames

WIDTH cannot be changed. It is the sprite's width in pixels.

HEIGHT cannot be changed. It is the sprite's height in pixels.

CURRENT FRAME can be changed, but this will be irrelevant unless
the sprite has an animation sequence of zero (i.e. it is not
animated) in which case it will determine what frame is seen when
the sprite is displayed.

ANIMATION SEQUENCE when zero means that the sprite is not
animated. Values between 1 and 32 denote an animation sequence
from those editable using the main menu EDIT ANIM SEQ option. The
sequence should be defined, if needed, before a game is run, or
you will get an error message. If the sequence assigned to the
sprite uses higher-numbered frames than the sprite actually has,
the sprite will flicker and appear very odd, but no harm will be
done.

CONDITIONAL refers to animation being conditional on sprite
movement or not. NO means that the sprite will be constantly
animated, YES that animation will stop when the sprite stops
moving. For example, if the player controls a walking man,
CONDITIONAL should be YES or the man will walk on the spot.
Normally, when animation stops frame I is selected, but this can
be modified using a STOP module - see below.

MOVEMENT TYPE can have values from 0 to 4.

0 (UNMOVING) means that the sprite does not move.
1 (SIMPLE) means that the sprite makes simple moves initially
determined by X SPEED and Y SPEED. Colliding with obstructions
may stop the sprite, or cause it to bounce, but the speed and
direction of movement will not change otherwise.

2 (PLAYER) means that the sprite is controlled by the player via
a keyboard or joystick. The keys that respond are editable using
the EDIT KEYS option on the main menu. The sprite speed when the
player makes a move is determined by the values of X SPEED and Y

6

SPEED. If X SPEED is positive, the sprite moves left when the
player tries to move it left, but if it is negative, the sprite
moves right!
3 (PATH) means that the sprite follows a complex defined path
from those editable using the EDIT PATHS option on the main menu.
PATH should be set to 1-32, and the path should have been defined
before the game is run, or you will get an error message. A path
consists of a series of movement instructions; when all have been
executed, this option goes through the same set of instructions
again. If the sprite has moved back to its starting point by this
time, the sprite will move repeatedly in a loop; if not, it will
progress across the screen.
4 (ALT PATH) is like the previous option, but the sprite follows
the path alternately forwards and backwards. This results in no
overall movement, whatever the path. Both kinds of path can be
interfered with by collisions with other sprites or with blocks.

X SPEED is the number of horizontal units moved when MOVEMENT
TYPE is 1 or 2. If the value is negative, the initial direction
will be left for movement type 1, otherwise right. Zero gives no
horizontal movement. The units moved are normally TWO pixels, or
I byte. This may seem odd, but it corresponds to exactly 1 byte
on the screen, and means that the sprite can be placed onto the
screen without any complex manipulations of the data. Also, in
most cases movement by 2 pixels is quite acceptably smooth.
However, if you like you can set PIXEL X SPEED to YES and the
units used will be single pixels. This has the disadvantage that
a second copy of the graphics and masks for this sprite have to
be created, doubling its memory usage. The second copies are
rolled rightwards by 1 pixel ready to go on the screen, so this
option is just as fast as normal. You must ensure that the
graphics used for pixel x movement do not use the rightmost
column of pixels, or odd pixels rolled off at the right will
appear on the left when the sprite is placed on-screen. Restoring
PIXEL X SPEED to NO will recover the space used for the second
graphics copies.

Y SPEED is similar to X SPEED, but the units are always pixels. A
typical value might be 2, with X SPEED being 1 byte, giving
diagonal movement.

Very large values of X and Y speeds above about 10 pixels are not
recommended due to the jerkiness involved. They also make it
possible for sprites to pass right through narrow barriers
without the collision detection being triggered!

PATH is the path number followed by a sprite when movement type 3
or 4 is selected. See the main menu EDIT PATHS option for
details.

COLLISION TYPE is initially the same as the sprite number, for
sprites 1-32. This value is used in the SPR vs. SPR and SPR vs.
BLOCK collision tables to control collision actions. However,
there are only 32 collision types, and you can have up to
96 sprites, so sprites 33-46 will have to be assigned a
suitable collision type in the range 1-32 if you want them
to have collision actions. This means that they may have
the same collision type as another sprite, but this is is not
usually a problem, since one often wants several different
sprites to act similarly when collisions occur.

7

BOUNCES determines whether the sprite bounces when it hits an
obstruction. The extent of bouncing will be very small unless the
movement type is I (SIMPLE). (More complex effects than bouncing are
controlled via the main menu COLLISION options.) Set to NO the
sprite will not bounce of other sprites, and it will be blocked
by BLOCK obstructions without bouncing, although it will continue to
move in unblocked directions if it has any part of its motion
towards them. If the block is removed, the motion will normally
restart. Set to YES the sprite will bounce off sprites and
obstructions but not slow down.

HALTS ON IMPACT set to YES will over-ride BOUNCES and stop the
sprite from "trying" to get anywhere after it hits something.
Suitable for custard pie sprites and so on! The sprite can still be
moved by external forces, such as pushing by another sprite, or
gravity.

FEELS GRAVITY set to YES means that the sprite will tend to fall
unless it is supported by something, or unless it does not
require support. The exact effects are determined by the force of
gravity and maximum falling velocity, which can be altered using the
main menu EDIT GM DETAILS option.

NEEDS SUPPORT means that a sprite cannot move upwards unless it is
supported by something, at least initially. It should be YES for a
sprite which is to leap. FEELS GRAVITY should also be YES. Y SPEED
should be quite high - perhaps 6 or 10 - since this determines
the initial upwards speed. The force of gravity and max. falling
speed also affect the form of a leap. NEEDS SUPPORT being NO and FEELS
GRAVITY being YES is suitable for a spaceship you want to be able to
fly up and down, but to fall if you stop pressing the UP key.
FEELS GRAVITY set to NO would give a spaceship that simply
stopped when you stopped pressing the UP key.

EDGE LIMITED should be set to YES if you want a sprite to be
unable to leave the "game frame". This is normally set to include the
entire screen by use of an enclosing BLOCK (see the EDIT BLOCKS
option) so edge-limited sprites will be stopped by the screen edge.
When EDGE LIMITED is set to NO, a sprite can wander off the screen.
For more about how this works, see EDIT GM DETAILS (Delayed
Wrap) and the section on the Coordinate System in the explanation of
the GMC Language.

LEFT/RIGHT MIRROR can be set to YES if you want a sprite to be
mirrored left-to-right when its side-to-side motion reverses. Used
by itself, this physically mirrors all the frames for the sprite.
This has some advantages: it is simple, and there is no extra memory
usage. One disadvantage is that it is relatively slow, which may
give a perceptible pause in the game, especially with a large sprite
with lots of frames. Another is that ALL copies of the sprite on the
screen will be mirrored, even if they haven't reversed direction,
because they all use the same graphic data. This will be irrelevant if
you only expect to use one copy of the sprite. There is another
way of dealing with motion reversal, in any case. Leave MIRROR set
to YES, but set non-zero values for LEFT MODULE and RIGHT MODULE. The
left module will be executed when the sprite reverses and starts to
go left, and it can select a new animation sequence for the sprite,
in which all

the frames are already mirror-reversed. The right module can re-
select the original animation sequence. This is much faster than
the original method, and can be used for multiple copies of a
sprite without problems, although it uses double the amount of
memory, and takes a little effort with the graphics editor,
animation sequence editor, and module editor. See ANIM in the
Games Master Control Language section for details of how to
change an animation sequence within a module.

UP/DOWN FLIP is very similar to MIRROR. YES alone will invert the
actual graphics data, whereas assigning UP and DOWN modules can
do the same thing using new animation sequences.

STOP MODULE, when non-zero, is the module executed when the
sprite's normal animation comes to a stop because it has stopped
moving and CONDITIONAL is set to YES. A common application is to
change the sprite's animation from walking to standing, or to
change frames, using the ANIM or SPOKE commands. See the example
files on the disk.

KEY 5-8 MODULES These are only relevant to player-controlled
sprites. The main menu EDIT KEYS option allows you to define up
to S keys or key combinations. The first four of these keys are
assigned to move a sprite left, right, up and down, but no
actions are assigned to the other four unless you set a non-zero
value for the relevant key module. For example, suppose you want
to fire a missile and make a sound when the space bar is pressed;
you could assign SPACE to be the fifth defined key using the EDIT
KEYS option, set the KEY 5 MODULE to be, say, 20, and then make
module 20 contain commands to EMIT a missile and create a SOUND,
using the EDIT MODULES option. Different player-controlled
sprites can have a different set of key modules, corresponding to
perhaps different level ships with new weaponry.

MISSILE If this is set to YES, the sprite "dies" if it goes
completely off screen. This is usually what you want with a
missile - otherwise it may buzz around your screen forever. It
may still do so, if it is edge-limited, even if MISSILE is YES.

You can "fire" any sprite with the EMIT command, whether MISSILE
is set to YES or NO.

UNDER FIRER is usually set to NO, meaning that if this sprite is "
fired" using the EMIT command, from a position that overlaps
that of the "firer", it will be OVER the firer. If it is set to
YES, it will be UNDER the firer. Often you won't care about this,
because the initial positions will not overlap, but it lets you
fire e.g. missiles from behind something, or not. (Collision
detection between missile and firer will not occur until AFTER
the two have been "not collided" i.e. the missile is clear of the
firer - but you could still be hit by a ricochet!)

ABSOLUTE SPEED when set to NO means that if this sprite is fired
using the EMIT command it will add the speed of the firing sprite
to its own intrinsic speed (set by X SPEED and Y SPEED). This
setting is closest to reality for most sprites. A setting of YES
means that the sprite will use only its, own speed, and might be
appropriate for e.g. parachutists dropped from a plane.

MASKLESS is normally NO, meaning that the sprite has a mask and

9

can be used normally. If set to YES, the "sprite" isn't really a
sprite at all, since it must be used as a rectangular background.
This property is specified when the sprite is created, and cannot
be altered.

MEMORY USED can only be changed from this option by altering the
state of PIXEL X SPEED. It is the number of bytes used by the
sprite.

EDIT GRAPHICS Option

You can edit the graphics of any sprite by selecting it using the
PICK SPRITE option, followed by the EDIT GRAPHICS option. If the
sprite already exists, you will be able to display each frame and
edit the desired one by pressing F8. If the sprite is a new one (
i.e. you used PICK SPRITE to point to en empty entry in the
sprite list, and then typed in a name) you will be prompted for
the width and length of the new sprite, in pixels. Once you have
approved the settings, you will be ready to edit the first (and
so far only) frame of the new sprite. You cannot change the
sprite's dimensions after this without using the CLEAR SUBMENU
option on the main menu to erase the sprite and start from
scratch. (Although you could PUT the sprite in a safe place first
and then GRAB the graphics back - see GRAB FRAME option.) An
edited frame can be abandoned without the original being altered,
or it can be used as a replacement for the original frame, used
as a replacement for any other frame of the sprite, or used as a
new additional frame for the sprite by adding it to the end of
the sequence of frames.

Assuming you are now ready to edit a new or existing frame, you
have quite a few options:

F7 - USE the frame as it is now. Before final approval, masking
operations (see later) will be carried out and the sprite will be
placed against both a colour 0 and a colour 15 background for you
to look at. If you press any key except "N" when prompted, the
edited frame will replace the original in the sprite's data. If
you press "N" you will have the option to use the edited frame to
replace ANY frame for that sprite, or if you use the maximum
allowable frame number (which is displayed for you) the frame
will be added to the end of sprites frames, making the number of
frames increase by one. Using a frame number of 0 will switch to
a second screen, where a box cursor the same size as the sprite
can be moved around using the cursor keys (plus SHIFT for speed).
F7 will place the frame at the current position, F9 will abandon.

F9 - ABANDON any changes that have been made. Both F9 and F7 ask
if you want to edit another frame. Any key except "N" or F9 will
be taken as "YES".

SPACE - PLOT the pixel pointed to by the arrow cursor in the
current colour - this is pointed to by a separate "colour cursor"
below the palette display. This cursor can be moved left or right
using the Fl and F3 keys, which means that you can alter the
current colour without "losing your place" as you might if you
had to move the main arrow cursor. The pixel will be plotted on
the enlarged view of the sprite on the left, and provided there
is room, on a normal-sized view on the right. The enlarged view
uses magnifications of 2, 3 or 4 times, according to what will

10

fit on the screen. Very long sprites may partially obscure the
list of options at the bottom of the screen.

The other options are:

F4 - MIRROR sprite horizontally. This is useful for creating
frames of the sprite moving in the opposite horizontal direction.

F5 - FLIP sprite vertically. Use it for e.g. making spaceships
look correct while flying down the screen instead of up.

F0 - TURN sprite clockwise by 90 degrees. Only possible if the
sprite is square. The operation can be repeated to give frames
rotated by 180 or 270 degrees compared with the original.

SHIFT and CURSOR KEYS rolls the sprite left, right, up or down by
one pixel. No information is lost, so you can reverse the
process.

F6 - SWAP colour pointed to by the arrow cursor with the colour
pointed to by the colour cursor, for the whole frame. The colour
cursor will automatically shift so that if you press F6 again,
the colours will swap back to the original state. This function
is very useful when editing sprites from different sources so
that they all look good with the same palette. You will often
find that you need to change the way that colours are used. For
example, a pinkish colour may be part of the palette you have
decided to use, but the sprite you are editing has a green face
and pink boots when you use that palette. If you cannot redesign
the palette without causing problems for other sprites, you need
to edit the selected sprite, so you point the arrow cursor at the
green face, and the colour cursor at the pink colour in the
palette, press F6 and the face (and anything else using the same
colour) will become pink and the boots (and anything else using
the same colour) will become green. However, working out the
swaps needed to get all the colours right can be tedious, and the
use of F6 is best avoided unless all 16 colours are in use in the
sprite you are editing - F2 below will be simpler.

F2 - SET colour pointed to by the arrow pointer to be the colour
pointed to by the colour cursor, for the whole frame. Note that
this option may reduce the colours used by a sprite by making
areas that were originally different colours indistinguishable.
Once you have told the program to USE the frame, you may be
unable to reverse any changes.

DECIMAL POINT - FLASH colour pointed to by the colour cursor.
Useful for checking which, if any, pixels in the sprite have a
particular colour. This may not be obvious with some palettes!)

F8 - FILL area pointed to by the arrow cursor with the colour
pointed to by the colour cursor. Like the normal Basic FILL -
only connected areas will be FILLed.

11

SELECT MASKING Option

Any sprite handling program that uses other than rectangular
sprites needs two kinds of graphics information: 1. What do the
graphic frames look like? 2. Which bits of them are to be
actually put on the screen? If the entire frame is put on the
screen, the sprite will have a border that will over-write nearby
backgrounds and other sprites. The information about which parts
of the frame are to be used, and which are to be "masked off", is
called a "mask". This information can be prepared in different
ways according to the application. The various options are shown
on the Mask Menu, and can be chosen by moving the cursor to them
and pressing RETURN. None of them have any immediate effect - you
must use EDIT GRAPHICS to select a frame, and then select USE,
for the new mask to be created using the method currently
selected. The options are:

SURROUND This is the initial setting. The program assumes that
the colour in the top left-hand corner of the frame is the
background colour, and any part of the sprite's border that is
this colour is masked off. This is usually satisfactory. Any
internal details on the sprite will be left alone, even if they
are the same colour as the background. The actual background
colour is irrelevant.

BLACK This option assumes anything in colour 0 (usually black) is
background and should be masked off. This works when SURROUND
will not - for example, if the top left hand corner of the frame
is used by the sprite. It can also be used to create a mask (and
sprite) with holes in it; for example the "trellis" sprite on
the disk has internal holes which we expect to see the background
through, and BLACK masking had to be used.

SURROUND+1 This option is like SURROUND, but a 1-pixel border is
added to the edge of the sprite data used (if the frame size
allows). This can help a sprite to show up against a similar-
c o l o u r e d b a c k g r o u n d b y g i v i n g i t a d a r k o u t l i n e . M I

BLACK+1 Like BLACK, but adding a 1-pixel border as above.

MANUAL 1 There may be some occasions when the options above are
not exactly what you want. This option overlays graphics edited
with the EDIT GRAPHICS option with a chequered pattern that shows
the current mask. You can edit this manually by selecting the
chequered pattern at the right-hand end of the colour palette,
and plotting any extra mask pixels where you want them. Mask
pixels can also be over-written by using one of the normal
colours. You will find it best to create masks with one of the
other options, and use MANUAL 1 just to touch things up a bit.

MANUAL 2 This option was added late-on, when I realised that
masks that were partially normal and partially translucent could
be used to create interesting effects, such as shadows. It allows
you to edit, not the sprite's graphics, but the actual mask data,
Just as though it were graphic data. A normal mask will appear as
colour 15 (usually white) on colour 0 (usually black). Masking
works at the binary level - 15 is 1111 in binary, and means that
when the sprite is put on the screen, all four bits that make up
a pixel in the sprite frame will replace the bits on the screen.
On the other hand, 0 is 0000 in binary, and this means that none

12

of the bits in the sprite frame are used, and the screen data is
left alone. Now, what happens if the mask is partly colour 87
This is 1000 in binary, and means that a single bit ("worth" B)
from the sprite frame will be used at that pixel, mixed with 3
bits from the screen. Let's assume the background screen uses
mostly colours 8, 9 and 10 which look like grey (light black!)
light blue and light red. Assume also that part of the mask has
been edited to colour 8, and the rest is colours 0 and 15. The
part of the sprite's graphics equivalent to the colour 8 bit of
the mask should be some colour between 1 and 7, so that its
binary number has a leading zero - e.g. 0001. The colour 8 mask
area will use this zero, mixed with the rightmost 3 bits of the
background colours (which are 1000, 1001 and 1010 in binary) to
give 0000, 0001 and 0010 at those pixels (colours 0, 1 and 2).
These colours could be black, dark blue and dark red, meaning
that that area of background is darker than before, but still
visible. In other words, shadowed! By appropriate use of mask and
sprite colours it is possible to get effects like stained-glass
windows or coloured, translucent bubbles. The demo programs on
the disk show the use of shadows.

The mask data is used in collision detection, and only areas in
colour 15 count - so a sprite that is entirely shadow will not
collide with another sprite, and sprites will not bounce off each
others shadows.

When you use EDIT GRAPHICS in this mode, the pixels you plot on
the mask will also be plotted on the smaller view of the sprite
at the right-hand side. This helps show you where you are in
relation to graphic data, but has no other effects.

FROZEN After you have laboriously hand-prepared masks with the
MANUAL 2 option above, you may want to edit the graphics data
again - and to do this you have to leave MANUAL 2 mode. Beware!
If you go back to SURROUND, as soon as you edit a graphic and USE
it, the SURROUND mask will replace your manual mask. You may want
to set masking to FROZEN - this will prevent any alterations to
the current masks while you edit graphics.

13

EDIT PALETTE Option

Each game has sixteen pre-defined palettes that can be selected
within a module using the PAL command. The initial settings of
all but palette 0 are the standard ones for the Coupe. Palette 0
is entirely black, and is useful for blanking the screen while
graphics are set up. EDIT PALETTE option allows you to edit any
of these palettes. The display shows the 128 possible colours in
the upper part of the screen, grouped roughly according to
colour. The lower part of the screen shows the 16 colours of the
selected palette - 0 to 7 in the first row, 8 to 15 in the row
below. The palette number follows a hash sign; next to this is a
rectangle which will display the current colour. A box cursor can
be moved with the cursor keys to point to one of the 128 colours,
and RETURN will make that colour the current colour. The colour
number of this colour may be of interest - it is shown next to
the current colour rectangle. If you move the box cursor over one
of the colours at the bottom of the screen and press RETURN, the
current colour will be assigned to that part of the current
palette.

You will often want to see what effect altering the palette has
on the appearance of your sprites. Holding down the decimal point
key will display the second screen using the current palette.
This screen will show the game screen in the state you left the
game in, or the last loaded screen, or the screen as you left it
after PUT with EDIT GRAPHICS, or after GRAB FRAME. If your box
cursor is over one of the 16 colours of the palette, that colour
will flash on the second screen, showing you where that colour is
used.

Pressing F7 confirms that you want to use the palette as it is
now, and EDIT GRAPHICS and other options will use this palette to
display graphics. The F9 key abandons any changes. Both keys
return you to the main menu.

GRAB FRAME Option

This option is used for capturing sprites or backgrounds from (
usually) a loaded screen. If there is currently an existing
selected sprite, GRAB FRAME assumes you want to add frames to it.
If you don't, select a free entry in the sprite list with PICK
SPR and enter a name using Fe. If you forget to do this, the GRAB
FRAME option will give you the opportunity to select another
sprite, or provide a name for the selected sprite using F8,
before the main GRAB option is offered.

If you want to add frames to an existing sprite, you may get the
frame dimensions wrong at your first attempt, but this doesn't
matter, because the box cursor will be automatically reset to the
right size to match existing frames, and you can try again.

The initial display tells you which keys to use to move and
change the size of a box cursor. SHIFT plus the cursor keys
moves the box by its own width or height, which is often useful
when picking up the next frame from the screen. You can input
the box s i z e d i r e c t l y , a f t e r p r e s s i n g F 8 , a s w e l l a s b y
e y e u s i n g function keys - this is a good idea if you want to
grab a strip of screen the full width of the screen. You can
do this in one go - but the frame will be too large to edit
later, so it is better

14

to deal with this in smaller chunks. You can input a width of
64 pixels, and any old height, then grab 4 frames from the screen
by moving left as far as possible, setting the box height by
eye, grabbing the frame, using shift+right to move across 64
pixels, grabbing the frame, etc. Four times 64 comes to 256 so
the 4 frames make up a complete screen width that can be used
within a game as a background.

Input of the box size by pressing F8 also re-selects the "crib
sheet" of what key does what, which you might want to re-read!

Pressing F7 will grab the frame. If this is the first frame of
the selected sprite, you will be asked CREATE MASKS? If you press
any key except "N", masks will be created and the graphic will be
a normal sprite. If you press "N", the graphic cannot be used as
a real moving sprite, only as a background, although the program
and Editor will handle it as a sprite in most other ways.
However, the "sprite" will take up half the memory it would
otherwise. All subsequent frames will use the CREATE MASKS
setting of the first frame.

Next you will have the chance to accept or reject the frame for
use as any valid frame of the sprite you are building up. The
default frame will add the new frame after any existing ones.

ANIMATE SPRITE Option

This gives a quick, fairly crude way of seeing how your frames
are going to look when animated. You can cycle through all the
frames from first to last, repeatedly, or alternately
reversing direction. (As you might want for e.g. a wing rising
and falling - t h e " r i s i n g " f r a m e s a r e j u s t s h o w n i n
r e v e r s e t o d e p i c t "falling".) The animation speed can
also be increased or decreased. However, for more flexible
control use EDIT SPR DETAILS to assign an animation sequence to
the sprite, if needed, EDIT ANIM SEQ to set up a suitable
sequence, and include the sprite in the current game so you can
see it animating for real.

SPRITE vs. SPRITE COLLISIONS Option

This option displays part of a 32 row by 32 column table which
d e t e r m i n e s w h a t a c t i o n i s t a k e n f o r e a c h p o s s i b l e sprite
vs. sprite type collision. The rows are named as well as
numbered; the names come from the sprite list which can be
examined using the PICK SPRITE option on the main menu. The
columns could have been named in identical fashion, but there
wasn't room. The naming assumes that the collision type number
is the same as the sprite number, which is true initially for
sprites 1-32. (See the EDIT SPR DETAILS option.) However, the
names are simply intended as an aid to memory, and should be
ignored for sprites 33-96. The type number is what matters.

If a table entry is zero, no special actions take place beyond
those (such as bouncing) implicit in the sprite details. If an
entry is non-zero, it is the module number that will be executed
when a collision occurs between the row-numbered sprite and the
column-numbered sprite. The row-numbered sprite is considered to
be the "colliding" or "current" sprite as far as the module is
concerned, and the column-numbered sprite is considered to be the "
hit" or "other" sprite. This is a bit arbitrary, since all

15

collisions between sprites are in fact detected twice, once as
e.g. shot vs. ship and once as ship vs. shot, so both take a turn
as "colliding" and "hit". Many effects can be handled in two
ways, by assigning actions to either one of the two collision
entries in the table - e.g. 2 vs. 5 or 5 vs. 2.

The cursor bar can be moved to any position in the table; the
screen will scroll as needed. A module number can then be typed
in - there is no need to press RETURN when the number is
complete, just press any non-numeric key. If you press Fe with
the cursor over a module number, that module will appear for
editing or inspection. Exiting the module editor with F7 or F9
returns you to the collision editor.

An example: If sprite 2 is a missile, and sprites 4 and 5 are
different types of ship which should explode when hit, and sprite
10 is an explosion, you could enter the number of a free module -
say, 30 - at row 2, column 4 and column 5. Module 30 might
contain:

SOUND 5
TRANSFORM 255,10,0,0

This would make a noise and transform the "other" sprite (the
ships) to sprite number 10 at the same coordinates. Sprite 10 can
have an animation sequence that ends with the sprite vanishing.

When you have finished defining collisions, press F9 to return to
the main menu.

SPRITE vs. BLOCK COLLISIONS Option

This option is similar to the previous one, but the 32 row by 32
column table deals with collisions between the 32 possible sprite
types and block types. The columns correspond to the block TYPES,
not block numbers, and they are not related to sprite type
numbers. You can have many blocks of the same type while
requiring only one table entry to handle collisions of a
particular sprite type with such blocks. For example, if you want
sprite type 10 to make a sound when it hits block type 2, enter a
module number on row 10, column 2. The module with that number
would contain a SOUND command. You could have many blocks of type
2. If you also wanted sprite types 11 and 15 to make the same
sound on hitting blocks of type 2, you would enter the same
module number in row 11, column 2 and row 15, column 2.

The sprite that collides with the block is the "current sprite" (
see Introduction to GMCL) and there is no "other" sprite.

RUN GAME Option

The current game is run. First, in Basic, a CLS is done and the
current blocks are outlined if outlining is selected (see SELECT 4
OUTLINES option). Then the game proper is run by LET e=USR start. (
The variable "start" holds the start address of the game code,
and E carries out an error code if the game is terminated by an
error.) Any sprites or sounds that are in use are terminated, the
variables A to Z are zeroed, and module 1 is executed. Module 1
may call or jump to other modules. When these modules finish, the

lb

computer carries on handling any sprites that have been
brought into use. F9 can be used to return to the main menu, or
ESC can stop the g a m e a n d s i m u l t a n e o u s l y b r e a k i n t o the
Editor. Exit using FY is recommended. The game screen is
preserved on SCREEN 2 and can be inspected using the GRAB FRAME,
EDIT PALETTES or SAVE SCREEN options.

When an error occurs in the game, the error message includes the
module number where the error occurred.

OTHER WAYS TO RUN A GAME

It is possible to run a game direct from the Basic command
line with: CALL start, which avoids the initial CLS and can give
you sprites moving about over a program listing, or by typing:
RUNG which acts like the Editor's RUN GAME option. GO TO 1 can
be used to restart the editor, or RUN 20 to reset some variables
such as cursor bar positions.

EDIT MODULES Option

Modules can fill no more than one editing screen, but you can
have up to 128 of them. The EDIT MODULES option shows the current
module number after a hash sign. No line numbers are needed, or
allowed - simply type commands, each on a separate line. Spaces
are not significant, and upper and lower case letters are
equivalent. New text can be inserted within a line, and text can
be deleted. Complete lines can be deleted or inserted at the
cursor line. You can abandon any changes you have made by
pressing F9, or COMPILE the module by pressing F7. See the
section on Games Master Control Language for details of the
commands.

17

EDIT GAME DETAILS Option

This option allows you to alter several important properties of
the overall game. You can alter the same things from within a
module using the VPOKE command.

MINIMUM GAME DELAY is a method of setting a maximum speed for a
game. If the game involves your ship starting off with 10 largish
enemies and no other sprites on the screen, by the time you have
disposed of all the enemies, the game may have speeded up to an
unnerving extent, because the computer will have less to do. By
increasing the Minimum Game Delay the speed-up is limited. If the
game is slow enough as it is, the Game Delay has no effect. The
normal value is 1, which means that the computer takes at least
one 50th of a second to handle all the sprites, even if it can do
it quicker. Values of 0-5 might be reasonable for a game. Higher
values - e.g. 15 slow things down a lot, and can be useful in
debugging a game.

FORCE OF GRAVITY

This variable controls how quickly falling sprites (with the
AFFECTED BY GRAVITY property - see EDIT SPR DETAILS option)
accelerate. Higher values make sprites attain the maximum falling
velocity sooner. If the value is negative, objects fall upwards!

MAXIMUM FALLING SPEED

This variable sets the maximum Y speed that a falling sprite can
reach, in pixels per move.

BORDER COLOUR

The initial border colour of the game. Should be 0-15.

IMMEDIATE WRAP

Normally NO, which means that sprites can exist in an invisible
off-screen "phantom zone" to the left and right of the screen. If
set to YES, sprites wandering off-screen to right or left
immediately wrap round to the other side, rather than entering
the "phantom zone". See THE COORDINATE SYSTEM for more details.

EVERY CYCLE MODULE

Used to select a particular module which will be executed every
time the entire set of sprites has been moved or checked (a "
cycle"). Any non-zero value is the module number. Such a module
might look like this:

LET T=T+1
IF T=100: JPMOD 10
IF T=200: JPMOD 11
IF T(>300: GOTO A
LET T=0
SCLEAR
JPMOD 1
LABEL A

See also the Introduction to GMCL.

18

ROM INTERRUPTS

Normally NO, meaning that Games Master uses its own system of
interrupts, 100 times per second, rather than the 50 times per
second ROM interrupts. This has implications for sound and
PALETTE LINE colour changes. See EDIT SOUNDS option for more
about the implications of this.

ALLOW EXIT FROM GAME

Normally YES, meaning that pressing ESC or F9, or errors such as "
Missing sprite" will terminate a game. You may wish to set it to
NO once you have finished developing a game. In this state
program errors may cause odd behaviour or a crash. ESC and F9 are
ignored.

When you have edited the game variables, F7 accepts any changes
and F9 abandons them.

GAME PAUSE KEY

Pressing TAB during a game halts the program and sets the border
flickering. Useful when someone rings the doorbell or the phone
rings, or you can't think what to do next. Press the key again to
restart the game.

EDIT PATHS Option

This option lets you define up to 32 complex paths for sprites to
follow. To make a particular sprite follow one of these paths,
you must use the EDIT SPR DETAILS option on the main menu to set
its movement type to 3 (PATH) or 4 (ALT PATH) and set its PATH
value to the desired path number.

To use the EDIT PATHS option, enter a path number. You will then
be asked whether to use pixel x moves or not; the default is NO.
Sprites can move horizontally by bytes (2 pixels) or by pixels -
see the EDIT SPR DETAILS option - and the amount of horizontal
movement seen on the screen when a particular path is followed
depends on this property. You can design paths with the X moves
setting in either state, so that what you see matches the action
of sprites with the same setting. Sprites with a different pixel
x move setting will still be able to follow the path, but their
movement patterns will be squeezed or stretched horizontally.

The current shape of the specified path will now be shown. If the
path is undefined, you will see just a dot in the middle of the
screen. If you press F8 you can re-design the path. At this point
use the Fl and F3 keys to select a step size for the path. The
smaller the step, the smoother and slower the motion of the
sprite. Step size can be changed at any time within the path, to
give varying speeds at different points. You can also press F8 to
enter a module number at any point; this module will be executed
at this point in the path, and can cause e.g. a missile to be
fired.

Move the arrow cursor to where you want the path to start from.
This isn't critical, since paths are relative to a sprite's
starting position in the game, but you need to allow enough room

19

to draw the path on-screen. Now press RETURN and a dot will be
plotted. Move the cursor to a new position and press RETURN again
to draw a line of dots from the previous position. These show
potential sprite positions. Keep doing this until the path is
almost complete. You can finish in two ways. Pressing F7 will
close the path into a loop by drawing a line to the initial
position, and there will be no cumulative movement as a sprite
repeats the path. Alternatively, press F9 and the path will
terminate, but not close. Sprites following it will make some
overall movement.

When you have ended the path definition, the path will be redrawn
using colour cycling to show direction of movement. If it is not
a closed path you will have the chance to repeat the path to see
what the overall movement effects will be. The screen scrolls if
needed. You can then approve the path, enter a new one, or
abandon any changes.

EDIT SOUNDS Option

This option allows you to edit or define up to 32 sounds that can
be produced from within a module using a simple SOUND (number)
command. The display for each sound shows bar graphs for volume
and pitch, and status "buttons" for tone and noise status. In the
volume graph at the top of the screen, any bar can have a height
of 0 to 15 units, which determines the loudness of the sound
during that time interval. In the pitch graph in the middle, the
sound frequency can be set much more precisely. To change the
height of a bar, place the cursor- at the desired new height and
press SPACE. There can be up to 60 bars in each graph. The sound
you hear will follow the pattern of the two graphs; it will
finish when the data in both graphs has finished. You can have
intervals of zero volume if you like.

The lower part of the display shows "buttons" for each bar.
The rows the buttons can occur in are marked T for Tone, N for
Noise, H for High, M for Medium, L for Low and V for Variable. A
button can be turned ON by placing the cursor in the right
position and pressing SPACE. When a cyan Tone button is ON (
visible) then tone is selected for that bar, and the sound will
be at the pitch shown in the pitch graph above. If a green Noise
button is ON then noise (hissy sound) is emitted. Its pitch
depends on the position of the magenta button that will appear
below. This can be in the High, Medium, Low or Variable position;
the first three settings are independent of the pitch graph, but
the Variable setting uses the pitch value in the bar above. Both
Tone and High, Medium or Low pitched Noise can be ON at the same
time - a mixture of pure and noisy sounds will be heard. Tone
will not be effective while Variable pitched Noise is in use.

Limitations within the sound chip mean that no more than two
sounds can use different-pitched noise simultaneously, but there
is no such limitation with tone. The Games Master software does
its best to allocate sounds to whatever sound chip channel is
appropriate, and available, so that up to six sounds can be
produced at the same time. Further SOUND commands will overwrite
e a r l i e r o n e s b e f o r e t h e y f i n i s h .

T h e t i m e i n t e r v a l denoted by a single bar is either a 50th
of a s e c o n d o r a 1 0 0 t h o f a s e c o n d , a c c o r d i n g t o
w h e t h e r R O M

20

interrupts are set to YES or NO using the EDIT GAME DETAILS main
menu option. The slower 50th of a second rate with YES allows
less exact shaping of sounds, particularly short ones, but the
maximum sound duration is doubled. This mode also works with
PALETTE LINE to give more than 16 colours on the screen, and with
Music Maker or Master Basic to give background music. Both of the
latter interfere with the production of sound effects, however.
It is up to you which interrupt setting you want to use.

You can either abandon an edited sound, or compile it - this will
turn the graphs into an internal format for storage. You can then
hear the sound repeatedly and decide to use it, edit it further,
or abandon all changes.

EDIT KEYS Option

This option shows you a list of eight keys or key combinations
that will be recognised by the game. The first four in the list
make player-controlled sprites move left, right, up and down,
other factors permitting. They are initially set up to respond to
the cursor keys OR the numerals produced by most joysticks. The
fifth entry is set up to respond to the space bar OR a joystick.
The others are not set up. All keys can be re-defined - enter
the key number, or just press RETURN or F9 to exit this option.

The keys are redefined by pressing the key you want to use, when
prompted. You will have the chance to allow another key to be
used as well (like the cursors OR joystick) or require another
key to be pressed at the same time - so that it is possible to
respond to e.g. fire+left on a joystick to do something special.

See EDIT SPRITE PROPERTIES option for details of how to associate
particular actions with key entries 5 to S.

EDIT ANIMATION SEQUENCE Option

This option allows you to view and alter animation sequences
which can be used by any sprite by entering the sequence number
into the sprite details using the main menu EDIT SPR DETAILS
option. Frame numbers should be between 1 and the number of
frames in the sprite, TIME should be between 1 and 255, and
module will usually be null (just press RETURN). TIME is the
number of moves (or possible moves) the frame will be used for.
Input "q" to finish. The program, as usual, tries to anticipate
what you might want to input and makes that the default, so you
can just press RETURN much of the time. Some commonly used
animation sequences are already programmed in. Here is a list:
1 Frames 2-8
2 Frame 1 for time 20, then frames 2-5, alternating
3 Three frames, alternating
4 Four frames, repeating
5 Four frames, alternating
6 Six frames, repeating
7 Six frames, alternating
8 Eight frames, repeating

If you look you will see that "Three frames, alternating" isn't
-Frames 1,2,3,3,2,1 as you might guess, but 1,2,3,2/ 1,2,3,2/ 1,
2,3,... Each sequence repeats automatically. Sequences that
start at frame 2 are often useful, because the default action

21

when animation stops is to select frame 1, which can be a view of
the sprite standing still, rather than e.g. poised with one foot
raised. Frame 2 onwards would provide the animation for normal
movement.

The TIME value can be different for different frames if you
like. The list of frames, times and actions can be very long.

By supplying a module number, you can make a sprite do something,
such as make a sound (footsteps, bird chirps, etc) or drop a
bomb, at a particular point in its animation sequence. See EDIT
MODULES, and the example and demo programs on the disk.

You might even want an animation sequence for a sprite with a
single frame. For example, to have a sprite that looks the same
all the time but fires a missile every 20 moves:

FRAME TIME MODULE

1 19
1 1 50

Module 50 would have to be set up to fire the missile.

When you have finished, you can abandon the new values (the old
ones will be used instead) or use them if they are what you want.

EDIT BLOCKS Option

BLOCKS are rectangular areas of the screen that can be used to
restrict sprite movement, support sprites, or trigger collision
actions. They can also be filled with complex patterns. Blocks
come in sets, and the first thing this option asks you is which
set you want to edit. There can be up to 255 blocks in a set, but
a set normally starts with Just a single block defined. This
surrounds the screen and defines an outer limit for edge-limited
sprites. When you have chosen a set, the EDIT BLOCKS option shows
all existing blocks outlined in yellow, with the number of the
block in the top left hand corner. You can then select any
existing block to modify, or enter the next block number to
create a new block.

When you choose a block, you are given a box cursor that can be
moved with the cursor keys. The box height can be changed using
F2/F5 and its width using F1/F3. Using SHIFT plus the cursors
moves the box faster. When you are happy with the block size and
position, press F7. You will then see a display of which planes
the block exists on, and other information. The plane settings
determine which sprites can collide with the block; if ON PLANE 4
is YES, and the rest are NO, then only sprites on plane 4 can
detect collisions with the block and bounce off it or respond to
it in other ways. A block can exist on multiple planes. If it
exists on none, the block no longer exists - you can use this to
delete a block. A typical application of the plane settings might
be an aerial view of a city, with the buildings defined as blocks
on plane I only. Car sprites could wander the streets, bouncing
off the buildings, while aircraft passed overhead unobstructed -
unless perhaps you made taller buildings exist on higher planes
as well.

Whether the block is ENCLOSING or not is very important - if NO,

22

the block detects collisions with its inside, and it can keep
sprites OUT, act as a moving belt, and be a supporting or a non-
supporting block. If ENCLOSING is set to YES, the block detects
collisions when sprites try to leave it; it keeps sprites IN,
like the screen-edge block. It cannot act as a belt, and its
bottom surface is always supporting.

The TYPE number is used in Sprite vs. Block collision detection
i n o r d e r t o t r i g g e r p a r t i c u l a r m o d u l e s w h e n b l o c k s o f a
particular type are hit. See the SPR v BLK COLLIS Option for
details. The block type can be altered in the range 1-32. Block
types can have certain properties, and these too can be altered,
but this will affect the properties of ALL blocks with that type
number. Block types can be SUPPORTING, which means that sprites
can stand on them, and that sprites cannot penetrate inside them (
always provided that they exist on the same plane as the block).
A block which is not supporting might be used just for collision
detection - touching it might trigger a door to open, a score to
change, etc. via a module. See the example programs on the disk.
Blocks can also be BELTS, which move right (positive belt speeds)
or left (negative belt speeds); anything touching the upper
surface will be moved sideways.

Blocks can also be filled by repeats of any sprite or background
using the SPILL command within a module, and you might want to
define one just for that purpose.

The GMCL command BLOCKSET can be used to select a block set.
BLOCK can be used to alter a block in the current set. BTYPE can
alter the properties of a given block type. See these commands
for details.

The SELECT OUTLINES option (see below) normally is set to YES so
that the blocks in the current set (the last edited set) are
drawn on the screen as a game starts, provided it is run from the
Editor. This is useful for debugging purposes - if outlines are
set to NO, blocks are invisible until you perform extra actions,
such as filling them using the BFILL command, or by using BACK to
place a section of background in the same place, from within a
module. Outlines cannot be drawn if the game is run as stand-
alone code without the Editor resident.

SELECT OUTLINES Option

Simply allows you to select YES or NO for block outlining. (See
above.) Press RETURN when on the selection you want.

LOAD SPRITE Option

You are first given the opportunity to select a free sprite entry
in the sprite list by pointing to it with the bar cursor and
pressing RETURN. A directory of files ending in ".s" for Sprite
is then shown and you are prompted for a file name. Just press
RETURN to abandon the LOAD. Otherwise, the file name you supply
automatically has ".s" added to it and the sprite file is loaded.
The file name is placed in the sprite list and can be examined
with the PICK SPRITE option. The loaded sprite is now the "
selected sprite" to which options such as EDIT GRAPHICS and EDIT
SPR DETAILS refer by default. The name and number of this sprite
is shown on the main menu on the PICK SPR option.

23

SAVE SPRITE Option

Y o u a r e p r o m p t e d f o r a f i l e n a m e t o s a v e t h e s e l e c t e d
s p r i t e under. If you simply press RETURN, the default
name (from the sprite list, with ":s" added) will be used,
but you can enter another name. The ".s" suffix is added
automatically. The sprite details and graphics are saved in
a CODE type file.

LOAD GAME Option

This option allows you to load either game data, or a full
game including the sprite handling code. Which one you
choose makes little difference, since the sprite handling
code will already be in memory and will simply be over-
written by the saved version when it loads. However, if
later versions of the sprite handling code are ever
released, loading a GAME DATA version of the file might be
preferable so that the latest handling code was used. The
GAME DATA option gives a DIR of all files ending in ".d" and
automatically adds a ".d" to the file name you supply, if
you do not do it yourself. The FULL GAME option acts
similarly but uses ".g" instead.

SAVE GAME Option

This option allows you to save either just the data that
make up a game, or a full game including the sprite
handling code, with t h e o p t i o n t o a u t o - r u n o n l o a d i n g .
W h i c h y o u c h o o s e d o e s n ' t matter much if you plan to run
games under the control of the editor, but the DATA option
will allow you to use the same game data with any later
versions of the sprite handling code. A FULL GAME file can
in any case be converted to a DATA file by loading it and
reserving it without the first 6912 bytes - SAVE "name.d"
CODE 113408 , (length)-6912. The GAME DATA option gives a
DIR of a l l f i l e s e n d i n g i n " . d " a n d a u t o m a t i c a l l y a d d s a
" . d " t o t h e file name you supply, if you do not do it
yourself. The FULL GAME option acts similarly but uses ".g"
. AUTO GAME is identical to F U L L G A M E a p a r t f r o m s a v i n g
t h e g a m e s o t h a t i t a u t o - r u n s o n loading.

Stand-alone CODE Games

If you use the SAVE GAME option to save a Full Game, and the
game does not use Basic or machine code subroutines, then
no other p r o g r a m i s n e e d e d t o r u n t h e g a m e ; y o u c a n
s i m p l y B O O T t h e c o m p u t e r a n d t h e n L O A D " g a m e n a m e "
C O D E ; C A L L 1 0 6 4 9 6 . T h i s a d d r e s s i s t h e o n e t h e c o d e w a s
s a v e d f r o m a n d t h e a d d r e s s i t will normally load back to.
It is &1A000 in hexadecimal, which may be easier to
remember. The code will also work correctly at multiples of
16K above or below this address, provided it does n o t g o
t o o l o w a n d h i t B a s i c , o r t o o h i g h a n d h i t D O S o r t h e
screen memory. For example, you could use LOAD "game name"
CODE 40960: CALL 40960. Here are some possible addresses:

24576 (&6000), 40960 (&A000), 57344 (&E000), 73728 (&12000),
90112 (&16000), 106496 (&1A000), 122880 (&1E000).

The address 24576 will only allow a very small Basic
program. Why would you want to run the code at a different
address? One reasonis to minimize memory use so that a game
developed on a 512K SAM

24

w o r k s o n a 2 5 6 K m a c h i n e . R u n n i n g t h e c o d e a t a l o w e r addr
ess

without the Editor loaded may allow the code to run. Even on
a

512K machine, it might be used to free higher memory pages for use
as extra screens or for RAM disks, COPY or BACKUP to use. If memory is
really tight on a 256K machine, you can persuade Games Master to
overwrite the DOS by including in a Basic loader:

IF PEEK SVAR 450=13 THEN POKE &5100+13,0

This means: "If DOS is in the usual page for a 256K machine (13) then
mark that page in the page allocation map as free." Basic will
probably crash when you exit the game.

If you save a game using the AUTO GAME option, the code runs
automatically and can be loaded and run with a simple: LOAD "
name" CODE or LOAD (file number). A game which is not auto-running
could be converted to an auto-running one, perhaps at a different
address, by loading and then re-saving it using e.g.:

LOAD "game. g" CODE &a000
SAVE "new name" CODE &a000,l eng,&A000

"Leng" could be read from a DIR listing or obtained using
MasterDOS's FSTAT function.

LOAD SCREEN Option

This option gives a directory of all SCREENS files and of CODE files
of roughly the right length to be MODE 3 or 4 screen data. Just press
RETURN when prompted to input a file name if you want to abandon the
LOAD. After loading a file, any flashing colours are turned off and
you are returned to the main menu when you press any key. You can
then use GRAB FRAME to read sprite frames from the screen, or you can
use EDIT PALETTES to copy the loaded palette into one of the internal
game palettes.

SAVE SCREEN Option

This option allows you to save the second screen, which will show the
last state of a game, or the last loaded screen, or show sprites
that you have PUT there with the EDIT GRAPHICS option, whichever was
most recent. The screen which will be saved is shown until you
press any key, then you are prompted for a file name. Just press
RETURN if you want to abandon the save. A normal SCREENS file is saved
to disk.

25

EXIT TO BASIC Option

This simply restores some key definitions to normal and goes to a STOP
statement. You can use GO TO 1 or RUN 20 to restart the Editor.
RUN 20 clears the second screen and resets some variables,
but the game data is left alone.

MEMORY MANAGER Option

This option allows you to change the size of the two main memory
areas in a game. The initial display shows you the current
status. The TOTAL GAME SIZE is the amount of computer memory used by
the game, and it is always a certain number of 16K pages, plus half a
page. This includes a WORKSPACE, which is used for storing copies of
sprites and areas of background. Initially this is made as large as
possible. As sprites are loaded or defined, the free workspace
decreases. If it is too small, you may get an error message when
you try to load a sprite or run the game. If it is needlessly
large, you may make it impossible to run a game developed on a
512K machine on a 256K machine, and you will tie up RAM that you
could have used for e.g. RAM disks. However, this may not be a worry
for your application. Workspace size can be increased or decreased
by whole 16K pages using the Memory Manager menu.

The other memory area that Games Master uses is called a HEAP. This
area holds movement paths, animation sequences, sound
definitions, and modules. Its initial size is 4096 bytes. You may run
out of space, and the Memory Manager menu allows you to increase
or decrease that size without loss of data

The workspace is not saved with the program, so FILE SIZE will be less
than GAME SIZE. File size is the size the game will be when saved on a
disk.

The LOAD GRAPHICS setting that is shown tells you if sprites are
loaded complete with graphics, or not. The setting can be
altered with the Memory Manager menu so that games can be
developed without using too much memory. (See below.)

Press F9 in response to the menu if you do not want to alter
anything. Press RETURN to choose an option, and either input a
number, or press RETURN or F9 to exit the option and return to the
main menu.

WHEN YOU ARE SHORT OF MEMORY

This is most likely to occur if you are using a 256K SAM, but
could also happen with a large project on a 512K machine. The
Editor needs about 80K of RAM while a program is being developed, but
it is not needed while the game runs. In contrast, all the graphics
are needed for a finished game, but most testing and development
can be carried out without all the graphics present, by using the
LOAD GRAPHICS option on the Memory Manager menu. This reverses
the LOAD GRAPHICS status; if it is NO, then when you load a
sprite, only the sprite details are used, and no memory is used
for graphics. The sprite will appear as a strange blob on the screen.
Many aspects of the game can be tested using these blobs. In
practice, only some of your sprites (probably memory-hungry
backgrounds) need to be loaded with the LOAD

26

GRAPHICS option set to NO; the others can be normal. Graphic
shapes are used in collision detection, so "blobs" may act
slightly differently to their normal equivalents in collisions.

When you want to try out a version with full graphics, save a
Full Game using the SAVE SAME option, then EXIT the Editor and
LOAD "LMG.u" from the Games Master disk. This stands for Load
Missing Graphics. LMG is much shorter than the Editor, and this
allows a larger version of a game to be created. The program will
prompt you for the name of the game file, load it, and then load
the graphics for any sprites that do not have any graphics, using
the sprite names in the game file's sprite list, plus ".a". You
can then save the new version. If LMG reports it is out of
memory, you will have to shorten the game somehow.

The CLEAR SUBMENU option on the main menu may allow memory usage
to be reduced by erasing unwanted data items.

CLEAR SUBMENU Option

This allows you to CLEAR or erase selected data types. You can
clear all the sprites, or just some of the sprites, reset
the sprite vs. sprite collision table or the sprite vs. block
table, and clear the paths, animation sequences, sounds, or
modules.

27

THE GAMES MASTER CONTROL LANGUAGE

Introduction

This is the special language used to control some of the Games
Master features, and it is known as GMCL for short. MODULES are
sections of program in GMCL, which are converted into fast
machine code when you press F7 to compile them. (See the EDIT
MODULES option.) WHAT? A free Compiler with every copy of Games
Master? Can this be true? Sort of. The GMC language is fairly
simple, so it isn't nearly as hard to compile as, say, SAM Basic.
It uses integer (whole number) arithmetic and only variables A to
Z. There are no string variables, you can have only one command
per line, and control structures are very limited. However, it
does work much faster than Basic and it allows you to write a
game that is a stand-alone code file. If you need to, you can
call Basic or machine code subroutines from GMCL to provide
missing commands or functions.

A GMCL module can be executed when the program is run, or as part
of an animation, or in response to a collision, or a keypress, or
at other times. In fact, GMCL is what is called an "event-driven"
language, one of the latest things in computing, apparently. (I
discovered this after I wrote it!) The way it is controlled is
fundamentally different from normal languages; instead of being
executed in (more or less) sequential fashion, as with Basic, a
GMCL program is a collection of modules which may have no
connections with each other and which are often executed by
outside events. Well, the outside events are not VERY outside,
since they often come from the computer noticing something like a
sprite collision while running a game, but they are external
events in the sense that they are not caused by the GMCL program
itself. This can take a bit of getting used to.

Module 1 is always run first when you run a game, and this is
fairly conventional. Other modules may be branched to from module
1. However, fairly soon the start-up modules will have finished,
and the computer will handle the sprites by itself, without any
GMCL programming. From time to time, collisions, key presses,
animation sequences or paths may make a specific module or
modules execute. Your player-controlled sprite might trigger a "
next level" module by reaching a particular point and a sprite
vs. block collision being recognised. The module would clear the
screen and sprites, set up new backgrounds, replace your sprite
and place some fresh hazards on-screen before finishing. No
further GMCL actions would be needed for a while.

There is one rather different way a module can be executed: a
specific module can be executed after each game "cycle" in which
all the sprites are moved or checked. This module can keep a
count of how many cycles have gone by, which is useful for
demos, because it can let you display a screenful of sprites for
a time, and then switch to a new one, and finally back to the
start. See the EDIT GAME DETAILS option for details, and the
demos on your disk for examples.

28

The Coordinate System

The GMC Language uses a coordinate system in which the horizontal
and vertical scales (x and y axes) both range from 0 to 255. The
x coordinate is in units of TWO pixels (1 byte). Only x values of
0 to 127 are on-screen. This system has the advantage of allowing
fast, single byte operations on the coordinate while giving the
ability to position sprites off-screen in an invisible "phantom
zone" that you never see. With the default game property of
IMMEDIATE WRAP: NO, sprites can gradually emerge from, or vanish
into this zone, provided they do not collide with anything. See
the EDIT GM PROPERTIES option. You will have to mentally multiply
an x coordinate in this system by two to estimate where it will
be on the screen in the usual system. If the x coordinate of the
right-hand side of a sprite increases beyond 255 it will "wrap
round" to 0 and the side of the sprite will appear on the left of
the screen, emerging from the "phantom zone". X coordinates going
below 0 become 255 and the sprite moves gradually into the "
phantom zone" on the left, and eventually, if it keeps going,
emerges again from the right-hand screen edge. Collisions can
occur within the "phantom zone", but missiles cannot be fired. If
IMMEDIATE WRAP is set to YES, x coordinates below 0 or above 127
immediately wrap to the other side of the screen, so there is no "
phantom zone" to left or right. Attempts to PLACE sprites at x
coordinates of 128-255 will result in use of 0-127 instead.

Y coordinates of 191 (at the screen top) to 0 (at the screen 4

bottom) allow for an invisible "phantom zone" when y is 191 to
255. This can be thought of as both above and below the screen,
since sprites "wrap round" if they move to high or too low. You
can set up an "attack wave" of downwards-moving sprites at y
coordinates of 255 or so - they will gradually move onto the
visible screen.

Sprite Planes

Games Master uses a system of a background and six sprite planes.
The background contains static graphics that the sprites move
over. Sprites move in "collision planes" which exist as layers on
top of the background. They are numbered 1, 2, 4, 5, 16, and 32,
with plane 1 being the lowest, just above the background, and 32
being the highest. (This numbering system may seem odd, but it
allows sprites and blocks to exist on several planes at once by
adding the plane numbers together.) Sprites can only collide with
something that is on the same plane, and they move OVER anything
on a lower plane and UNDER anything on a higher plane. If sprites
on the same plane are allowed to cross each other, the one placed
last will be on the top.

Sprite Numbers

GMCL commands generally refer to sprites using a sprite number -
this is the number you see next to the sprite's name in the
sprite list presented by the PICK SPR option. The command
definitions below use the abbreviation "spr". Some commands work
on the master copy of a sprite, which is used to generate the
copy or copies that are actually used in, a game. These commands
can use any sprite number that refers to a defined sprite in the
list. Other values will give a "Number out of range" or a "
Missing sprite" report. Other commands work on the active copies

29

of a sprite, and here the sprite numbers refer to the active
copies in the game. If the sprite is not in use you will get an
error message, even if the sprite exists in the game's set - you
must have put it into use with PLACE, EMIT or TRANSFORM.

Commands that work on active sprite copies can use two special
sprite number values, 0 and 255. A sprite number of zero means
" t h e c u r r e n t s p r i t e " . I f a s p r i t e h a s j u s t c o l l i d e d w i t h
something, it is the "current sprite" and its animation sequence,
for example, can be altered in a collision-triggered module using

e.g. ANIM 0,7,1 (see ANIM command below). This means that the
same module can handle sprites with different numbers, and
probably more importantly, many copies of the same sprite (which
all have the same number) can be handled by the system without"
ambiguity, since zero refers to the sprite that has just
collided. If a sprite has just been PLACEd or EMITed, it will
also be the current sprite, and can be referred to using zero as
the sprite number. Using the actual sprite number will be
ambiguous unless there is only one copy of the sprite in use. If
there are many copies, only the first one created will be
affected.

A sprite number of 255 also has a special action - it means "the
other sprite" in a collision-triggered module. You can use this
to make the sprite that was collided with do something - e.g.
switch to a new animation sequence, or die. If you use the sprite
number 255 when there has been no collision, the command will
have no effect.

GMCL EXPRESSIONS

GMCL does not allow all of Basic's operators to be used. You can
use +,-,*,/,=,<>,<,> AND, OR and XOR. Everything is evaluated
strictly left-to-right, so 1+2*3 has the value 9, not 7 as it
does in Basic. Division, like every other operation, always gives
a whole number result, so 10/3 is 3, not 3.33333. Comparators (
=,<>,<,>) give 1 for True, 0 fur False, like Basic. AND and OR
can be used to combine conditions, as in Basic, or on a binary
level to operate on individual bits. For example, RNDB AND 3
makes only bits that are 1 in RNDB and in 3 be 1's in the result,
giving random numbers between 0 and 3. LET X=X OR 2 would set bit
1 in the variable X.

30

THE GMCL COMMANDS - in Alphabetical Order

ANIM spr, sequence, position

e.g. ANIM 1,4,5 or ANIM 4,1,1

Sets the animation sequence for the specified sprite copy to a
particular sequence, and a particular position in that sequence. For
example, to make sprite 5 use sequence 7, and begin at the start of
that sequence, you would use:

ANIM 5,7,1

An undefined sequence will give an error message. The position
should be 1 or more, and refers to the row of the sequence
definition which is to be used as a start point. This allows you to
have many walking or flapping sprites which use the same
animation sequence but are not in step with each other, because they
started at different points in the sequence. For example:

PLACE 1,20,30,4
ANIM 0,7,1
PLACE 1,40,30,4
ANIM 0,7,5

If you use a position past the sequence end, the beginning will be
used instead.

The MANIM command is a related command that alters the master copy
of a sprite so that ALL copies of that sprite PLACEd or EMITed
after the command have the new animation sequence. For example:
MANIM 4,7,2. Sprite numbers of 0 and 255 cannot be used.

BACK spr, n, y, frame

Places an image of a sprite on the background at the specified x and
y coordinates, using the specified frame of the sprite's graphics.
The graphics do not have to have a mask, which saves memory if you
do not need a clipped outline. This command is mainly used to place
sections of background scenery which will be moved over by the game
sprites.

BFILL block, spr, frame

FILLS a specified block (in the current set) with a specified
frame of a specified sprite, repeated or truncated as necessary to
cover the area. If the sprite has a mask, the pattern will be masked
and may contain holes or be translucent. Only the background
is modified - no sprites are made active. For example, to fill the
entire game area (block 1) with copies of sprite 2's third frame, use:

BFILL 1,2,3

This is useful both for creating overall backgrounds using
suitable patterns (see e.g. "trellis.s" and "grass.s" sprite
files) and for making obstacles and static platforms visible.

31

BLOCK block, plane, left, right, top, bottom, type

Defines a block which sprites can collide with or bounce off, and
which can be filled. The same block can be redefined multiple
times. The main menu EDIT BLOCKS option is another way of
defining blocks which is more interactive; however, it can't be
used in the middle of a game!

The b l o c k number should be between 1 and the number of b l o c k s i n
the current set. The plane should be 1,2,4,8,16 or 32, or the sum
of some of these numbers, if you wish the block to exist on
several collision planes. Add 64 to this value if the b l o c k i s t o
be "enclosing". Left, right, top and bottom define the coordinate
limits of the block. Type should he 1-32.

BORDER n

e.g. BORDER 5 or BORDER b+1

Like Basic's BORDER command. N be between 0 and 15.

BLOCKSET n

Makes the game use block set N. N should be between 1 and 32, and
the set must have at least one block in it or you will get an
error message. Sprites can collide with or bounce off these
blocks, and they can also be filled. Block sets are created using
the main menu EDIT BLOCKS option.

BTYPE block type, value

This can be used to s e t the properties of one of the 32 b l o c k
types during a game. To calculate the value, start with 12S if
the block should be supporting/excluding, otherwise use zero; add
the belt speed (1 to 15) if the block should be a right-moving
belt, and add (32 minus belt speed) if the belt should move left.

CALLBAS line number

Calls a specified Basic subroutine, which should end in a RETURN.
For example:

CALLBAS 100

and in the Basic program:

100 DEFAULT sc=1: LET sc=sc+1
110 SAVE "screen"+STR$ sc SCREENS: RETURN

With graphics or print commands, you will need to repeat the
command for each of the two screens used by the game, e.g.:

100 SCREEN 1: CIRCLE 80,S8,20
110 SCREEN 2: CIRCLE 80,99,20: RETURN

C e r t a i n commands should not be used in a Basic subroutine,
because they corrupt the game code. These are FILL, GRAB, PUT and
ROLL.

The GMCL variables A-Z cars be examined or modified from Basic
using simple procedures and functions such as those in the
Utility program "basint.un on your disk.

CALLCD page, offset

For advanced users who happen to need it, calls a machine code
subroutine in a specified page at a specified offset. The offset
should be between 0 and 16383 (3FFFH). The page will be switched
in at address 0, and the page above at 16384 (4000H). The stack
is located near the end of memory, and interrupts are running in
mode 2, so 0038H does not handle interrupts as it does normally.
One of the two screens will be paged in at 32768 (8000H).
Important system variables can be read from the list detailed
under VPOKE. On entry to your code, the IX register will hold the
address of the table of GMCL variables A-Z in section C. The
table will need paging in using the value in the C register sent
to port 251. For each variable, the value is in LSB/MSB form,
followed by 4 bytes that are reserved for use during FOR-NEXTs,
followed by the next variable.

CALLMOD module number

Calls the specified module. When this has finished, the program
continues at the next line. The module number should be 1-128.

CLS

Like Basic's CLS command. Clears the entire screen to the current
PAPER colour.

EMIT spr1, spr2, x offset, y offset

This command emits (or fires, or launches) spr2 from sprl,
starting spr2 at a position offset by specified amounts from the
position of spr1's top left-hand corner. The offsets let you
launch a missile or fire a shot from a particular bit of the
firing sprite. For example, if a tank is sprite number 6 and a
shut is sprite number 2, then:

EMIT 6,2,0,-4

might be sensible if we had a side view of the tank facing left.
The shot would start with its left-hand edge level with the front
of the tank (x offset 0) and its top edge below the top of the
tank (y offset -4).

FLIP spr

This command flips a sprite's graphics top to bottom. The sprite
number can be any sprite in the sprite list, or zero for the
current sprite. (The distinction between master copies and
working copies of a sprite is blurred here, because both are
connected to a single set of graphics. Running a game again re-
FLIPs graphics if needed to regain the original orientation.) The
offsets and direction of any missiles launched after a FLIP are
automatically adjusted as explained for MIRROR.

33

FOR variable=start, finish, step

This resembles Basic's FOR command but is simplified. Commas
replace the TO and STEP keywords, and a step must always be
specified. The variable must be A to Z. The numbers must all be
positive, but if the start value is higher than the finish value
the step value will automatically be treated as negative by the
program. The lines after FOR are always executed at least once.
The NEXT at the end of the loop checks to see if the program
should exit the loop or branch back to just after the FOR. Here
are some examples:

FOR X=10,110,10
PLACE 4,X,100,4
NEXT X

CLS
FOR A=5,0,1

TEXT A
NEXT A

See also: NEXT

GOTO letter

Continue the program at the specified LABEL (see below). The
letter used can be A-Z; it has no relationship to the variable of
the same name. For example:

LABEL T
LET T=T+1
TEXT T

IF T<30: GOTO T

The LABEL must be within the current module, and it must exist,
or you will get an error message when you try to compile the
module.

HOME spr, x offset, y offset

This command is used to move a specified sprite towards or away
from the player's sprite. The offsets are the number of units
closer the specified sprite will move, if possible. If they are
negative, the sprite will move away. A HOME command used in a
module that is part of a sprite's animation sequence or movement
path can make it attack or flee with varying speeds, perhaps
including some element of randomness.

IF condition : command

IF the condition is true, the command after the colon will be
executed; if not, the program continues with the next line. The
fact that only single commands on a line are allowed (apart from
IF plus another command) means that IF condition : GOTO has to be
used quite often - this reminds me of my ZX80!

34

JPMOD module number

This makes the program continue at a specified module. The number
should be 1-128. For example:

IF Z=100: JPMOD 5

KILL sprite

The command works on active sprite copies. The specified sprite
will be "killed" and will vanish from the screen. This command
can be used as part of a path or animation sequence; for example,
an explosion sprite with 5 frames could "kill itself" with a
module containing KILL 0 activated when the last frame is shown.

LABEL letter

Acts as a label that GOTO can use as a destination. The letter
used can be A--Z, but has no relation to the variable of the same
name. LABELs can only be GOTOed from within the same module.
Different modules may contain the same LABEL values without
confusion. See also GOTO

LET variable=value

Assigns a value to numeric variable A-Z. The variables are all
set to zero when the game is run, but they always exist. They can
hold values of 0-65535. (Some commands treat 128 to 255 as -128
to -1 like machine code does, and you can enter values in the
form of negative numbers.) For example:

CLS

LET X=2*4
TEXT X

LET X=-6
TEXT X

LOCATE x,y

Sets the text output position used by TEXT, LTEXT and STEXT to a
given x and y position. The next text output will start with the
top left-hand corner at that position.

LTEXT - see STEXT

MANIM - see ANIM

MIRROR spr

This command mirrors a specified sprite's graphics left to
right. The sprite number can be that of any sprite in the sprite
list, or you can use zero for the current sprite.

If the sprite EMITS any missiles after mirroring, the offsets
applied to them will be adjusted automatically so that they
appear at the same initial position relative to the launcher. In
other words, if the missile came from the left side of the
sprite, after a MIRROR it will come from the right side. The
movement direction of the missile will also be adjusted.

35

MPATH - see PATH

MSPOKE - see SPOKE

NEXT variable

Terminates the loop of the matching FOR command. The variable
should be A to Z. See FOR.

PAL n

Changes the entire palette to one of the pre-defined game
palettes. For example, PAL 3 selects palette 3. Palettes can be
edited using the EDIT PALETTES option on the main menu. N should
be between 0 and 15. All the palettes except zero start off
defined to be the standard SAM colours. Palette zero starts as
entirely black, and can be used to blank the screen while
graphics are being set up. Selection of another palette then
instantly reveals the scene.

PALETTE palette entry, colour number

This is a simplified form of Basic's PALETTE command. The palette
entry should be 0-15 and the colour number 0-127.

PAPER n

Like Basic's PAPER command, but must be used on its own, not as
part of another command, N must be between 0 and 15. Sets the
colour used by CLS and the background colour for- text produced by
the TEXT command.

PATH spr, path, position

Sets a path for the specified sprite copy, and makes its movement
type 3 (PATH). A particular position in the path can be selected
- 1 is the start, and later positions are the number of moves
from the start. For example, to make sprite 2 use path 7, and
begin at the start of that path, you would uses

PATH 2,7,1

An undefined path will give an error message when the command is
executed. Many sprites can use the same path, and they can each
start at different points if desired. For example:

PLACE 1,20,30,4
PATH 0,7,1
PLACE 1,40,30,4
PATH 0,7,50

If you use a position past the path end, the beginning will be
used instead.

The MPATH command is a related command that alters the master
copy of a sprite so that ALL copies of that sprite PLACEd or
EMITed after the command have the new path setting. For example:
MPATH 4,7,2. Sprite numbers of 0 and 255 cannot be used.

36

PAUSE n

Makes the program wait for N 50ths of a second. For example,
PAUSE 50 would wait for 1 second. Unlike the case with Basic, the
pause will not be cut short if you press a key. Values between 1
and 255 give delays up to about 5 seconds. PAUSE 0 waits for a
key to be pressed.

PEN n

Like Basic's PEN command, but must be used on its own, not as
part of another command. N must be between 0 and 15. Sets the pen
colour for text produced by the TEXT command.

PLACE spr, x, y, plane

This command brings a specified sprite into use at a given
position on a particular collision plane, by making an active
copy from the master copy. The sprite number must be 1 to 96, and
the sprite must exist or you will get an error message. The plane
should be 1, 2, 4, 5, 16 or 32, or the sum of some of these
numbers if the sprite is to exist on several planes. The same
sprite number can be PLACEd multiple times, generating multiple
copies of the sprite from the master copy. Changes to the
properties of these copies can be made using ANIM, SPEED and
SPOKE after a PLACE command, if desired.

RANDOM n

Similar to Basic's RANDOMIZE. Sets the random number generator to
a specified value, if n is between 1 and 65535. If n is 0, a
random value is used. RANDOM 0 is useful in ensuring any random
actions in a game are different with each go, whereas other
values would be used to make a particular pseudo-random sequence
happen every time. See also: RNDB and RNDW functions.

REM comment

REM is like REM in Basic - it precedes comments.

RES spr, byte, bit

Resets (makes equal to zero) a particular bit in a sprite's data.
See the list after the SPOKE command. For example, to make a
sprite non-edge-limited, you could use RES (sprite number),38,2.
The commannd works on active sprite copies. See also: SET
command.

RETURN

Makes a module end at once, rather than when the commands run
out. Usually it is used in the form:

IF (condition): RETURN
(more commands)

37

SCLEAR

Stands for Sprite CLEAR. Clears the active sprite copies so that
none are in use. This is also done automatically when a game is
first run. SCLEAR also turns off any sounds.

SET spr, byte, bit

Sets (makes equal to 1) a particular bit in a sprite's data. See
the list after the SPOKE command. For example, to make a sprite
h a v e t h e B O U N C E S p r o p e r t y , y o u c o u l d u s e S E T (s p r i t e
number),32,6. The command works on active sprite copies. See
also: RES command.

SOUND sound number

Causes a pre-defined sound to be made. The EDIT SOUNDS option is
used to de f ine a sound . The sound may c o n t i n u e fo r long a f ter t h e
SOUND command has finished, since an interrupt-driven system is
used. The number should be between 1 and 32, and the sound should
be predefined, or you will get an error message. The apparent
location of the sound in the stereo field is determined by the x
coordinate of the current sprite.

SOUNDX sound number, x coordinate

For use when you want to produce sounds without a sprite "
source". You specify the apparent source of the sound as part of
the command. For example, SOUNDX 1,63 would make pre-defined
sound 1 seem to come from near the middle of the screen. An x
coordinate of 0 would be near the left-hand edge, and 127 would
be at the right.

SPEED spr, x speed, y speed

This command alters the X and Y speeds of a given sprite copy. X
speed and Y speed can be positive or negative. A similar command,
MSPEED, alters the speeds in the master copy of the sprite from
which all other copies are derived.

SPOKE spr, offset, value

This command is nothing to do with bicycles! It stands for Sprite
POKE, and allows you to alter most of a sprite's properties from
within a program. It can do everything that ANIM and SPEED can
do, amongst other things, and is more flexible. It is less easy
to use, however, and you may never need to use it.

The command alters one byte in the data that defines a particular
sprite, to the specified value. The command works on active
sprite copies. The offset is the byte to alter within the sprite
data and should be 0 to 44, and the value used will depend on the
byte you are altering, but it must be between 0 and 255.

A related command, MSPOKE, alters the master copy of the sprite
data from which all copies are made.

38

Below is a list of the bytes in the sprite data and what they do.
It looks rather intimidating, but most of the bytes never need to
be altered, and are given just for the sake of completeness.

 0 LEVL Sprite plane, or 255 if sprite is out of use.
1 SSLO

2 SSHI Low and high bytes of length to next sprite, minus 2.
3 FSLO
4 FSHI Low and high bytes of frame size.
5 ANTY Animation type. Bit 0=1 if sprite is animated, bit 2=1 if

sprite is temporarily stopped, bit 4=1 if anim. is conditional.
6 FRAM Current frame number.
7 FRCT Frame counter for moves per frame counting.
8 CTTY Movement type. Bits 1 and 0=00 for unmoving, 01 for

simple movement, 10 for player, 11 for path.
Bit 5 is 1 if Alt. path.
Bit 7 is 1 if moving backwards on a path, 0 if forwards.
Bit 2 is 1 if movement is temporarily stopped.

9 XSPD Current X speed. Values of 1 to 127 are right, 128 to 255
are left 4-128 to -1).

10 YSPD Current Y speed. Values of 1 to 127 are down, 128 to 255
are upwards (-128 to -1).

11 XCRD Current X coordinate.
12 YCRD Current Y coordinate.
13 OXCD Previous X coordinate.
14 OYCD Previous Y coordinate.
15 WDTH Sprite width in bytes.
16 LNGT Sprite height in pixels.
17 MPG Page of sprite's graphics as an offset.
18 GROL
19 GROH Low and high bytes of sprites graphics offset address.
20 FRMS Number of frames.

21 SPNO Sprite number.
22 SAC1 Key 5 module.
23 SAC2 Key 6 module.
24 SACS Key 7 module.
25 SAC4 Key 8 module.
26 SACS Mirror Left module.
27 SAC6 Mirror Right module.
28 SAC7 Flip Up module.
29 SACS Flip Down module.
30 SOXS Sprite's own X speed.
31 BOYS Sprite's own Y speed.
32 COLF Collision flags.

Bit 6 is 1 if bounces.
Bit 4 is used internally.
Bit 3 is 1 if supported.
Bit 2 is 1 if hit block.
Bit 1 is 1 if hit sprite.
Bit 0 is used internally.

33 ORIE Orientation flags.
Bit 7 is 1 if left/right mirror ON.
Bit 6 is I if up/down flip ON.
Bit 4 is 1 if mirrored.

Bit 3 is 1 if flipped.
Bits 2-0 give TURN direction.

34 STPM Stop module.
35 COLT Collision type.

39

36 FLGS Flags.
Bit 7 is 1 if feels gravity.
Bit 5 is 1 if needs support.
Bit 4 is used internally.
Bit 3 is 1 if halts on impact.
Bit 2 is 1 if edge-limited.
Bit 1 is 1 if absolute speed.
Bit 0 is 1 if under firer.

37 FLG2 More flags.
Bit 6 is 1 if 1 pixel should be added to x coordinate.
Bit 5 is 1 if pixel x moves allowed.
Bit 4 is 1 if maskless.
Bit 3 is used internally.
Bit 2 is reserved.
Bit 1 is reserved.
Bit 0 is I if missile.

 38 FVEL Current falling speed.
 39 PDCB Path.
40 PDPL
 41 PDPH Low and high bytes of path position (0,2,4,0 etc.).
42 ADCB Animation sequence.
43 ADPL
44 ADPH Low and high bytes of sequence position (0,2,4,8 etc.).

STEXT spr,text list

This stands for Special TEXT. It prints text in a similar way to
TEXT, but uses the frames of a specified sprite as a character
set. This means that letters can be any size, have 16 colours and
be masked or transparent, like any sprite, but need more memory.
Here is an example:

LOCATE 0,00
STEXT 5,"X=",X

The frames of the sprite must correspond to the ASCII character
set - the CODE of a character, minus 31, gives the required frame
number. The first frame should be blank, for a space, the next "
!", the 34th. frame should be "A" and the 59th. "Z", etc. A
complete set isn't required, but even so the number of frames may
impose a formidable memory requirement, since "space" to "@" need
to be included before we even reach the range of letters. A
sprite file in this format is on your disc as "csetl.s".

A closely related command, LTEXT, for Letter TEXT, assumes that
the letter "A" will be the first frame of the sprite, and thus
reduces the memory requirements fur a character set which is just
used to print text. The CODE of a character, minus 64, gives the
required frame number. A suitable sprite file is included on the
disk as "letset.s".

An even more memory-sparing method is to have just the characters
you need as frames of the character-set sprite; if you want to
print "SCORE" for example, make frame 1 be "S", 2 be "C", etc.
and then LTEXT (sprite number),"ABCDE" which will print frames 1
to 5.

40

STAND

Usually used after a collision between two sprites, when you want
the colliding sprite to be able to stand on the sprite it hit.
The command has no effect unless the collision occurred on the
bottom surface of the colliding sprite, i.e. if the sprite is a
man, he has to hit with his feet (unless he is upside down, in
which case his head will do...). When the command is effective,
the standing sprite will be prevented from falling through the
sprite it is standing on, and will move with the supporting
sprite, if it has motion of its own. A common use is in platform
g a m e s w h e r e a p l a y e r - c o n t r o l l e d s p r i t e s t a n d s o n m o v i n g
platforms - see the example programs on the disk. (If the
platform does not have to move, use a BLOCK, not a sprite - it
will give a faster program, and you will not need the STAND
command at all.)

SUPPORT

Usually used after a collision between two sprites, or a sprite
and a block, when you want the colliding sprite to be supported
by the sprite it hit. Support is provided whatever the collision
direction. Any motion of the support is not imparted to the
supported sprite when you use this command. A common application
would be to allow a sprite to ascend a ladder. SUPPORT would be
used in a module triggered by collision of the sprite with a non-
s u p p o r t i n g , p e n e t r a b l e b l o c k , m a d e l o n g a n d n a r r o w a n d
s u p e r i m p o s e d o n a b a c k g r o u n d l a d d e r g r a p h i c . A s l o n g as
sprite/block contact was maintained, the sprite could move
upwards, despite having "needs support" and "affected by gravity"
properties set by the EDIT SPR PROPERTIES option.

TEXT

e.g. TEXT "hello" or TEXT "SCORE:",s*10

TEXT is a very simple print command. It can handle ordinary text
enclosed in quotes, or numeric expressions, in a list with comma
separators. These act like ";" in a Basic PRINT command. You
cannot use AT, TAB, OVER, PAPER, etc. An automatic carriage
return occurs at the end of the TEXT command, unless it it
suppressed with a trailing semicolon (:). See also: LOCATE, PEN,
PAPER.

TRANSFORM spr1, spr2, x offset, y offset

Spr1 vanishes and is replaced by spr2, offset from sprl's
position as specified. For example, for a spaceship to become a
cloud of gas, if the ship is sprite 1 and the gas cloud sprite
12 and you want the gas at the same position, use:

TRANSFORM 1,12,0,0

If the gas cloud was smaller than the ship, you might want to
offset its position to keep it centred on the ship's former
position, using e.g. TRANSFORM 1,12,2,-4. On the other hand, if
the gas cloud is bigger than the ship, you will need different
offsets, e.g. TRANSFORM 1,12,-2,4. The exact offsets will depend
on the relative Sizes of the sprites, and the effect you want to
achieve.

41

TURNL spr

T u r n s t h e g r a p h i c s o f t h e s p e c i f i e d s p r i t e l e f t b y 9 0
d e g r e e s , a n d s w a p s t h e w i d t h a n d h e i g h t v a l u e s f o r t h e
s p r i t e . T h i s w i l l o n l y b e c o m p l e t e l y s u c c e s s f u l i f t h e
h e i g h t o f t h e s p r i t e i s a n e v e n n u m b e r o f p i x e l s - o d d
h e i g h t s w i l l r e s u l t i n s o m e s c r e e n c o r r u p t i o n , b u t a r e
n o t h a r m f u l o t h e r w i s e . T h e n e w t o p l e f t - h a n d c o r n e r o f
t h e s p r i t e w i l l b e i n t h e s a m e p l a c e a s t h e o l d o n e
w a s . T h i s c o m m a n d i s m o s t o f t e n u s e d t o t u r n s q u a r e
s p r i t e s .

S i n c e t h e g r a p h i c s t h e m s e l v e s a r e r o t a t e d , t h e c o m m a n d
i s n o t suitable when multiple copies of a sprite are in
use, because the c h a n g e s w i l l a f f e c t t h e a p p e a r a n c e o f
a l l t h e c o p i e s . M u l t i p l e T U R N L c o m m a n d s w i l l t u r n a
s p r i t e c l o c k w i s e i n d e f i n i t e l y . T h e s p r i t e n u m b e r c a n b e
a n y n u m b e r i n t h e s p r i t e l i s t , o r z e r o f o r the current
sprite.

I f t h e s p r i t e E M I T S a n y m i s s i l e a f t e r r o t a t i o n , t h e
o f f s e t s a p p l i e d t o t h e m i s s i l e w i l l b e a d j u s t e d
a u t o m a t i c a l l y t o m a k e i t a p p e a r a t t h e s a m e i n i t i a l
p o s i t i o n r e l a t i v e t o t h e l a u n c h e r . I n o t h e r w o r d s , i f
t h e m i s s i l e c a m e f r o m t h e t o p o f t h e s p r i t e , a f t e r a
T U R N L i t w i l l c o m e f r o m t h e l e f t o f t h e s p r i t e (t h e o l d
t o p) . T h e m o v e m e n t d i r e c t i o n o f t h e m i s s i l e w i l l
a l s o b e adjusted.

TURNR spr

Like TURNL, but turns the graphics right by 90

degrees. V P O K E v a r n u m b e r , v a l u e

T h i s c o m m a n d p r o v i d e s a m e t h o d o f c h a n g i n g s o m e i m p o r t a n t
s p e c i a l g a m e v a r i a b l e s f r o m w i t h i n a p r o g r a m . T h e
v a r i a b l e s i n c l u d e t h e o n e s t h a t c a n b e s e t f r o m t h e E D I T
G M D E T A I L S o p t i o n o n t h e m a i n m e n u . T h e v a r i a b l e n u m b e r
s h o u l d b e b e t w e e n 0 a n d 2 0 . T h e V P O K E D v a l u e s t h a t a r e
s e n s i b l e v a r y a c c o r d i n g t o t h e v a r i a b l e i n v o l v e d . A l i s t
o f t h e v a r i a b l e s a n d t h e i r f u n c t i o n s f o l l o w s . N o t a l l
s h o u l d b e a l t e r e d , a n d s o m e a r e u n l i k e l y t o b e u s e f u l .
V a l u e s c a n b e e x a m i n e d w i t h t h e V P E E K f u n c t i o n . T h e
v a r i a b l e s a r e a c c e s s i b l e f r o m m a c h i n e c o d e a t a d d r e s s
F E 0 1 H a n d a b o v e , a n d f r o m B a s i c using PEEK(
start+7651+var number).

42

0 OTHERP Page of other screen. This variable has a different value
according to which screen is in use; it holds the page value to
write to port 251 (HMPR) in order to select the OTHER screen page,
so that the screen can be addressed at 3276857343 (8000H-DFFFH)
. Do not alter.

1 DBASEP Page of start of program data. Do not alter.
2 GRAXP Page of start of graphics, as an offset from DBASEP. Do not

alter.

3/4 GRAPHIX Offset of start of graphics from page start. Do not alter.
5/6 Reserved. Do not alter.

7 WIDTH Character horizontal separation with TEXT.
8 HEIGHT Character vertical separation with TEXT.
9 BORDER colour.

10 MINIMUM GAME DELAY.
11 FORCE OF GRAVITY.
12 MAXIMUM FALLING VELOCITY.
13 IMMEDIATE WRAP. Zero if YES, non-zero if NO.
14 SCREEN Screen number in use - 1 or 2.
15 EVERYAC Module number to execute every "cycle", or zero.
16 INTMODE Zero for Games Master 100 ints./sec. or non-zero for

the ROM's 50 ints./sec. version.
17 ESCOPT Zero if it is impossible to exit a game, 1 if it is

possible. Normally 1.
18 Game pause key port, low byte.
19 Game pause key port, high byte.
20 Game pause key bit mask with bit for active key high. Normally the

port is &f7f9 and the mask is &40, denoting the TAB key.

43

THE GMCL FUNCTIONS

Functions are keywords that return a value, unlike commands. They
must always be used after a command, not on their own.

INKEY

Returns the key number being pressed, or zero if no keys are
pressed. The key numbers are those shown on the keyboard map on
page 180 of The Sam Coupe User's Guide, except that SYMBOL is 55,
CNTRL is 63 and SHIFT is 71. You could try this:

LABEL L

LOCATE 0,191
TEXT INKEY," "
IF INKEY<>64: GOTO L

Press the space bar (key number 64) to exit the loop.

SPEEK(spr,offset)

Returns the value of a particular byte in a sprite copy's data.
For example: TEXT SPEEK(5,0) would print the first (offset 0)
byte of sprite 5 (if it was in use) which is the plane number.
See SPOKE for more details of sprite data format. You can use a
sprite number of zero to mean "the current sprite" and 255 to
mean "the other sprite" in a collision.

MSPEEK(spr,offset)

Like SPEEK but reads a byte from the master copy of a sprite. Any
sprite examined with MSPEEK must exist.

RNDB

Returns a random byte, so the value will be 0-255. E.g. TEXT RNDB
The range of the result can be reduced by division or (faster) by
AND. For example, RNDB AND 3 gives a result between 0 and 3.
This only works for values one less than a power of two, such as
1,3,7,15,31,63 or 127.

RNDW

Returns a random word, (2 bytes) with a value between 0 and
65535.

VPEEK variable number

Returns the value of one of the internal game variables. For
example, VPOKE 11,1+VPEEK 11. See VPOKE and EDIT GM DETAILS for
details of these.

44

EXAMPLE PROGRAMS

On your disk are some simple example game data files that show
how to implement common game elements, such as changing sprite
orientation, scrolling landscapes, moving platforms and lifts,
and missile launching. The files are call e.g "examp1.d" and can
be loaded with the LOAD GAME (DATA option) and examined. The
modules are REMed.

DEMO PROGRAMS

On your disk are a number of demo programs called
"demo(something).g". They can be loaded and examined using the
LOAD SAME (FULL GAME option), and may give you some ideas.

UTILITY PROGRAMS

On your disk are a number of Utility programs that range from a
program to reduce the size of sprite graphics in existing sprite
files, to specialised sprite and scenery drawing programs that
may be a useful source of ideas to those who, like me, have no
artistic ability. They all finish in ".u" and are REMed. You can
use DIR 1"*.u" (or just DIR "*.u" if you have MasterDOS) to list
the file names.

SPRITE FILE FORMAT

These details may be of use to anyone converting from or to other
formats. It may be easier to use LOAD SCREEN and GRAB FRAME, or
EDIT GRAPHICS (PUT option) and SAVE SCREEN instead, though.

Sprite files normally have names ending in ".s". They are CODE
files. The first byte is 123 and is checked for on loading. The
bytes that follow are as described under SPOKE, from SSLO to
ADM.'. After these come the graphics data for frame 1, then the
mask for frame 1, then the graphics for frame 2, etc., until the
last frame. If the sprite allows pixel x movement, a second set
of graphics and masks, shifted right by 1 pixel, follows the
first set. The frame and mask data is like a GRAB string stripped
of its first 3 bytes; i.e the data for the top row of pixels,
then the second, etc.

Ai

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48

