
P1394.1 Draft 0.02
March 13, 1997

P1394.1
Draft Standard for
High Performance Serial Bus Bridges

Sponsor

Microprocessor and Microcomputer Standards Committee
of the
IEEE Computer Society

Not yet Approved by

IEEE Standards Board

Not yet Approved by

American National Standards Institute

Abstract:
Keywords: bridge, bus, computer, high-speed serial bus, interconnect

The Institute of Electrical And Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1997 by the Institute of Electrical And Electronics Engineers, Inc.
All rights reserved. Published 1997. Printed in the United States of America.

ISBN x-xxxxx-xxx-x

This is an unapproved IEEE Standards Draft, subject to change. Permission is hereby granted for IEEE Standards Committee participants
to reproduce this document for purposes of IEEE standardization activities, including balloting and coordination. If this document is to be
submitted to ISO or IEC, notification shall be given to the IEEE Copyright Administrator. Permission is also granted for member bodies and
technical committees of ISO and IEC to reproduce this document for purposes of developing a national position. Other entities seeking
permission to reproduce this document for these or other uses must contact the IEEE Standards Department for the appropriate license.
Use of the information contained in this unapproved draft is at your own risk.

ii This is an unapproved standards draft, subject to change © 1997 IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily
members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject
within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the develop-
ment of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways
to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to
review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societ-
ies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Elec-
trical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for
payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA
01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can
also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying all patents
for which a license may be required by an IEEE standard or for conducting inquiries
into the legal validity or scope of those patents that are brought to its attention.

© 1997 IEEE This is an unapproved standards draft, subject to change iii

Introduction

(This introduction is not a part of IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus Bridges.)

This standards effort started in 1996 at the request of...

iv This is an unapproved standards draft, subject to change © 1997 IEEE

Patent notice

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered
by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent
rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be
required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought
to its attention.

The patent holder has, however, filed a statement of assurance that it will grant a license under these rights without
compensation or under reasonable rates and nondiscriminatory, reasonable terms and conditions to all applicants desiring
to obtain such a license. The IEEE makes no representation as to the reasonableness of rates and/or terms and conditions
of the license agreement offered by the patent holder. Contact information may be obtained from the IEEE Standards
Department.

Committee membership

The following is a list of voting members of the IEEE P1394.1 working group at the time of publication.

Richard K. Scheel, Chair
Peter Johansson, Editor and Secretary

The following is a list of other major participants in the IEEE P1394.1 working group (those that attended at least three
working group meetings in the last four years).

Dave Banks
Max Bassler
Harrison Beasley
Erich Berndlmaier
David Brief
Mike Brown
Joe Chen
Rajiv Choudhary
Richard Churchill
Alistair Coles
Hugh Curley
Bill Duckwall
Brian G. Dugan
Mike Eneboe
Dave Evans
Lou Fasano
Steve Finch

Taka Fujimori
John Fuller
Masamichi Furukawa
Mike Gardner
Ram Gopalan
Gordon Haas
Manish Harpalani
Katsuya Hasegawa
Yasumasa Hasegawa
Shinichi Hatae
Jerry Hauck
Burke Henehan
Jack Hollins
Du Hung Hou
David James
Peter Johansson
Tony Kobayashi

Jim Koser
Takashi Kubo
Steve Kukla
Tadashi Kumihira
Farrukh Latif
Aaron Ludtke
Jerry Marazas
Tetsuya Miyame
Kazayoshi Moriya
Shuhei Moriyoshi
Richard Mourn
Bill Northey
Karen O'Connell
Yasushi Ohtani
Jun Okazaki
Erik Ottem
Alan Perry

Bob Plummer
Matt Pujol
Mehran Ramezani
Dennis Rehm
Todd Roper
Bill Russell
Takashi Sato
Dick Scheel
Andreas Schloissnik
Imran Sharif
Robbie Shergill
Hisato Shima
Michael Sorna
Curtis Stevens
Tom Suters
Shah Talukder
Mike Teener

© 1997 IEEE This is an unapproved standards draft, subject to change v

The following persons served on the ballot response committee:

The following persons were members of the balloting group:

If the IEEE Standards Board approves this draft standard, it might have the following membership:

E. G. “Al” Kiener, Chair Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis
L. Bruce McClung

Marco W. Migliaro
Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rüsch
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

*Member Emeritus

vi This is an unapproved standards draft, subject to change © 1997 IEEE

Other candiates for inclusion might be the following nonvoting IEEE Standards Board liaisons:

Mary Lynne Nielsen
IEEE Standards Project Editor

Satish K. Aggarwal
Steve Sharkey
Robert E. Hebner
Chester C. Taylor

© 1997 IEEE This is an unapproved standards draft, subject to change vii

1. Overview..9

1.1 Scope ..9
1.2 Purpose ...9

2. References..11

3. Definitions..13

3.1 Conformance glossary ..13

4. Bridge model (informative)..15

5. Bridge facilities ..17

5.1 Bridge portal configuration ROM...17
5.2 Bridge portal control and status registers..18

6. Bridge manager facilities ...33

6.1 Bridge manager configuration ROM ..33
6.2 Bridge manager control and status registers ...34

7. Asynchronous operations and routing ..35

7.1 Inbound portal operations ...35
7.2 Outbound portal operations ..36

8. Isochronous operations and routing..37

8.1 Cycle clock replication ...37
8.2 Plug control registers ..38
8.3 Inbound portal operations ...38
8.4 Outbound portal operations ..38

9. Serial Bus net configuration ...39

9.1 Bus configuration procedure...39
9.2 Bridge configuration procedure ..40

viii This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 9

1. Overview

1.1 Scope

This is a full-use standard whose scope is to extend the already defined asynchronous and isochronous services of High
Performance Serial Bus beyond the local bus by means of a device, the bridge, which connects to High Performance
Serial Bus as a transaction-capable node.

The project is intended to standardize a model for, the definition of and behaviors of High Performance Serial Bus bridges
that may be used to interconnect two or more separately enumerable High Performance Serial Buses. This project extends
IEEE Std 1394-1995 and is to be based upon that standard as well as upon ISO/IEC 13213:1994, Control and Status Reg-
ister (CSR) Architecture for Microcomputer Buses.

1.2 Purpose

IEEE Std 1394-1995, High Performance Serial Bus, is a cost-effective desktop interconnect for both computer peripherals
and consumer electronics. However, the use of High Performance Serial Bus in other environments, e.g., an interconnect
to carry high-speed digital video data between rooms of a house, is hampered by the incomplete architectural and protocol
specifications for bridges in the existing standard. This project proposes to adequately specify bridge requirements in
order to enable a larger consumer and computer market for High Performance Serial Bus products.

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

10 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 11

2. References

This standard shall be used in conjunction with the following publications:

ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer Buses

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

12 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 13

3. Definitions

This clause contains key terms as they are used in this standard.

3.1 Conformance glossary

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

3.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

3.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the code values assigned to
these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation
may be specified by future extensions to this or other standards. A reserved object shall be zeroed or, upon development of a
future standard, set to a value specified by such a standard. The recipient of a reserved object shall not check its value. The
recipient of a defined object shall check its value and reject reserved code values.

3.1.5 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory require-
ments to ensure interoperability other products conforming to this standard.

3.1.6 should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is rec-
ommended.”

0.1. Technical glossary

The following are terms that are used in this standard:

3.1.7 bridge: A Serial Bus node capable of connecting two or more buses into a Serial Bus net. A Serial Bus bridge imple-
ments two or more portals and forwards asynchronous and isochronous packets according to route information initialized by
other entities, the bridge manager (responsible for asynchronous traffic) or applications at Serial Bus nodes (responsible for
isochronous traffic).

3.1.8 bridge manager: A Serial Bus node responsible for the enumeration of buses within a Serial Bus net and, in the process,
to initialize all the bridges on the net. A Serial Bus net shall have at most one bridge manager; a procedure is defined to select
one from possibly many bridge manager capable nodes.

3.1.9 bus_ID: A 10-bit identifier that shall be unique for each bus within a Serial Bus net. After a power reset or a bus reset,
Serial Bus nodes have a bus_ID value of 3FF16, the local bus, specified by the NODE_IDS register. The bridge manager and
the bridges are responsible to update this register with the unique ID enumerated for the bus.

3.1.10 bus : A group of Serial Bus nodes interconnected by the same PHY medium and mutually addressable by packets with
a destination_bus_ID field of 3FF16.

3.1.11 local node: A Serial Bus node is local with respect to another node if they are both connected to the same bus. This is
true whether the bus does not yet have a unique bus_ID and is addressable only as the local bus, 3FF16, or if the bus has been
enumerated and assigned a bus_ID.

3.1.12 net: A collection of Serial Buses, joined by Serial Bus bridge nodes. Each bus within the net is uniquely identified by
its bus_ID. Although loops are not permitted within the topology of an individual bus, loops are permitted in the topology of a
net.

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

14 This is an unapproved standards draft, subject to change © 1997 IEEE

3.1.13 portal: A connection from a Serial Bus bridge to a bus. Each portal presents a full set of Serial Bus CSR’s, as defined
in IEEE Std 1394–1995 and in this document, to the connected bus. There may be multiple PHY’s for each portal. Serial Bus
bridges shall implement at least two portals and may implement up to 255 portals. Portals are identified by a monotonically
increasing sequence of ordinals, zero to n - 1 where n is the number of portals implemented by the bridge.

3.1.14 plug control registers: A set of registers defined in IEC-nnnn, proposed standard for Digital Interface for Consumer
Electronic Audio/Video Equipment, that are used to manage the isochronous connections into and out of a Serial Bus bridge.

3.1.15 remote node: A Serial Bus node is remote with respect to another node if the nodes are connected to buses that have
differing bus_ID’s or if one or more Serial Bus bridges lie on the path between the two nodes.

3.1.16 remote-transaction capable: A transaction capable Serial Bus node that is additionally capable of initiating transac-
tion requests directed to a remote node. Since Serial Bus bridges do not propagate bus resets but only transmit reset notifica-
tions, a remote-transaction capable node shall implement register(s) to receive reset notifications and shall follow a defined
procedure to redetermine the destination_ID of the remote node subsequent to a bus reset on the remote bus.

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 15

4. Bridge model (informative)

A Serial Bus bridge consists of two or more bridge portals, an implementation-specific switching fabric and a cycle clock
together with a method to distribute the clock to all portals. figure 0-1 below illustrates this model.

Each bridge portal is a separate Serial Bus node, with its own address space, on the bus to which it is connected. A bridge
portal responds to Serial Bus read, write and lock requests from its connected bus as described in this standard. A bridge
portal also monitors all Serial Bus packets, asynchronous and isochronous, in order to determine which packets, if any,
are to be routed through the bridge’s switching fabric to another portal.

The bridge portals are interconnected by means of an switching fabric that is capable of transferring any Serial Bus packet
from one portal to any other portal. The details of the switching fabric implementation are not addressed by this standard.
The switching fabric may be modest in geographical extent, as when all of the bridge portals and switching fabric are
located within a single enclosure. Conversely, the switching fabric may be physically extensive, as could be the case if a
bridge’s portals were located in separate rooms. In both cases, the model remains the same: the bridge is the collection of
the portals connected by the fabric.

The cycle clock is a common resource to which all bridge portals shall be synchronized. The cycle clock is optional but
is required if the bridge supports isochronous routing. The propagation of the cycle clock to all bridge portals is imple-
mentation-specific and beyond the scope of this standard.

Figure 0 -1 — Brid ge model

Switching fabric

Portal 0 Portal 1 Portal n...

Cycle clock

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

16 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 17

5. Bridge facilities

Serial Bus bridges are implemented as a unit architecture within a Serial Bus node. This clause describes the facilities that
a bridge shall support in order to interoperate with other bridges and the bridge manager. These facilities are configuration
ROM entries (which are used to identify the presence of the bridge within a Serial Bus node) and control and status reg-
isters, CSR’s (which are used to control the operations of and obtain status from the bridge).

5.1 Bridge portal configuration ROM

Each bridge portal shall implement configuration ROM in the general format defined by IEEE Std 1394-1995. Appendix
X contains a sample of a valid configuration ROM for a bridge portal and illustrates the usage of the entries defined
below.

5.1.1 Bus_Info_Block

A bridge portal’s configuration ROM shall contain a Bus_Info_Block, as defined by IEEE Std 1394-1995 and repeated for
convenience in figure 5-1 below.

The usage of all fields is as defined by IEEE Std 1394-1995. Some fields have particular applicability to Serial Bus
bridges, as defined below.

The isochronous resource manager (irmc), cycle master (cmc), isochronous (isc) and bus manager (bmc) capability bits
specify interrelated abilities of the bridge portal. Bus manager capabilities are orthogonal to bridge requirements; the bmc
bit shall be set according to the presence or absence of these optional capabilities. A bridge portal with no capability to
forward isochronous data shall report values of zero for each of the irmc, cmc and isc bits. A bridge portal that can prop-
agate isochronous data shall report values of one for each of the irmc, cmc and isc bits.

The max_rec field specifies the maximum payload that the bridge portal can accept in any of an asynchronous block write
request, lock request, block read response or lock response packet. This usage is an extension to that defined by IEEE Std
1394-1995, which addresses only the size of an asynchronous block write request. The maximum payload size is defined
as 2max_rec+1 and is bounded by the maximum payload size permitted by the data transfer speed supported by the bridge
portal.

NOTE—The maximum payload for an isochronous packet has no relationship to the max_rec field. The method by which the maximum
isochronous payload shall be specified has yet to be determined.

5.1.2 Node_Capabilities entry

The mandatory Node_Capabilities in the root directory contains subfields defined by ISO/IEC 13213:1994. All Serial Bus
nodes shall implement the spt, 64, fix , lst and drq bits.

Bridge portals shall set the spt bit to one to indicate that the SPLIT_TIMEOUT register is implemented.

Figure 5-1 — Bus_Info_Block format

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

irmc cmc bmcisc reservedreserved cyc_clk_acc
8 8

max_rec
8 8

111 1 88 8 12

node_vendor_ID chip_ID_hi
24

12

8

chip_ID_lo

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

18 This is an unapproved standards draft, subject to change © 1997 IEEE

Bridge portals shall set the drq bit to one to indicate that the STATE_CLEAR.dreq bit is implemented.

5.1.3 Bus_Dependent_Info entry

The Bus_Dependent_Info entry is a directory entry in the root directory that specifies the location of the
Bus_Dependent_Info directory within configuration ROM. Figure 5-2 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of C216.

The indirect_offset field specifies the number of quadlets from the address of the Bus_Dependent_Info entry to the
address of the Bus_Dependent_Info directory within configuration ROM.

5.1.4 Bridge_Capabilities entry

The Bridge_Capabilities entry is an immediate entry in the Bus_Dependent_Info directory that specifies the capabilities
of the bridge. Figure 5-3 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of 0116.

The portals field specifies the total count of bridge portals that collectively comprise the Serial Bus bridge. The portals
field shall have a minimum value of two and a maximum value of 255.

The isochronous_delay field specifies the constant delay that isochronous packets incur when they are transferred from
one bridge portal to another. The isochronous_delay field shall specify the delay in units of 125 µs and shall have a min-
imum value of two.

5.2 Bridge portal control and status registers

In addition to the control and status register (CSR) requirements defined by IEEE Std 1394-1995 for transaction-capable
nodes, Serial Bus bridges define common registers within the Serial Bus-dependent portion of initial units space. Initial
units space occupies the addresses at FFFF F000 080016 and above. The locations of bridge portal registers, summarized
in table 5-1, are specified in terms of offsets within initial register space, where the base of initial register space (from the
beginning of initial node space) is FFFF F000 000016.

Figure 5-2 — Bus_Dependent_Info entr y format

Figure 5-3 — Brid ge_Capabilities entr y format

Table 5-1 — Brid ge portal re gister locations

Offset Name Description

900 — 9FC16 Plug control registers As described in draft supplement P1394a.

240016 OWNER_EUI_64 Compare and swap register used by bridge managers to
resolve bridge portal ownership.

240816 BRIDGE_MANAGER_ID Contains the value of the bridge manager’s node_ID.

C216 indirect_offset
8 24

0116 portals isochronous_delay

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 19

The following sections provide detailed definitions of the registers implemented by Serial Bus bridges.

240C16 BRIDGE_RESET A write of any value to this location is equivalent to a power
reset.

241016 PORTAL_CONTROL Configures the bus_ID and other parameters associated with
each portal.

241416 PORTAL_SELECT Selects which portal’s registers are accessible through the
portal specific window.

241816 RESET_NOTIFICATION Bus resets that occur on remote buses are indicated by the a
quadlet write to this register with the value of the bus_ID of
the reset bus and a generation_number.

241C16 RESET_ACKNOWLEDGE Used by nodes that forward asynchronous transactions
through the bridge to confirm their receipt of a reset notifi-
cation.

242016 ROUTING_BOUNDS Defines the outbound routing for asynchronous packets for-
warded by the bridge.

262416 REMOTE_REQUEST Specifies the transaction type for asynchronous requests ini-
tiated on another portal.

262816 REMOTE_DESTINATION Specifies the destination_ID and destination_offset for asyn-
chronous requests initiated on another portal.

263016 NODE_ENABLE A bit mask that indicates, by node physical_ID, which local
nodes on a portal’s bus are enabled to pass transaction
requests through the bridge.

263816 — 267C16 Reserved for future standardization by Serial Bus.

268016 — 26FC16 CHANNEL_SWITCH These registers redirect input isochronous channels to output
channels on one or more portals.

270016 — 280016 Portal-specific window All bridge registers that have an instance for each of the
other portals are accessible within this address range.

280016 — 290016 REMOTE_PAYLOAD Contains the data value(s) sent as part of a remote write
request or obtained as the result of a remote read request.

Table 5-1 — Bridge portal register locations

Offset Name Description

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

20 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.1 OWNER_EUI_64 register

The OWNER_EUI_64 register is a register that supports compare and swap access so that bridge managers may resolve
contention for the ownership of the bridge portal. Figure 5-4 below shows the format of this register.

Figure 5-4 — OWNER_EUI_64 format

definition

initial values

read values

lock effects

conditionally stored

last successful lock

ones

owner_EUI_64_hi

owner_EUI_64_lo
32

32

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 21

5.2.2 BRIDGE_MANAGER_ID register

The optional BRIDGE_MANAGER_ID register provides a common location at which remote-transaction capable nodes
may obtain the node_ID of the bridge manager. If a bridge manager provides advanced functionality (not yet specified by
the bridge architecture), such as net topology information, the BRIDGE_MANAGER_ID register provides a convenient
way to locate the bridge manager without enumerating all buses and querying all nodes. The format of the
BRIDGE_MANAGER_ID register is illustrated by figure 5-5 below.

The bridge_manager_node_ID is normally initialized by a write from the bridge manager, once the identity of the bridge
manager has been determined as described in X. The value written shall be equal to the content of the bridge manager’s
NODE_IDS register.

5.2.3 BRIDGE_RESET register

The BRIDGE_RESET register provides a means to atomically reset the entire bridge, i.e., to erase all route information
and to erase all bus_ID’s associated with the bridge’s portals. Figure 5-6 illustrates the format of this register.

Figure 5-5 — BRIDGE_MANAGER_ID format

Figure 5-6 — BRIDGE_RESET format

definition

initial values

read values

write effects

bridge_manager_node_ID

ones

last write

stored

reserved

zeros

zeros

zeros

16 16

definition

initial values

read values

write effects

reserved

zeros

zeros

equivalent to a power reset of the bridge

32

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

22 This is an unapproved standards draft, subject to change © 1997 IEEE

The data value in the broadcast quadlet write to the BRIDGE_RESET register is ignored by the bridge; the write transac-
tion itself is sufficient to cause a reset.

5.2.4 PORTAL CONTROL register

The PORTAL_CONTROL register establishes a mapping between a Serial Bus bridge portal and the bus_ID assigned to
the Serial Bus connected to that portal. A Serial Bus bridge shall implement a PORTAL_CONTROL register for each of
the bridge’s n portals. Figure 5-7 below illustrates the format of this register.

The bus_ID field identifies the Serial Bus connected to the portal. In addition to this function, a write to the
PORTAL_CONTROL register has a special side-effect. When the bus_ID field is updated by a write, the Serial Bus
bridge broadcasts a quadlet write transaction to the NODE_IDS register of all nodes on the Serial Bus connected to the
portal. The data value broadcast is the bus_ID in the most significant ten bits and zeros for the remaining bits. This has
the effect of establishing the bus_ID for all nodes on the connected bus.

The q, or quarantine, bit, if set, has the property of disabling the propagation of all asynchronous request packets
adddressed to bus_ID that originate from other portals of the bridge. When a bus reset is detected by a bridge portal on its
connected Serial Bus, the bridge shall set the quarantine bit to one. The bridge manager is expected to clear the quaran-
tine bit after other steps have been taken to insure the integrity of asynchronous transactions subsequent to a bus reset.

The clk field defines the behavior of the portal with respect to the isochronous cycle clock, as defined below.

Figure 5-7 — PORTAL_CONTROL format

Value Description

0 The portal is disabled for both reception and broadcast of cycle start
packets.

1 The portal is configured to synchronize the bridge’s cycle clock to
cycle start packets received from its local bus.

2 The portal is configured to operate as the cycle master for its local
bus. The bridge’s CYCLE_TIME register triggers isochronous
cycles.

3 Reserved for future standardization by Serial Bus.

definition

initial values

read values

write effects

bus_ID

ones

ones

effect ignored

zeros

zeros

q rsv clk rte

u zeros last write

s ignored stored

reserved
1410 3 2 21

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 23

The rte field controls the behavior of the portal with respect to asynchronous transaction routing, as specified in the fol-
lowing table.

See the subsequent section, “Asynchronous operations and routing”, for the details of asynchronous packet routing by
bridges.

5.2.5 PORTAL_SELECT register

The contents of the PORTAL_SELECT register determine which portal’s portal-specific registers are accessible through
the portal-specific window in the address range FFFF F000 248016 through FFFF F000 25FC16. The format of this regis-
ter is shown in figure 5-8 below.

The l bit indicates whether or not the portal-specific window is enabled for the local portal, i.e., the same portal on which
a transaction request is physically received. When the l bit is set to zero, the portal registers accessible through the portal-
specific window are associated with one of the bridge’s other portals. If the l bit is set to one, the local portal’s registers
are accessible.

The portal field selects which portal’s registers are accessible through the portal-specific window. If the l bit is written
with a value of one, the bridge ignores the rest of the data written to the PORTAL_SELECT register and updates the
portal field to the value that indexes the local portal.

NOTE—If the portal field is set to the ordinal of a portal not implemented by the bridge, any accesses to registers within the range of
the portal-specific window receive an address error response.

Value Description

0 Disabled; no asynchronous request or response packets are forwarded by
the portal

1 Reserved for future standardization by Serial Bus

2 Enabled; forward asynchronous request or response packets if
bus_ID_lower_bound <= destination_bus_ID <= bus_ID_upper_bound

3 Enabled; forward asynchronous request or response packets if
destination_bus_ID < bus_ID_lower_bound
or destination_bus_ID > bus_ID_upper_bound

Figure 5-8 — PORTAL SELECT format

l

definition

initial values

read values

write effects

reserved description

zeros

l zeros last write

s ignored stored

23 81

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

24 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.6 RESET_NOTIFICATION register

The RESET_NOTIFICATION register provides a common location for nodes to receive an indication of a bus reset on
another bus within the Serial Bus net. All transaction capable nodes that initiate requests to nodes on other buses shall
implement the RESET_NOTIFICATION register with the format shown in figure 5-9 below. This class of nodes includes
bridges, bridge managers, any node that initiates asynchronous requests to remote nodes and any node that establishes
ownership of isochronous resources on other buses. It does not necessarily include either isochronous talkers or listeners.

The bus_ID field indicates which bus has been reset. When a bridge portal detects a bus reset on its connected Serial Bus,
the bridge shall update the contents of the RESET_NOTIFICATION register by setting bus_ID to the value of the field of
the same name in the PORTAL_CONTROL register and by incrementing the generation_number. The updated value of
the RESET_NOTIFICATION shall then be written to the bridge manager. The bridge manager is expected to propagate
the bus reset notification by writing the same value to the RESET_NOTIFICATION register(s) of all other bridge(s) pre-
viously enumerated by the bridge manager.

The generation_number field is a counter maintained by the bridge portal that observed the bus reset on its Together, the
bus_ID and generation_number fields uniquely identify a bus reset event within a Serial Bus net. Serial Bus nodes that
initiate transaction requests to remote nodes shall use the bus_ID and generation_number fields as a key in a procedure to
reestablish pathways to remote nodes, described in X.

A Serial Bus bridge that receives a write transaction to its RESET_NOTIFICATION register shall clear the
NODE_ENABLE registers for all bridge portals.

Figure 5-9 — RESET_NOTIFICATION format

definition

initial values

read values

write effects

bus_ID reserved generation_number

last update ones last update

stored ignored stored

ones

610 16

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 25

5.2.7 RESET_ACKNOWLEDGE register

The RESET_ACKNOWLEDGE register provides a means for Serial Bus nodes to communicate to adjacent bridge por-
tal(s) that they have received notification of a particular bus reset event. All bridge portals shall implement this register in
the format shown by figure 5-10 below.

A bus reset event on a bus potentially causes the physical_ID’s of nodes on the bus to change. Before any Serial Bus node
on any bus of the net initiates a new transaction request directed to a node on the reset bus, it shall redetermine the correct
physical_ID of the intended destination node. The RESET_ACKNOWLEDGE register provides an interlock mechanism
to prevent Serial Bus bridges from propagating asynchronous transactions that may have “stale” bus_ID values in their
destination_ID’s. See clause 5.2.6 for a description of how the receipt of a broadcast write transaction causes the bridge
to disable the transmission of all asynchronous transaction requests from all nodes on all local buses connected to the
bridge’s portals. A write to the RESET_ACKNOWLEDGE register is necessary to reenable the forwarding of asynchro-
nous transaction requests. If a Serial Bus bridge receives a quadlet write request addressed to the
RESET_ACKNOWLEDGE register and the bus_ID and generation_number values in the data payload exactly match the
current contents of the RESET_NOTIFICATION register, the bridge shall reenable forwarding of asynchronous transac-
tions for the node identified by source_ID in the write request.

Figure 5-10 — RESET_ACKNOWLEDGE format

definition

initial values

read values

write effects

bus_ID reserved generation_number

last write ones last write

effect ignored effect

ones

6 1610

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

26 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.8 ROUTING_BOUNDS register

The ROUTING_BOUNDS register provides, for each portal, parameters used by the bridge to determine asynchronous
transaction routing. The format of this register is given by figure 5-11 below.

The bus_ID_upper_bound and bus_ID_lower_bound fields shall specify, respectively, the upper and lower bounds for
the destination_bus_ID’s of asynchronous request and response packets that are to be forwarded by a bridge portal The
value of the two bounds fields is used in conjunction with the rte field in the PORTAL_CONTROL register to determine
which asynchronous packets shall be forwarded

5.2.9 REMOTE_REQUEST register

The REMOTE_REQUEST register, in conjunction with the REMOTE_DESTINATION and REMOTE_PAYLOAD regis-
ters, enables an application to specify the generation of an asynchronous transaction request by a non-local bridge portal.
This register, whose format is shown below in figure 5-12, is typically used by the bridge manager during initialization
and bus enumeration.

Figure 5-11 — ROUTING_BOUNDS format

Figure 5-12 — REMOTE_REQUEST format

definition

initial values

read values

write effects

bus_ID_upper_bound bus_ID_lower_bound
10 10

reservedreserved
66

last write last write onesones

stored stored ignoredignored

ones

definition

initial values

read values

write effects

portalrcode extended_tcodetcodedata_length

zeros

last writelast update

storedeffect

go rqstat

z

8 8 4 4431

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 27

The go bit is used to signal the bridge to initiate a remote request with the parameters stored in the
REMOTE_DESTINATION and REMOTE_PAYLOAD registers. A write of zero to the go bit shall have no effect. A
write of one shall cause the bridge to create and transmit a request. When the bridge creates a request packet, the
destination_ID and destination_offset fields shall be obtained from the REMOTE_DESTINATION register. The tl, rt and
pri fields of the request packet shall be set to vendor-dependent values. The source_ID field of the request packet shall be
equal to the most significant 16 bits of the NODE_IDS register for the portal that is to transmit the request. If required by
the transaction type, the data field (for a write request) or the arg_value and data_value fields (for a lock request) shall
be obtained from the REMOTE_PAYLOAD register. The remaining request packet fields, tcode, data_length and
extended_tcode shall be obtained from the REMOTE_REQUEST register. The bridge shall calculate the header and data
CRC fields as necessary for the packet format.

The rqstat field specifies the result of the remote transaction, as encoded by the values defined in the table below. Upon
a write to the REMOTE_REQUEST register with the go bit set, the bridge shall set the rqstat field to a value of
REQUEST PENDING. When the remote request completes, either as a result of receipt of a completion acknowledgment
or response or because of an unrecoverable error, the bridge shall update rqstat to a value other than
REQUEST_PENDING.

The application that initiated a remote request may poll for completion status by reading the REMOTE_REQUEST regis-
ter and examining rqstat.

The rcode field shall contain the response code returned as part of the remote transaction. The rcode field is valid only if
rqstat is either COMPLETE or DATA ERROR. The values for rcode are defined by IEEE Std 1394-1995.

The portal field shall specify which of the bridge’s portals is to generate the remote request. If portal specifies an unim-
plemented bridge portal at the time the REMOTE_REQUEST go bit is set, the bridge shall set the value of rqstat to
INVALID REQUEST.

The data_length field is used by the bridge to construct the remote request (see X). When the REMOTE_REQUEST reg-
ister specifies a remote write or lock request, the application is expected to store data_length bytes in the
REMOTE_PAYLOAD register before setting the go bit in the REMOTE_REQUEST register. The data_length field is
ignored by the bridge if tcode specifies a value of zero or four.

The tcode field shall specify the type of remote request that the bridge shall initiate on the specified portal. The values of
tcode are specified by IEEE Std 1304-1995; the subset of tcode values supported by bridges for remote requests is defined
by the table below.

Value Request status

0 COMPLETE

1 TIMEOUT

2 ACKNOWLEDGE MISSING

3 RETRY LIMIT

4 INVALID REQUEST

5 DATA ERROR

6 Reserved for future standardization by Serial Bus

7 REQUEST PENDING

Value Description

0 Write request for data quadlet

1 Write request for data block

2 – 3 Not supported for remote requests

4 Read request for data quadlet

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

28 This is an unapproved standards draft, subject to change © 1997 IEEE

If tcode specifies an unsupported transaction code at the time the REMOTE_REQUEST go bit is set, the bridge shall set
the value of rqstat to INVALID REQUEST.

The extended_tcode field shall specify the extended transaction code used for lock requests. The meaning of
extended_tcode values are defined by IEEE Std 1394-1995.

5.2.10 REMOTE_DESTINATION register

The REMOTE_DESTINATION register is used to specify the 64-bit Serial Bus address to which a remote request is
addressed. figure 5-13 below illustrates the format of this register.

The destination_bus_ID field shall have a value of 3FF16, the local bus ID.

The dest_phy_ID shall be set to the value of the 6-bit physical ID of the node to which the remote request is to be
addressed.

The destination_offset_hi and destination_offset_lo fields shall be set, respectively, to the most- and least-significant por-
tions of the 48-bit destination_offset to which the remote request is to be addressed.

5 Read request for data block

6 – 8 Not supported for remote requests

9 Lock request

A16 – B16 Not supported for remote requests

C16 – F16 Reserved for future standardization by Serial Bus

Figure 5-13 — REMOTE_DESTINATION format

Value Description

ignored

definition

initial values

read values

write effects

stored

last write

ones

destination_offset_hi

destination_offset_lo

destination_bus_ID dest_phy_ID

ones last write

stored

6

32

10 16

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 29

5.2.11 NODE_ENABLE register

The NODE_ENABLE register is a read-only register that provides information about the current state of the Serial Bus
bridge. This register is a bit map that represents, for each of the 63 possible physical_ID’s of nodes locally connected to
a bridge’s portal, whether or not asynchronous transaction requests and responses are forwarded by the bridge. figure 5-
13 below shows the format of this register.

The NODE_ENABLE register is a bit mask whose 64 bits represent all the possible physical_ID’s of nodes connected to
a portal of the Serial Bus bridge. If the corresponding bit is zero, transaction requests from the specified node are refused
with an address error. If transaction forwarding is enabled for a particular node, i.e., the corresponding bit is one, then the
request packet received on the portal is retransmitted according to the information in the ROUTING_BOUNDS and
ROUTE_UPPER_BOUND registers.

The NODE_ENABLE register shall be reset to zero by the bridge upon either of two events: a) a bus reset is observed on
the Serial Bus connected to the bridge portal, or b) the receipt of a quadlet write transaction addressed to the bridge por-
tal’s RESET_NOTIFICATION register.

Individual bits within the NODE_ENABLE are updated indirectly, by means of a write to the RESET_ACKNOWLEDGE
register. When a bridge receives a quadlet write transaction directed to the RESET_ACKNOWLEDGE register in which
the source_bus_ID field is either 3FF16 (the local bus) or equal to the bus_ID in the relevant PORTAL_CONTROL regis-
ter and both the bus_ID and generation_number fields in the data payload exactly match the current contents of the
RESET_NOTIFICATION register, the bridge shall set the bit in the NODE_ENABLE register that corresponds to
source_physical_ID in the write transaction. The most significant bit in the NODE_ENABLE register corresponds to
physical_ID 63 and the least significant bit corresponds to physical_ID zero.

Figure 5-14 — NODE_ENABLE format

definition

initial values

read values

write effects

ignored

last successful update

zeros

node_enable_hi

node_enable_lo
32

32

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

30 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.12 CHANNEL_SWITCH register

The CHANNEL_SWITCH, together with the INPUT_PLUG register of the source portal and the OUTPUT_PLUG regis-
ter of the output portal, provides a method to control the broadcast of isochronous traffic by the Serial Bus bridge. There
is a set of CHANNEL_SWITCH registers implemented for each portal. On a given portal, if a Serial Bus bridge imple-
ments n OUTPUT_PLUG registers it shall also implement n CHANNEL_SWITCH registers. There is an implicit relation-
ship between the CHANNEL_SWITCH and the OUTPUT_PLUG registers. The channel number and speed information
necessary to retransmit the source isochronous channel identified by the CHANNEL_SWITCH[n] register shall be
obtained from the corresponding OUTPUT_PLUG[n] register for the same portal. The format of the
CHANNEL_SWITCH register is illustrated by figure 5-15 below.

The a, or active, bit indicates whether or not the channel switch is active. An application normally sets the active bit to
one to enable the switch between the input and output isochronous channels. Other events may require the Serial Bus
bridge to disable the connection, in which case the active bit shall be cleared.

The p, or proxy, bit indicates whether or not the Serial Bus bridge is to act as a proxy for the application and attempt to
reallocate isochronous resources, bandwidth and channel, in the event of a bus reset on the bus connected to the portal. If
a bridge does not implement this capability, it shall ignore any attempt to set the proxy bit to one and reject the transaction
with a type error. When the proxy bit is set to one and the bridge observes a bus reset on the portal’s bus, the bridge acts
as a proxy owner of the isochronous resources as follows:

a) The OUTPUT_PLUG[n] register for the bridge portal, where n is the same index used to reference the
CHANNEL_SWITCH[n] register, is consulted to obtain the necessary speed, channel number, packet overhead and
data payload values.

b) These are converted to the corresponding values needed to update the BANDWIDTH_ALLOCATE and
CHANNELS_AVAILABLE registers at the isochronous resource manager on the portal’s bus.

c) If the compare and swap lock transactions fail because the channel number is in use or there is insufficient bandwidth,
the bridge clears both the active and the proxy bits in the CHANNEL_SWITCH register and no longer retransmits the
affected isochronous channel. No indication, other than the fact that the active and proxy bits are clear, is given to the
application that programmed the CHANNEL_SWITCH register.

d) If the isochronous resource reallocation is successful, both the active and proxy bits retain their present values.

The plug_index and the portal fields together specify which INPUT_PLUG register describes the source of the isochro-
nous data to be retransmitted over this portal. Within the set of INPUT_PLUG registers for portal, the
INPUT_PLUG[plug_index] register contains the channel number field that identifies the input isochronous channel.

Figure 5-15 — CHANNEL_SWITCH format

definition

initial values

read values

write effects

reserved

zeros

zeros

ignored

portalplug_indexp ra

stored

last writezw

s i

1 1 1 8 165

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 31

5.2.13 REMOTE_PAYLOAD register

The REMOTE_PAYLOAD register is used obtain data returned by a response to a remote read request, to provide data for
a remote write request or first to specify the argument and data values for a remote lock request and subsequently to
obtain the old data value returned by the lock response. Although figure 5-13 below illustrates a 64-bit
REMOTE_PAYLOAD register, the size of the REMOTE_PAYLOAD register is vendor-dependent and specified in con-
figuration ROM. The REMOTE_PAYLOAD register shall be at least an octlet and, if greater, shall be a integral number
of quadlets.

If a bridge portal implements a REMOTE_PAYLOAD register larger than an octlet, the entire register shall be accessible
by both block read or block write transactions whose data_length field is equal to the size of the REMOTE_PAYLOAD
register reported by configuration ROM

When the REMOTE_REQUEST register is used to initiate a read request, the bridge shall update the
REMOTE_PAYLOAD register with the data value(s) received in the read response packet. When the
REMOTE_REQUEST register is used to initiate a write request, the bridge shall obtain the data value(s) for the request
from the REMOTE_PAYLOAD register at the time the go bit is set. When an application initiates a lock request via the
REMOTE_REQUEST register, the REMOTE_PAYLOAD register shall be used for both purposes: the arg_value and
data_value fields are obtained when the go bit is set and the register is updated with the old_value when the lock response
packet is received.

Figure 5-16 — REMOTE_PAYLOAD format

definition

initial values

read values

write effects

stored

last store or last successful update

zeros

remote_payload_hi

remote_payload_lo
32

32

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

32 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 33

6. Bridge manager facilities

Bridge managers are implemented as a unit architecture within a Serial Bus node. This clause describes the facilities that
a bridge manager shall support in order to interoperate with Serial Bus bridge(s) and other bridge manager(s). These facil-
ities are configuration ROM entries (which are used to identify the presence of the bridge manager within a Serial Bus
node) and control and status registers, CSR’s (which are used to control the operations of and obtain status from the
bridge manager).

6.1 Bridge manager configuration ROM

Each bridge manager shall implement configuration ROM in the general format defined by IEEE Std 1394-1995. Appen-
dix X contains a sample of a valid configuration ROM for a bridge manager and illustrates the usage of the entries
defined below.

6.1.1 Bus_Info_Block

A bridge portal’s configuration ROM shall contain a Bus_Info_Block, as defined by IEEE Std 1394-1995.

6.1.2 Node_Capabilities entry

The mandatory Node_Capabilities in the root directory contains subfields defined by ISO/IEC 13213:1994. All Serial Bus
nodes shall implement the spt, 64, fix , lst and drq bits.

Bridge managers shall set the drq bit to one to indicate that the STATE_CLEAR.dreq bit is implemented.

6.1.3 Bus_Dependent_Info entry

The Bus_Dependent_Info entry is a directory entry in the root directory that specifies the location of the
Bus_Dependent_Info directory within configuration ROM. Figure 6-1 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of C216.

The indirect_offset field specifies the number of quadlets from the address of the Bus_Dependent_Info entry to the
address of the Bus_Dependent_Info directory within configuration ROM.

NOTE—If a node implements both bridge and bridge manager capabilities, only one Bus_Dependent_Info entry is required in the root
directory.

6.1.4 Bridge_Manager_Capabilities entry

The Bridge_Capabilities entry is an immediate entry in the Bus_Dependent_Info directory that specifies the capabilities
of the bridge manager. Figure 6-2 shows the format of this entry.

Figure 6-1 — Bus_Dependent_Info entr y format

Figure 6-2 — Brid ge_Manager_Capabilities entr y format

C216 indirect_offset
8 24

0216 reserved

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

34 This is an unapproved standards draft, subject to change © 1997 IEEE

The entry is identified by the key_type and key_value fields which together have a value of 0116.

6.2 Bridge manager control and status registers

In addition to the control and status register (CSR) requirements defined by IEEE Std 1394-1995 for transaction-capable
nodes, Serial Bus bridge managers define common registers within the Serial Bus-dependent portion of initial units space.
Initial units space occupies the addresses at FFFF F000 080016 and above. The locations of bridge portal registers, sum-
marized in table 6-1, are specified in terms of offsets within initial register space, where the base of initial register space
(from the beginning of initial node space) is FFFF F000 000016.

The following sections provide detailed definitions of the registers implemented by Serial Bus bridges.

6.2.1 RESET_NOTIFICATION register

The RESET_NOTIFICATION register provides a common location for nodes to receive an indication of a bus reset on
another bus within the Serial Bus net. All transaction capable nodes that initiate requests to nodes on other buses shall
implement the RESET_NOTIFICATION register with the format shown in figure 6-3 below. This class of nodes includes
bridges, bridge managers, any node that initiates asynchronous requests to remote nodes and any node that establishes
ownership of isochronous resources on other buses. It does not necessarily include either isochronous talkers or listeners.

The bus_ID field indicates which bus has been reset. The bridge manager is expected to propagate the bus reset notifica-
tion by writing the same value to the RESET_NOTIFICATION register(s) of all bridge(s) previously enumerated by the
bridge manager.

The generation_number field is a counter maintained by the bridge portal that observed the bus reset on its Together, the
bus_ID and generation_number fields uniquely identify a bus reset event within a Serial Bus net. Serial Bus nodes that
initiate transaction requests to remote nodes shall use the bus_ID and generation_number fields as a key in a procedure to
reestablish pathways to remote nodes, described in X.

Table 6-1 — Brid ge portal re gister locations

Offset Name Description

241816 RESET_NOTIFICATION Bus resets that occur on remote buses are indicated by the
a quadlet write to this register with the value of the
bus_ID of the reset bus and a generation_number.

Figure 6-3 — RESET_NOTIFICATION format

definition

initial values

read values

write effects

bus_ID reserved generation_number

last update ones last update

stored ignored stored

ones

610 16

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 35

7. Asynchronous operations and routing

This section describes the normal operations of a bridge to route asynchronous transactions once the bridge has been con-
figured by a bridge manager. See a later section, “Serial Bus net configuration”, for details.

Bridge portals function as inbound portals when they eavesdrop on their bus to detect asynchronous primary packets to
be forwarded to another bus. A portal that repeats a primary packet on its bus is acting as an outbound portal. Unless a
bridge portal is deactivated for asynchronous traffic, it is capable of acting as either an inbound or outbound portal.

The table below enumerates the transaction codes recognized by inbound and outbound portals in their forwarding of
asynchronous primary packets.

The clauses that follow describe the algorithms that govern the operation for each mode of portal behavior.

7.1 Inbound portal operations

All active bridge portals shall eavesdrop all primary packets on the bus in order to determine whether or not the packet is
to be forwarded. The algorithm for inbound portal operations is:

a) The destination_bus_ID field of all asynchronous packets (as defined by table 7-1) shall be examined to determine
if the packet is local to the Serial Bus connected to the portal. If the destination_bus_ID field indicates the local
bus ID, 3FF16, or if the destination_bus_ID field is equal to bus_ID in the PORTAL_CONTROL register, the
packet is local. In this case, the portal’s acknowledgment and eventual response shall be as specified by IEEE Std
1394-1995.

b) If rte is zero, any non-local asynchronous packets (i.e., those that do not meet the criteria defined above) shall be
ignored by the bridge portal; no acknowledge or response packet shall be transmitted.

c) If rte is nonzero, all asynchronous response packets may be forwarded by the portal, according to the value of
destination_bus_ID as described in e) below.

d) If rte is nonzero, the source_ID field of all asynchronous request packets is examined to determine if the portal is
to forward the packet. If the source_bus_ID component of the field is equal to 3FF16, the portal shall not forward
the request packet. If the source_bus_ID indicates that the request did not originate from a local node, the request
may be forwarded by the portal, according to the value of destination_bus_ID as described in e) below.
Otherwise, the source_phy_ID field is examined. If the corresponding bit in the NODE_ENABLE register is clear,
the bridge shall not forward the request and shall generate a response of address error. When the corresponding bit
in the NODE_ENABLE register is set, the request may be forwarded by the portal, according to the value of
destination_bus_ID as described in e) below.

e) The destination_bus_ID field shall be compared against the portal’s routing information according to the Boolean
expression:

ROUTING_BOUNDS.bus_ID_lower_bound <= destination_bus_ID <= ROUTING_BOUNDS.bus_ID_upper_bound.

Table 7-1 — As ynchronous primar y packet transaction codes

Code Subaction Payload

0 Write request Quadlet

1 Write request Block

2 Write response —

4 Read request Quadlet

5 Read request Block

6 Read response Quadlet

7 Read response Block

9 Lock request Block

B16 Lock request Block

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

36 This is an unapproved standards draft, subject to change © 1997 IEEE

If rte has a value of two, the packet is forwarded to the bridge’s internal switching fabric if the expression
evaluates to TRUE. Otherwise, if rte has a value of three, the packet is forwarded if the expression evaluates to
FALSE.

f) If an asynchronous primary packet is forwarded by the portal, an ack_pending shall be transmitted on the local
bus.

NOTE—The timing requirements of IEEE Std 1394-1995 for the transmission of an acknowledge packet effectively preclude the use of
firmware to implement the above algorithm.

Once a portal has determined that an asynchronous packet is to be forwarded, that packet shall be replicated on the
bridge’s internal switching fabric and thus made available to the intended outbound portal. The implementation details of
the internal switching fabric, in particular the buffering requirements (if any) and the timing of the exchange of asynchro-
nous primary packets between portals, are beyond the scope of this standard.

7.2 Outbound portal operations

Asynchronous primary packets available on the bridge’s internal switching fabric have already been screened according to
the algorithm described in clause 7.1. As a result, outbound bridge portals have a simpler algorithm to determine whether
or not a particular asynchronous primary packet shall be replicated on the portal’s local bus. The procedure is described
below:

a) If rte is zero, the portal is disabled and no asynchronous packets shall be replicated from the internal switching
fabric to the portal’s local bus;

b) Otherwise, the destination_bus_ID field of any asynchronous primary packet on the internal switching fabric shall
be compared against the portal’s routing information according to the Boolean expression:

ROUTING_BOUNDS.bus_ID_lower_bound <= destination_bus_ID <= ROUTING_BOUNDS.bus_ID_upper_bound.

If rte has a value of two, the packet is forwarded to the bridge’s internal switching fabric if the expression
evaluates to FALSE. Otherwise, if rte has a value of three, the packet is forwarded if the expression evaluates to
TRUE.

c) If the acknowledgment received for the replicated packet is ack_pending, the outbound portal is finished with the
forwarded packet; else

d) When an acknowledgment other than ack_pending is received, the outbound portal shall behave in accordance
with X.

NOTE—The routing criteria in b) above are the inverse of the rules used to select inbound asynchronous packets. This permits the
single ROUTING_BOUNDS register to control both inbound and outbound routing.

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 37

8. Isochronous operations and routing

This section describes the normal operations of a bridge to route isochronous data once an application has configured
intervening bridge(s) to support an end-to-end path between a talker and a listener.

Bridges that support isochronous data transfers have two functions to perform:

a) The replication of a synchronized clock throughout the Serial Bus net; and

b) The replication of particular streams of isochronous data (identified by their channel number) throughout a portion
of the Serial Bus net.

Bridge portals function as inbound portals when they eavesdrop on their bus to detect isochronous packets to be for-
warded to one or more other buses. A portal that repeats an isochronous packet on its bus is acting as an outbound portal.

The clauses that follow describe cycle clock replication and the algorithms that govern the operation for each mode of
portal behavior.

8.1 Cycle clock replication

Just as there is a single cycle master node that provides uniform system time to a Serial Bus, a net of buses interconnected
by bridges requires a single cycle master as the source of system time for the entire net.

NOTE—A usable name is needed for this singular cycle master. The affectionate term “cycle monster” is undoubtedly too informal for
a standard but it pleases the editor to use this nickname until the working group selects a more formal appellation.

The cycle monster may be a cycle master-capable node or it may be one of the portals of one of the bridge(s) that connect
the Serial Bus net. In either case, the cycle monster is selected and enabled by the bridge manager.

Once a cycle monster is active, the bridges propagate cycle start packets in accordance with the value of the clk field in
each portal’s PORTAL_CONTROL register. A bridge that propagates the cycle time observes cycle start packets on only
one portal; the remaining bridge portals shall be cycle masters or they shall be inactive with respect to isochronous traffic.

The value of the clk field is set by the bridge manager as it enumerates buses in the Serial Bus net and determines the
routing for isochronous data. The bridge manager shall set the value of each portal’s clk field subject to the following
restrictions:

a) Any number of portals may have a clk value of zero.

b) At most one portal may have a clk value of one.

c) No portal shall have a clk value of two unless at least one other portal has a clk value of one. If there is at least
one such portal, any number of portals may have a clk value of two.

Note that the value of clk determines the portal’s behavior for all other isochronous data. The reception or transmission of
isochronous data is inhibited on all portals with a clk value of three, regardless of the state of the portals’
CHANNEL_SWITCH registers. This is an important consideration when the physical topology of the Serial Bus net
includes loops, since it permits the bridge manager to parse the Serial Bus net into a tree.

A bridge shall have a single, free-running cycle timer shared by all portals1. The cycle timer shall be resynchronized in
accordance with cycle start packets observed by one of the portals. This portal is identified by a value of one for the clk
field in its PORTAL_CONTROL register.

1 This is a logical requirement, not an implementation. A bridge design may have separate cycle timers for the portals so long as the
implementation provides a method to retain synchronization between the timers.

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

38 This is an unapproved standards draft, subject to change © 1997 IEEE

When the bridge’s cycle timer generates a cycle synchronization event (i.e., the cycle_count portion increments when a
125 µs period elapses), the PHY’s of all portals whose clk field has a value of two shall arbitrate for the bus and transmit
a cycle start packet as specified by IEEE Std 1394-1995.

During an isochronous cycle, any portal whose PORTAL_CONTROL.clk field is nonzero shall forward isochronous data
packets in accordance with the algorithms described in clauses 8.3 and 8.4.

8.2 Plug control registers

The plug control registers, specified in P1394a, draft supplement to the Serial Bus standard, provide a uniform method to
manage isochronous connections. The bridge architecture makes use of the plug information in conjunction with bridge
portal’s own registers to determine the routing of isochronous data streams.

Plug control registers are not a global bridge resource; they are replicated for each portal.

P1394a should be consulted in order to understand the descriptions that follow.

8.3 Inbound portal operations

During an isochronous cycle, inbound portals eavesdrop on all isochronous packets in order to examine the channel field
in the packet header. Although the details are dependent upon the implementation, it is assumed that each portal has a bit
mask that identifies which of the 64 isochronous channels are to be buffered and, after a constant isochronous delay
across the bridge’s internal switching fabric, subsequently retransmitted by one or more outbound portals.

The information necessary to determine whether or not a particular isochronous channel is to be retransmitted resides in
the inbound portal’s INPUT_PLUG register(s). If either the broadcast bit or the point_to_point field is nonzero, the portal
is enabled to listen to and forward packets identified by the channel field in the INPUT_PLUG register.

An inbound portal shall forward an isochronous packet by making it available to the bridge’s internal switching fabric,
with the expectation that one or more outbound portals subsequently retransmit the packet.

8.4 Outbound portal operations

Outbound portals shall maintain queue(s) of isochronous packets observed on the bridge’s internal switching fabric that
match the portal’s criteria for retransmission. The isochronous packets shall be retransmitted on a particular isochronous
cycle number that is a fixed number of cycles later than the cycle during which the packet(s) were observed by the
inbound portal.

Isochronous packets distributed via the bridge’s internal switching fabric are uniquely identified by the combination of
their channel number and the ordinal of their inbound portal. The isochronous channel number alone is insufficient since
the same channel number may be in use on buses connected by a single Serial Bus bridge.

The information necessary to determine whether or not a particular isochronous packet is to be retransmitted resides in the
outbound portal’s OUTPUT_PLUG register(s) and the corresponding CHANNEL_SWITCH registers. If either the broad-
cast bit or the point_to_point field in an OUTPUT_PLUG register is nonzero, the outbound portal is configured to
retransmit packets for an isochronous channel. The packet to retransmit is identified by information in the
CHANNEL_SWITCH[n] register that corresponds to the OUTPUT_PLUG[n] register with the same ordinal, n. The
CHANNEL_SWITCH register specifies the originating portal and channel number that uniquely identify the isochronous
packet within the internal switching fabric.

Before the packet may be retransmitted, the outbound portal shall transform the packet header according to the informa-
tion in the OUTPUT_PLUG register. The OUTPUT_PLUG register specifies the channel number for the retransmitted
isochronous packet header. This register also specifies the speed at which the isochronous packet shall be transmitted.

P1394.1 Draft 0.02 High Performance Serial Bus Bridges
March 13, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 39

9. Serial Bus net configuration

The bridge manager, once selected as described in the preceding section, is responsible to: a) enumerate all the connected
buses within the Serial Bus net and assign each a unique bus_ID; b) configure each Serial Bus bridge so that it properly
routes asynchronous and isochronous data from one bus to another; and c) arbitrarily parse the Serial Bus net topology
into (logically) a tree topology even if it is (physically) connected with loops. The sections that follow describe the pro-
cedures the bridge manager uses to accomplish these goals.

In the discussion of the procedures that follow, a few definitions are necessary. The global variable max_bus_ID, which
is initialized to zero at the start, represents the highest bus_ID assigned to any bus in the Serial Bus net. A bus is enumer-
ated if a broadcast write has occurred to the NODE_IDS register of all nodes connected to the bus. At this point, the state
of the bridges is indeterminate and the bus is unconfigured. An unconfigured bridge on an enumerated bus that is to be
configured is the target bridge. Each target bridge becomes outbound configured when all of its PORTAL_CONTROL[n]
registers are initialized and when those portions of its ROUTING_BOUNDS registers necessary to forward transactions
from the bridge manager are initialized. When all bridges on an unconfigured bus are outbound configured, the bus is out-
bound configured as well. During the traversal of the Serial Bus net, the information needed to complete configuration of
the outbound configured bridges accumulates each time max_bus_ID is incremented. When the last bus is enumerated, it
is possible to update all the remaining portions of the bridge ROUTING_BOUNDS registers. Once this update is com-
plete, the bridges and the buses are fully configured.

The bridge manager follows the steps described below to fully configure the Serial Bus net:

a) The global variable max_bus_ID is initialized to zero;

b) The bridge manager broadcasts a quadlet write transaction with a destination address of BRIDGE_RESET
register. The data value of the write is ignored. A bridge that receives a quadlet write to its BRIDGE_RESET
register shall reset its PORTAL_CONTROL, NODE_ENABLE and ROUTING_BOUNDS registers to their initial
values.

c) The bridge manager broadcasts a quadlet write transaction with a data value of zero to the NODE_IDS registers
of all nodes on the local bus. This write has side effects at any bridges connected to the local bus: the bus_ID field
in each bridge’s local PORTAL_CONTROL[n] register, where n is the ordinal of the portal connected to the
bridge manager’s local bus, is updated to the broadcast value.

d) The bridge manager invokes the bus configuration procedure, described in the next section. This procedure,
together with recursive invocations of itself and of the bridge configuration procedure, parses the Serial Bus net
into a tree and effects a traversal of the tree to enumerate all buses and configure all bridges. Upon return from the
invocation of the bus configuration procedure, the Serial Bus net is outbound configured and the global variable
max_bus_ID is set to the highest numbered bus on the net.

e) In order to fully configure the route information at all bridges, the bridge manager must update any unconfigured
out_portal[j] fields at each bridge, where j is less than or equal to the final value of max_bus_ID. The updates are
accomplished by propagating the value of the out_portal[k] field, where k is the largest index to a configured
out_portal field at a bridge, to all the unconfigured out_portal[j] fields at the same bridge. Once this is complete
for all bridges, the Serial Bus net is fully configured.

9.1 Bus configuration procedure

The only argument to the bus configuration procedure is the global variable max_bus_ID. The value of max_bus_ID indi-
cates the current bus to be configured. Configuration consists of identifying all the bridges present on the bus and config-
uring each one in turn. Any buses that lie beyond the bridges are recursively configured by additional invocations of this
same procedure. The steps to be followed are outlined below:

a) Examine the 63 possible nodes connected to the bus identified by max_bus_ID and construct a list of all bridge
nodes. Serial Bus bridges have a standard unit architecture that may be identified by configuration ROM entries.
The order in which bridges are configured is arbitrary.

b) If there are no unconfigured bridges on the bus, return to the invoker of this procedure. Note that at this point
max_bus_ID contains the ID of the most recently enumerated and configured bus.

High Performance Serial Bus Bridges P1394.1 Draft 0.02
March 13, 1997

40 This is an unapproved standards draft, subject to change © 1997 IEEE

c) Otherwise, select one of the unconfigured bridges and invoke the bus configuration procedure described in the
following section. This procedure is invoked with one argument, target_bridge_ID, which is set to the unique
node ID of the bridge to be configured.

d) Upon return from the bridge configuration procedure, all buses and bridges connected to the bridge have been
enumerated and outbound configured. The most recently enumerated bus is indicated by the value of max_bus_ID.
Mark the bridge outbound configured and continue with step b).

The information necessary to complete the configuration of the bridges on this bus, that is, to move them from the out-
bound configured state to the fully configured state, is not available until the last bus in the Serial Bus net is enumerated.
See the preceding section for a description of how the bridge manager revisits each bridge in order to fully update the
ROUTING_BOUNDS registers.

9.2 Bridge configuration procedure

Once an unconfigured bridge is encountered, it is necessary to configure all of its portals and to configure as much as pos-
sible of its route map. Note that at least one of the PORTAL_CONTROL[n] registers is configured at the outset. This is
the result of a broadcast write to the NODE_IDS register of all nodes on the local bus connected to that portal. The other,
unconfigured portals may be identified by a value of 3FF16 in the bus_ID field of the PORTAL_CONTROL[n] registers.
Portals are configured by means of the following procedure:

a) First, identify the portal connected to the current bus identified by max_bus_ID. That is, set the l bit in the
PORTAL_SELECT register to one and note the value of the portal field in a subsequent read of the same
register.examine the n PORTAL_CONTROL registers and note the value of n for which the bus_ID field of the
PORTAL_CONTROL[n] register is equal to max_bus_ID. Update the ROUTING_BOUNDS registers by writing
portaln to the out_portal[0] through out_portal[max_bus_ID] fields, inclusive.

b) Next, locate an unconfigured PORTAL_CONTROL register, identified by its ordinal n. PORTAL_CONTROL
registers may be examined by altering the value of the portal field in the PORTAL_SELECT register to n before
reading the PORTAL_CONTROL register. A PORTAL_CONTROL register is unconfigured if its bus_ID field is
equal to 3FF16. If no unconfigured portals remain, the bridge configuration procedure is complete; return control
to the invoker of this procedure.

c) Portal n connects to a not yet enumerated bus. Increment the value of max_bus_ID by one and write the new value
to the bus_ID field of the PORTAL_CONTROL[n] register. This also causes the bridge to broadcast a quadlet
write transaction to the NODE_IDS registers on that bus. The value of the bus_ID field of the broadcast is
max_bus_ID.

d) Update the route information for the just enumerated bus by writing n to the out_portal[max_bus_ID] field in the
target bridge’s ROUTING_BOUNDS registers.

e) Configure the just enumerated bus that lies beyond portal n by means of the bus configuration procedure
described in the preceding section.

f) Upon return from the bus configuration procedure, all buses and bridges connected through portal n are outbound
configured. Update the current bridge’s route information by writing the portal identifier, n, to any unconfigured
out_portal[j] fields in the ROUTING_BOUNDS registers where j is less than or equal to max_bus_ID. A value of
FF16 in an out_portal[j] field indicates an unconfigured portion of the ROUTING_BOUNDS.

g) Configure any remaining unconfigured portals by continuing with step b).

NOTE—When all the portals of a bridge (and the buses and other bridges that lie beyond them) have been configured by this
procedure, the bridge is outbound configured. It is not yet possible to configure the remainder of the ROUTING_BOUNDS registers
out_portal fields, since the ultimate value of max_bus_ID has not yet been determined. Once all buses are enumerated, the bridge
manager can complete the configuration of the bridges.

