
OPQA Vs. QAOP 

The Final Battle 
Making of 

 
 

Original idea 
 
Earlier this year, I planned to make a very different game for the CPCRetroDev. It                             
was about a small robot that had to escape from a factory overcoming screens                           
with different obstacles. I wanted to do it in mode 1 with smooth animations at                             
50Hz and after a week I realized that it was quite ambitious for the knowledge I                               
had about the CPC at the time, so I ended up leaving it in the drawer. 
 
At the end of summer I tried to retake the project again, but I decided it was a                                   
good time to think another idea that was simpler and feasible in the time I had                               
until the deadline. As I have always find amusing the (absurd) debate between                         
OPQA and QAOP, I thought it was a perfect time to use it in a game, and since I                                     
like puzzle games, doing something similar to Puyo Puyo was interesting and                       
viable. 
 
 

Prototype 
 
Once the new game idea was clear, I developed a simple prototype. I worked with                             
the random generation of the blocks at first, then I made them to fall on the                               
board, and perhaps the most complicated thing to develop was to check the                         
combinations of pieces of the same color. As it’s not necessary that they were in                             
line, I had to write an optimized recursive function (and trying to not abuse the                             
stack) in which I would check the four directions until there were no more pieces                             
of the same color. 
 
After having this functionality implemented the game started to take shape.                     
Although if I had stayed there, the game for one player would have been                           
somewhat boring... 
 
 

   



AI 
 
Another fundamental pillar of the game was to create an artificial intelligence                       
smart enough for each game to be a challenge, but not too much so the player                               
wouldn’t feel an unfair defeat. 
 
At the end, I developed a simple state machine where the computer finds the                           
best position to leave the current block (aiming to make columns of the same                           
colour), then the block is moved and then it finally drops it in place. For each                               
stage there are some parameters changed in order to make the game                       
progressively more difficult. 
 
After designing the AI, I realized that I could assign it to both players, so I created                                 
a simple demo mode that automatically appears when the menu music ends. 
 
 

Music and game modes 
 
To make the game more enjoyable, I created some music themes for the menu,                           
stage clearing,, etc. I didn’t create one for the main game because I play sound                             
effects in stereo (using channels A and C), and I also didn’t want an annoying                             
looped music playing in the background. 
 
I had never composed anything before, but taking a look at the sample themes                           
and some Amiga MODs I could see some interesting patterns and I could                         
compose the music of the game in less than a week. 
 
As for the game modes, from the beginning I wanted to include two main modes:                             
one player against the machine and two players facing each other. As I made the                             
game speed up as the player made combos, I also included an endless mode in                             
order to see players’ high scores. 
 
Later, I played the original versions of Puyo Puyo (for Famicom Disk System and                           
MSX2) and I saw that they included an intriguing mission mode. I took inspiration                           
to make some missions, although later on I was thinking of others based on score                             
so the player should take advantage of some techniques to make more points. 
 
 

Optimizations and final touches 
 
After inserting the graphics of character avatars, different types of pieces, the                       
background, musics, game mechanics,... I was running out of memory. The first                       
optimizations consisted of cleaning the code and refactoring some functions.                   



Later, I compressed the tile map of the background and it went down from                           
occupying a thousand bytes to about eighty. 
 
To do the compression easily, I used version 1.5 of CPCtelera, which at the time of                               
writing these lines requires a checkout of the development branch of the                       
repository. As additional advantages, it was easier to create a CDT with a custom                           
loading screen, and the creation of SNA files in each compilation made testing                         
easier and faster. 
 
A couple of tips for aspiring CPC programmers: do not underestimate the power                         
of this computer and don’t pretend to make a complex game as your first project. 


