Isochronous Stream Packets Handled by the Bridge

Setup

• Single bus operation: Sec. 8.4.3.1. in IEEE1394-1995 std.

(Target BW and Minimum Acceptable BW)

- If desired BW is currently not available and the connection is setup at a lower rate and then if more BW becomes available later, additional BW, up to Desired BW, shall be allocated automatically (User doesn't like the DVCR-DTV picture quality and decides to turn off music download from Internet. Picture quality should improve automatically)
- If BP is IRM then we don't need any change to regular 1394 nodes otherwise we do Remote Transaction capable nodes shall implement the SPLIT_TRANSACTION control register so that SPLIT_TIMEOUT can be increased from the default value of 100ms.

Iso. Stream Setup Algorithm

- 1. Operations Performed by the Source Node
 - Min_BW = Min. acceptable bandwidth specified by source
 - **Output** Usual procedure to reserve *Target_BW* with local IRM
 - **O** Usual procedure to reserve a channel (Ch_Resv) with local IRM
 - Async transaction request with dest_addr = dest_bus•dest_phy_ID and
 - parameters: ("setup_iso_stream", Original_Source_ID, Min_BW, Target_BW, Ch_Resv)
- 2. Operations Performed by Bridge Portals (BPs)
 - BP receiving "setup_iso_stream" from local bus with proper routing bounds will Accept the request and send ack_pending ACK to local bus
 - If Min_BW and an open channel are not available then
 - Send a reject message to the Original_Source_ID
 - Else
 - Target_BW = Min (packet.Target_BW, Iso BW available at Bridge)
 - **Reserve Target_BW**
 - Allocate a Stream_Control Register and set the channel nunber
 - Forward request to other portal with

parameters ("setup_iso_stream", Original_Source_ID, Min_BW, Target_BW, stream_number);

PHILIPS Research, Briarcliff

- 3. Bridge Portal receiving a "setup_iso_stream" from other_portal
 - ► A: Read BW_AVAILABLE and Channels_Available at its local IRM
 - If ((BW_AVAILABLE < Min_BW) or (Channels_Available == 0)) then Send a reject message to the Original_Source_ID (this message will release all reservations on its way to the source) Else
 - Target_BW = Min (packet.Target_BW, Iso BW available at local IRM) Attempt to reserve Target_BW and a Channel with local IRM If unsuccessful then goto label A:

If (BUS_ID of Bridge_Portal != dest.BUS_ID) then

Async trans. req. on local bus with dest_addr = dest_bus•dest_phy_ID& parameters ("setup_iso_stream", Org_Source_ID, Min_BW, Target_BW, Channel_Number)

Else // reached dest bus, setup successful

send an async message to Original_Source_ID with

parameters ("setup_successful", Original_Source_ID, BW_Reserved, Ch_Number);

- 4. Bridge Portal receiving a "setup successful" or "reject" message is received by a BP
 - Deallocate extra resources, if any, that was reserved for that channel
 - Forward the message towards Original_Source_ID

Iso. Stream Release Algorithm

- 1. Source node shall send a "iso_stream_release" async_write packet with
 - dest_ID = remote destination
 - dest_offset="release"
 - quadlet_data=channel to be released
 - (retransmissions, dual_phase if available, shall be enabled)
- 2. BP with proper routing bounds shall accept the "iso_stream_release" packet and shall
 - Send an ack_pending ACK
 - Calculate the BW allocated to the channel from STREAM_CONTROL.overhead, payload
 - Increase BW_AVAILABLE appropriately
 - Set the bit in CHANNELS_AVAILABLE corresponding to the released channel.
 - Forward the "iso_streams_release" packet towards the dest. address with

a different channel number in the quadlet_data field, if required

References.

1. R.G. Gallager, P.A. Humblet, P.M. Spira, "A distributed algorithm for minimum weight spanning trees," ACM Trans. on Programming Languages and Systems, 5(1):66-77, Jan. 1983.