
P1394.1 Draft 0.03
October 18, 1997

P1394.1
Draft Standard for
High Performance Serial Bus Bridges

Sponsor

Microprocessor and Microcomputer Standards Committee
of the
IEEE Computer Society

Not yet Approved by

IEEE Standards Board

Not yet Approved by

American National Standards Institute

Abstract:
Keywords: bridge, bus, computer, high-speed serial bus, interconnect

The Institute of Electrical And Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1997 by the Institute of Electrical And Electronics Engineers, Inc.
All rights reserved. Published 1997. Printed in the United States of America.

ISBN x-xxxxx-xxx-x

This is an unapproved IEEE Standards Draft, subject to change. Permission is hereby granted for IEEE Standards Committee participants
to reproduce this document for purposes of IEEE standardization activities, including balloting and coordination. If this document is to be
submitted to ISO or IEC, notification shall be given to the IEEE Copyright Administrator. Permission is also granted for member bodies and
technical committees of ISO and IEC to reproduce this document for purposes of developing a national position. Other entities seeking
permission to reproduce this document for these or other uses must contact the IEEE Standards Department for the appropriate license.
Use of the information contained in this unapproved draft is at your own risk.

ii This is an unapproved standards draft, subject to change © 1997 IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily
members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject
within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the develop-
ment of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways
to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to
review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societ-
ies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Elec-
trical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for
payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA
01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can
also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying all patents
for which a license may be required by an IEEE standard or for conducting inquiries
into the legal validity or scope of those patents that are brought to its attention.

© 1997 IEEE This is an unapproved standards draft, subject to change iii

Introduction

(This introduction is not a part of IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus Bridges.)

This standards effort started in 1996 at the request of...

iv This is an unapproved standards draft, subject to change © 1997 IEEE

Patent notice

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered
by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent
rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be
required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought
to its attention.

The patent holder has, however, filed a statement of assurance that it will grant a license under these rights without
compensation or under reasonable rates and nondiscriminatory, reasonable terms and conditions to all applicants desiring
to obtain such a license. The IEEE makes no representation as to the reasonableness of rates and/or terms and conditions
of the license agreement offered by the patent holder. Contact information may be obtained from the IEEE Standards
Department.

Committee membership

The following is a list of voting members of the IEEE P1394.1 working group at the time of publication.

Richard K. Scheel, Chair
Peter Johansson, Editor and Secretary

The following is a list of other major participants in the IEEE P1394.1 working group (those that attended at least three
working group meetings in the last four years).

Dave Banks
Max Bassler
Harrison Beasley
Erich Berndlmaier
David Brief
Mike Brown
Joe Chen
Rajiv Choudhary
Richard Churchill
Alistair Coles
Hugh Curley
Bill Duckwall
Brian G. Dugan
Mike Eneboe
Dave Evans
Lou Fasano
Steve Finch

Taka Fujimori
John Fuller
Masamichi Furukawa
Mike Gardner
Ram Gopalan
Gordon Haas
Manish Harpalani
Katsuya Hasegawa
Yasumasa Hasegawa
Shinichi Hatae
Jerry Hauck
Burke Henehan
Jack Hollins
Du Hung Hou
David James
Peter Johansson
Tony Kobayashi

Jim Koser
Takashi Kubo
Steve Kukla
Tadashi Kumihira
Farrukh Latif
Aaron Ludtke
Jerry Marazas
Tetsuya Miyame
Kazayoshi Moriya
Shuhei Moriyoshi
Richard Mourn
Bill Northey
Karen O'Connell
Yasushi Ohtani
Jun Okazaki
Erik Ottem
Alan Perry

Bob Plummer
Matt Pujol
Mehran Ramezani
Dennis Rehm
Todd Roper
Bill Russell
Takashi Sato
Dick Scheel
Andreas Schloissnik
Imran Sharif
Robbie Shergill
Hisato Shima
Michael Sorna
Curtis Stevens
Tom Suters
Shah Talukder
Mike Teener

© 1997 IEEE This is an unapproved standards draft, subject to change v

The following persons served on the ballot response committee:

The following persons were members of the balloting group:

If the IEEE Standards Board approves this draft standard, it might have the following membership:

E. G. “Al” Kiener, Chair Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis
L. Bruce McClung

Marco W. Migliaro
Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rüsch
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

*Member Emeritus

vi This is an unapproved standards draft, subject to change © 1997 IEEE

Other candiates for inclusion might be the following nonvoting IEEE Standards Board liaisons:

Mary Lynne Nielsen
IEEE Standards Project Editor

Satish K. Aggarwal
Steve Sharkey
Robert E. Hebner
Chester C. Taylor

© 1997 IEEE This is an unapproved standards draft, subject to change vii

1. Overview..9

1.1 Scope ..9
1.2 Purpose ...9

2. References..11

3. Definitions..13

3.1 Conformance glossary ..13
3.2 Technical glossary ..13

4. Bridge model (informative)..15

5. Bridge facilities ..17

5.1 Bridge portal configuration ROM...17
5.2 Bridge portal control and status registers..18

6. Bridge manager facilities ...33

6.1 Bridge manager configuration ROM ..33
6.2 Bridge manager control and status registers ...34

7. Remote requests ...35

8. Asynchronous operations and routing ..35

8.1 Inbound portal operations ...35
8.2 Outbound portal operations ..36

9. Stream operations and routing..39

9.1 Cycle clock replication ...39
9.2 Inbound portal operations ...40
9.3 Outbound portal operations ..40
9.4 Common Isochronous Packet format time stamps ..40

10. Reset notification ...43

11. Serial Bus net configuration ...43

viii This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 9

1. Overview

1.1 Scope

This is a full-use standard whose scope is to extend the already defined asynchronous and isochronous services of High
Performance Serial Bus beyond the local bus by means of a device, the bridge, which connects to High Performance
Serial Bus as a transaction-capable node.

The project is intended to standardize a model for, the definition of and behaviors of High Performance Serial Bus bridges
that may be used to interconnect two or more separately enumerable High Performance Serial Buses. This project extends
IEEE Std 1394-1995 and is to be based upon that standard as well as upon ISO/IEC 13213:1994, Control and Status Reg-
ister (CSR) Architecture for Microcomputer Buses.

1.2 Purpose

IEEE Std 1394-1995, High Performance Serial Bus, is a cost-effective desktop interconnect for both computer peripherals
and consumer electronics. However, the use of High Performance Serial Bus in other environments, e.g., an interconnect
to carry high-speed digital video data between rooms of a house, is hampered by the incomplete architectural and protocol
specifications for bridges in the existing standard. This project proposes to adequately specify bridge requirements in
order to enable a larger consumer and computer market for High Performance Serial Bus products.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

10 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 11

2. References

This standard shall be used in conjunction with the following publications:

ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer Buses

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

IEEE P1394a, Draft Standard for a High Performance Serial Bus (Supplement)

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

12 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 13

3. Definitions

This clause contains key terms as they are used in this standard.

3.1 Conformance glossary

Several keywords are used to differentiate levels of requirements and optionality, as follows:

3.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

3.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

3.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

3.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the code values assigned to
these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation
may be specified by future extensions to this or other standards. A reserved object shall be zeroed or, upon development of a
future standard, set to a value specified by such a standard. The recipient of a reserved object shall not check its value. The
recipient of a defined object shall check its value and reject reserved code values.

3.1.5 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory require-
ments to ensure interoperability other products conforming to this standard.

3.1.6 should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is rec-
ommended.”

3.2 Technical glossary

The following are terms that are used in this standard:

3.2.1 bridge: A Serial Bus node capable of connecting two or more buses into a Serial Bus net. A Serial Bus bridge imple-
ments two or more portals and forwards asynchronous and isochronous packets according to route information initialized by
other entities, the bridge manager (responsible for asynchronous traffic) or applications at Serial Bus nodes (responsible for
isochronous traffic).

3.2.2 bridge manager: A Serial Bus node responsible for the enumeration of buses within a Serial Bus net and, in the process,
to initialize all the bridges on the net. A Serial Bus net shall have at most one bridge manager; a procedure is defined to select
one from possibly many bridge manager capable nodes.

3.2.3 bus_ID: A 10-bit identifier that shall be unique for each bus within a Serial Bus net. After a power reset or a bus reset,
Serial Bus nodes have a bus_ID value of 3FF16, the local bus, specified by the NODE_IDS register. The bridge manager and
the bridges are responsible to update this register with the unique ID enumerated for the bus.

3.2.4 bus : A group of Serial Bus nodes interconnected by the same PHY medium and mutually addressable by packets with a
destination_bus_ID field of 3FF16.

3.2.5 local node: A Serial Bus node is local with respect to another node if they are both connected to the same bus. This is
true whether the bus does not yet have a unique bus_ID and is addressable only as the local bus, 3FF16, or if the bus has been
enumerated and assigned a bus_ID.

3.2.6 net: A collection of Serial Buses, joined by Serial Bus bridge nodes. Each bus within the net is uniquely identified by its
bus_ID. Although loops are not permitted within the topology of an individual bus, loops are permitted in the topology of a
net.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

14 This is an unapproved standards draft, subject to change © 1997 IEEE

3.2.7 net cycle master: The cycle master for one Serial Bus in the net selected by the bridge manager to be the clock source
for the entire net.

3.2.8 portal: A connection from a Serial Bus bridge to a bus. Each portal presents a full set of Serial Bus CSR’s, as defined in
IEEE Std 1394–1995 and in this document, to the connected bus. There may be multiple PHY’s for each portal. Serial Bus
bridges shall implement at least two portals and may implement up to 255 portals. Portals are identified by a monotonically
increasing sequence of ordinals, zero to n - 1 where n is the number of portals implemented by the bridge.

3.2.9 plug control registers: A set of registers defined in IEC-nnnn, proposed standard for Digital Interface for Consumer
Electronic Audio/Video Equipment, that are used to manage the isochronous connections into and out of a Serial Bus bridge.

3.2.10 remote node: A Serial Bus node is remote with respect to another node if the nodes are connected to buses that have
differing bus_ID’s or if one or more Serial Bus bridges lie on the path between the two nodes.

3.2.11 remote-transaction capable: A transaction capable Serial Bus node that is additionally capable of initiating transac-
tion requests directed to a remote node. Since Serial Bus bridges do not propagate bus resets but only transmit reset notifica-
tions, a remote-transaction capable node shall implement register(s) to receive reset notifications and shall follow a defined
procedure to redetermine the destination_ID of the remote node subsequent to a bus reset on the remote bus.

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 15

4. Bridge model (informative)

A Serial Bus bridge consists of two or more bridge portals, an implementation-specific switching fabric and a cycle clock
together with a method to distribute the clock to both portals. Figure 4-1 below illustrates this model.

Each bridge portal is a separate Serial Bus node, with its own address space, on the bus to which it is connected. A bridge
portal responds to Serial Bus read, write and lock requests from its connected bus as described in this standard. A bridge
portal also monitors all Serial Bus packets, asynchronous and isochronous, in order to determine which packets, if any,
are to be routed through the bridge’s switching fabric to the other portal.

The bridge portals are interconnected by means of an switching fabric that is capable of transferring any Serial Bus packet
from one portal to the other portal. The details of the switching fabric implementation are not addressed by this standard.
The switching fabric may be modest in geographical extent, as when both of the bridge portals and switching fabric are
located within a single enclosure. Conversely, the switching fabric may be physically extensive, as could be the case if a
bridge’s portals were located in separate rooms. In both cases, the model remains the same: the bridge is the collection of
the portals connected by the fabric.

The cycle clock is a common resource to which both bridge portals shall be synchronized. The cycle clock is optional but
is required if the bridge supports isochronous routing. The propagation of the cycle clock to the bridge portals is imple-
mentation-specific and beyond the scope of this standard.

Figure 4-1 — Bridge model

Switching fabric

Portal 0 Portal 1

Cycle clock

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

16 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 17

5. Bridge facilities

Serial Bus bridges are implemented as a unit architecture within a Serial Bus node. This clause describes the facilities that
a bridge shall support in order to interoperate with other bridges and the bridge manager. These facilities are configuration
ROM entries (which are used to identify the presence of the bridge within a Serial Bus node) and control and status reg-
isters, CSRs (which are used to control the operations of and obtain status from the bridge).

5.1 Bridge portal configuration ROM

Each bridge portal shall implement configuration ROM in the general format defined by IEEE Std 1394-1995. Appendix
X contains a sample of a valid configuration ROM for a bridge portal and illustrates the usage of the entries defined
below.

5.1.1 Bus_Info_Block

A bridge portal’s configuration ROM shall contain a Bus_Info_Block, as defined by IEEE Std 1394-1995 and repeated for
convenience in figure 5-1 below.

The usage of all fields is as defined by IEEE Std 1394-1995. Some fields have particular applicability to Serial Bus
bridges, as defined below.

The isochronous resource manager (irmc), cycle master (cmc), isochronous (isc) and bus manager (bmc) capability bits
specify interrelated abilities of the bridge portal. Bus manager capabilities are orthogonal to bridge requirements; the bmc
bit shall be set according to the presence or absence of these optional capabilities. A bridge portal with no capability to
forward isochronous data shall report values of zero for each of the irmc, cmc and isc bits. A bridge portal that can prop-
agate the net cycle clock and isochronous data shall report values of one for each of the irmc, cmc and isc bits.

The max_rec field specifies the maximum payload that the bridge portal can accept in any of an asynchronous block write
request, lock request, block read response, lock response or asynchronous stream packet. This usage is an extension to
that defined by IEEE Std 1394-1995, which specifies only the size of an asynchronous block write request. When
max_rec is zero the bridge’s maximum payload is not specified. Otherwise, the maximum payload size is defined as
2 max_rec+1 and shall not be greater than the maximum asynchronous data payload for the speed implemented by the
bridge portals is bounded by the maximum payload size permitted by the data transfer speed supported by the bridge por-
tal.

NOTE—The maximum payload for an isochronous packet has no relationship to the max_rec field. The method by which the maximum
isochronous payload shall be specified has yet to be determined.

5.1.2 Node_Capabilities entry

The mandatory Node_Capabilities in the root directory contains subfields defined by ISO/IEC 13213:1994. All Serial Bus
nodes shall implement the spt, 64, fix, lst and drq bits.

Figure 5-1 — Bus_Info_Block format

3116 (“1”) 3316 (“3”) 3916 (“9”) 3416 (“4”)

irmc cmc bmcisc reservedreserved cyc_clk_acc
8 8

max_rec
8 8

111 1 88 8 12

node_vendor_ID chip_ID_hi
24

12

8

chip_ID_lo

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

18 This is an unapproved standards draft, subject to change © 1997 IEEE

Bridge portals shall set the spt bit to one to indicate that the SPLIT_TIMEOUT register is implemented.

Bridge portals shall set the drq bit to one to indicate that the STATE_CLEAR.dreq bit is implemented.

5.1.3 Bus_Dependent_Info entry

The Bus_Dependent_Info entry is a directory entry in the root directory that specifies the location of the
Bus_Dependent_Info directory within configuration ROM. Figure 5-2 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of C216.

The indirect_offset field specifies the number of quadlets from the address of the Bus_Dependent_Info entry to the
address of the Bus_Dependent_Info directory within configuration ROM.

5.1.4 Bridge_Capabilities entry

The Bridge_Capabilities entry is an immediate entry in the Bus_Dependent_Info directory that specifies the capabilities
of the bridge. Figure 5-3 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of 0116.

The portals field specifies the total count of bridge portals that collectively comprise the Serial Bus bridge. The portals
field shall have a minimum value of two and a maximum value of 255.

The streams field specifies the total of STREAM_CONTROL registers implemented by each portal. The value represents
the number of concurrently active streams supported by the bridge.

The isochronous_delay field specifies the constant delay that isochronous packets incur when they are transferred from
one bridge portal to another. If the bridge implements no isochronous capabilities, the value of isochronous_delay shall
be zero. Otherwise, the isochronous_delay field shall specify the delay in units of 125 µs and shall have a minimum value
of two.

5.2 Bridge portal control and status registers

The control and status registers (CSR’s) implemented by a bridge portal shall conform to the requirements defined by this
standard and its normative references. The CSR’s belong to three groups:

— core registers required by ISO/IEC 13213:1994;

— bus-dependent registers required by IEEE Std 1394-1995; and

— registers required by this standard.

Figure 5-2 — Bus_Dependent_Info entry format

Figure 5-3 — Bridge_Capabilities entry format

C216 indirect_offset
8 248

0116 reserved isochronous_delaystreams
8 10 6 8

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 19

The addresses of all registers are specified in terms of offsets, in bytes, within initial register space, where the base
address of initial register space is FFFF F000 000016 relative to initial node space. IEEE Std 1394-1995 should be con-
sulted for detailed descriptions of both the core and Serial Bus-dependent registers; the table below lists those that are
mandatory for bridges.

Isochronous capabilities are optional. If a bridge supports isochronous operations, it shall be cycle master capable and iso-
chronous resource manager capable as well as isochronous capable. These capabilities require implementation of the
Serial Bus-dependent registers listed in table 5-2.

In addition to the preceding requirements of IEEE Std 1394-1995, this standard specifies registers within the Serial Bus-
dependent portion of initial units space. These bridge portal registers are summarized in table 5-3.

Table 5-1 — Core and Serial Bus-dependent registers for all bridges

Offset Name Description

0 STATE_CLEAR State and control information.

4 STATE_SET Sets STATE_CLEAR bits.

8 NODE_IDS Contains the 16-bit node_ID value used to address the bridge
portal.

C16 RESET_START Resets the bridge’s state. TBD—What is the effect of a write
to this register, if any?

1816 — 1C16 SPLIT_TIMEOUT Time limit for split transactions on the connected bus.

21016 BUSY_TIMEOUT Controls the bridge’s retry protocols.

Table 5-2 — Serial Bus-dependent registers for isochronous bridges

Offset Name Description

20016 CYCLE_TIME 24.576 MHz clock required for isochronous operation.

20416 BUS_TIME System (net) time in seconds.

21C16 BUS_MANAGER_ID Contains the 16-bit node_ID of the bus manager on the con-
nected bus, if one is present.

22016 BANDWIDTH_AVAILABLE Known location for Serial Bus bandwidth allocation.

22416 — 22816 CHANNELS_AVAILABLE Known location for Serial Bus channel allocation.

Table 5-3 — Bridge portal registers

Offset Name Description

240016 OWNER_EUI_64 Compare and swap register used by bridge managers to
resolve bridge portal ownership.

240816 BRIDGE_MANAGER_ID Contains the value of the bridge manager’s node_ID.

240C16 BRIDGE_RESET A write of any value to this location is equivalent to a power
reset.

241016 PORTAL_CONTROL Configures the portal.

241816 RESET_NOTIFICATION Bus resets that occur on remote buses are indicated by the a
quadlet write to this register with the value of the bus_ID of
the reset bus and a generation_number.

241C16 RESET_ACKNOWLEDGE Used by nodes that forward asynchronous requests through
the bridge to confirm their receipt of a reset notification.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

20 This is an unapproved standards draft, subject to change © 1997 IEEE

Unless otherwise specified, all registers shall support quadlet read and quadlet write transactions.

5.2.1 OWNER_EUI_64 register

The OWNER_EUI_64 register is a register that supports compare and swap access so that bridge managers may resolve
contention for the ownership of the bridge portal. Figure 5-4 below shows the format of this register.

242016 ROUTING_BOUNDS Defines the routing for asynchronous packets forwarded by
the bridge.

262416 REMOTE_REQUEST Specifies the transaction type for asynchronous requests ini-
tiated on another portal.

262816 REMOTE_DESTINATION Specifies the destination_ID and destination_offset for asyn-
chronous requests initiated on another portal.

263016 NODE_ENABLE A bit mask that indicates, by node physical_ID, which local
nodes on a portal’s bus are enabled to pass request and
response subactions through the bridge.

264016 — 267C16 OUTBOUND_SPEED_MAP Controls the speed at which packets are transmitted by an
outbound portal.

268016 — 277C16 STREAM_CONTROL These registers control the inbound or outbound routing for
asynchronous and isochronous stream packets.

280016 — 290016 REMOTE_PAYLOAD Contains the data value(s) sent as part of a remote write
request or obtained as the result of a remote read request.

Figure 5-4 — OWNER_EUI_64 format

Table 5-3 — Bridge portal registers (Continued)

Offset Name Description

definition

initial values

read values

lock effects

conditionally stored

last successful lock

ones

owner_EUI_64_hi

owner_EUI_64_lo
32

32

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 21

5.2.2 BRIDGE_MANAGER_ID register

The optional BRIDGE_MANAGER_ID register provides a common location at which remote-transaction capable nodes
may obtain the node_ID of the bridge manager. If a bridge manager provides advanced functionality (not yet specified by
the bridge architecture), such as net topology information, the BRIDGE_MANAGER_ID register provides a convenient
way to locate the bridge manager without enumerating all buses and querying all nodes. The format of the
BRIDGE_MANAGER_ID register is illustrated by figure 5-5 below.

The bridge_manager_node_ID is normally initialized by a write from the bridge manager, once the identity of the bridge
manager has been determined as described in X. The value written shall be equal to the content of the bridge manager’s
NODE_IDS register.

5.2.3 BRIDGE_RESET register

The BRIDGE_RESET register provides a means to atomically reset the entire bridge; the effect of a quadlet write to any
portal’s BRIDGE_RESET register is equivalent to a power reset of the bridge. Figure 5-6 illustrates the format of this
register.

Figure 5-5 — BRIDGE_MANAGER_ID format

Figure 5-6 — BRIDGE_RESET format

definition

initial values

read values

write effects

bridge_manager_node_ID

ones

last write

stored

reserved

zeros

zeros

zeros

16 16

definition

initial values

read values

write effects

reserved

zeros

zeros

equivalent to a power reset of the bridge

32

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

22 This is an unapproved standards draft, subject to change © 1997 IEEE

The data value in the broadcast quadlet write to the BRIDGE_RESET register is ignored by the bridge; the write transac-
tion itself is sufficient to cause a reset.

5.2.4 PORTAL CONTROL register

A Serial Bus bridge shall implement a PORTAL_CONTROL register for both of the bridge’s portals; the register config-
ures the operations of each portal. Figure 5-7 illustrates the format of this register.

The other_portal_node_ID field shall be equal to the most significant 16 bits of the NODE_IDS register for the other por-
tal.

The q, or quarantine, bit, if set, has the property of disabling the propagation of all asynchronous request packets
addressed to bus_ID that originate from the bridge’s other portal. When a bus reset is detected by a bridge portal on its
connected Serial Bus, the bridge shall set the quarantine bit to one. The bridge manager is expected to clear the quaran-
tine bit after other steps have been taken to insure the integrity of asynchronous transactions subsequent to a bus reset.

The clk field defines the behavior of the portal with respect to the isochronous cycle clock, as defined below.

The rte field controls the behavior of the portal with respect to asynchronous transaction routing, as specified in the fol-
lowing table.

Figure 5-7 — PORTAL_CONTROL format

Value Description

0 The portal is disabled for both reception and broadcast of cycle start
packets.

1 The portal is configured to synchronize the bridge’s cycle clock to
cycle start packets received from its local bus.

2 The portal is configured to operate as the cycle master for its local
bus. The bridge’s CYCLE_TIME register triggers isochronous
cycles.

3 Reserved for future standardization by Serial Bus.

Value Description

0 Disabled; no asynchronous request or response packets are forwarded by
the portal

1 Reserved for future standardization by Serial Bus

definition

initial values

read values

write effects

ignored

value of other portal’s NODE_IDS

value of other portal’s NODE_IDS

clk rte

zeros last write

stored

other_portal_node_ID
24 2 2

reserved
24

zeros

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 23

See the subsequent section, “Asynchronous operations and routing”, for the details of asynchronous packet routing by
bridges.

5.2.5 RESET_NOTIFICATION register

The RESET_NOTIFICATION register provides a common location for nodes to receive an indication of a bus reset on
another bus within the Serial Bus net. All transaction capable nodes that initiate requests to nodes on other buses shall
implement the RESET_NOTIFICATION register with the format shown in figure 5-8 below. This class of nodes includes
bridges, bridge managers, any node that initiates asynchronous requests to remote nodes and any node that establishes
ownership of isochronous resources on other buses. It does not necessarily include either isochronous talkers or listeners.

The bus_ID field indicates which bus has been reset. When a bridge portal detects a bus reset on its connected Serial Bus,
the bridge shall update the contents of the RESET_NOTIFICATION register by setting bus_ID to the value of the field of
the same name in the PORTAL_CONTROL register and by incrementing the generation_number. The updated value of
the RESET_NOTIFICATION shall then be written to the bridge manager. The bridge manager is expected to propagate
the bus reset notification by writing the same value to the RESET_NOTIFICATION register(s) of all other bridge(s) pre-
viously enumerated by the bridge manager.

The generation_number field is a counter maintained by the bridge portal that observed the bus reset on its connected
Serial Bus. Together, the bus_ID and generation_number fields uniquely identify a bus reset event within a Serial Bus net.
Serial Bus nodes that initiate transaction requests to remote nodes shall use the bus_ID and generation_number fields as
a key in a procedure to reestablish pathways to remote nodes, described in X.

A Serial Bus bridge that receives a write transaction to its RESET_NOTIFICATION register shall clear the
NODE_ENABLE registers for both bridge portals.

2 Enabled; forward asynchronous request or response packets if
ROUTING_BOUNDS.bus_ID_lower_bound <= destination_bus_ID and
destination_bus_ID <= ROUTING_BOUNDS.bus_ID_upper_bound

3 Enabled; forward asynchronous request or response packets if
destination_bus_ID < ROUTING_BOUNDS.bus_ID_lower_bound
or ROUTING_BOUNDS.bus_ID_upper_bound < destination_bus_ID

Figure 5-8 — RESET_NOTIFICATION format

Value Description

definition

initial values

read values

write effects

bus_ID reserved generation_number

last update ones last update

stored ignored stored

ones

610 16

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

24 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.6 RESET_ACKNOWLEDGE register

The RESET_ACKNOWLEDGE register provides a means for Serial Bus nodes to communicate to adjacent bridge por-
tal(s) that they have received notification of a particular bus reset event. All bridge portals shall implement this register in
the format shown by figure 5-9 below.

A quadlet write addressed to the RESET_ACKNOWLEDGE register shall cause the portal’s NODE_ENABLE register to
be updated if the following are true:

— The most significant 10 bits of the source_ID field of the quadlet write request are equal to either 3FF16 or the
most significant 10 bits of the portal’s NODE_IDS register; and

— The quadlet_data field is equal to the present value of the RESET_ACKNOWLEDGE register.

Quadlet write requests that do not meet these criteria shall be rejected with either an ack_type_error or a response of
resp_type_error. Otherwise, the bit in the NODE_ENABLE register that corresponds to the sender’s physical ID shall be
set to one. See clause 5.2.10 for the mapping from physical ID to particular bits in the register.

The result of a successful write to RESET_ACKNOWLEDGE that updates the NODE_ENABLE register is to enable for-
warding of asynchronous request and response packets originated by the node identified by source_ID.

Figure 5-9 — RESET_ACKNOWLEDGE format

definition

initial values

read values

write effects

bus_ID reserved generation_number

last write ones last write

effect ignored effect

ones

6 1610

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 25

5.2.7 ROUTING_BOUNDS register

The ROUTING_BOUNDS register provides parameters used by the bridge to determine asynchronous transaction rout-
ing. The format of this register is given by figure 5-10 below.

The bus_ID_upper_bound and bus_ID_lower_bound fields shall specify, respectively, the upper and lower bounds for
the destination_bus_ID’s of asynchronous request and response packets that are to be forwarded by a bridge portal The
value of the two bounds fields is used in conjunction with the rte field in the PORTAL_CONTROL register to determine
which asynchronous packets shall be forwarded

5.2.8 REMOTE_REQUEST register

The REMOTE_REQUEST register, in conjunction with the REMOTE_DESTINATION and REMOTE_PAYLOAD regis-
ters, enables an application to specify the generation of an asynchronous transaction request by the bridge’s other portal.
This register, whose format is shown below in figure 5-11, is typically used by the bridge manager during initialization
and bus enumeration.

Figure 5-10 — ROUTING_BOUNDS format

Figure 5-11 — REMOTE_REQUEST format

definition

initial values

read values

write effects

bus_ID_upper_bound bus_ID_lower_bound
10 10

reservedreserved
66

last write last write onesones

stored stored ignoredignored

ones

definition

initial values

read values

write effects

reservedrcode extended_tcodetcodedata_length

zeros

last writelast update

storedeffect

go rqstat

z

7 8 4 4431

s
1

zeros

ignored

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

26 This is an unapproved standards draft, subject to change © 1997 IEEE

The go bit is used to signal the bridge to initiate a remote request with the parameters stored in the
REMOTE_DESTINATION and REMOTE_PAYLOAD registers. A write of zero to the go bit shall have no effect. A
write of one shall cause the bridge to create and transmit a request. When the bridge creates a request packet, the
destination_ID and destination_offset fields shall be obtained from the REMOTE_DESTINATION register. The tl, rt and
pri fields of the request packet shall be set to vendor-dependent values. The source_ID field of the request packet shall be
determined by the source field (see below). If required by the transaction type, the data field (for a write request) or the
arg_value and data_value fields (for a lock request) shall be obtained from the REMOTE_PAYLOAD register. The
remaining request packet fields, tcode, data_length and extended_tcode shall be obtained from the REMOTE_REQUEST
register. The bridge shall calculate the header and data CRC fields as necessary for the packet format.

The rqstat field specifies the result of the remote transaction, as encoded by the values defined in the table below. Upon
a write to the REMOTE_REQUEST register with the go bit set, the bridge shall set the rqstat field to a value of
REQUEST PENDING. When the remote request completes, either as a result of receipt of a completion acknowledgment
or response or because of an unrecoverable error, the bridge shall update rqstat to a value other than
REQUEST_PENDING.

The application that initiated a remote request may poll for completion status by reading the REMOTE_REQUEST regis-
ter and examining rqstat.

The rcode field shall contain the response code returned as part of the remote transaction. The rcode field is valid only if
rqstat is either COMPLETE or DATA ERROR. The values for rcode are defined by IEEE Std 1394-1995.

The source bit (abbreviated as s in the illustration above) shall specify the value of source_ID in the transmitted request.
If source is zero, the value shall be equal to the most significant 16 bits of the other portal’s NODE_IDS register. Other-
wise, when source is one, the transmitted source_ID shall be equal to the concatenation of 3FF16 and the least significant
6 bits of the other portal’s NODE_IDS register.

The data_length field is used by the bridge to construct the remote request (see X). When the REMOTE_REQUEST reg-
ister specifies a remote write or lock request, the application is expected to store data_length bytes in the
REMOTE_PAYLOAD register before setting the go bit in the REMOTE_REQUEST register. The data_length field is
ignored by the bridge if tcode specifies a value of zero or four.

The tcode field shall specify the type of remote request that the bridge shall initiate on the other portal. The values of
tcode are specified by IEEE Std 1394-1995; the subset of tcode values supported by bridges for remote requests is defined
by the table below.

Value Request status

0 COMPLETE

1 TIMEOUT

2 ACKNOWLEDGE MISSING

3 RETRY LIMIT

4 INVALID REQUEST

5 DATA ERROR

6 Reserved for future standardization by Serial Bus

7 REQUEST PENDING

Value Description

0 Write request for data quadlet

1 Write request for data block

2 – 3 Not supported for remote requests

4 Read request for data quadlet

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 27

If tcode specifies an unsupported transaction code at the time the REMOTE_REQUEST go bit is set, the bridge shall set
the value of rqstat to INVALID REQUEST.

The extended_tcode field shall specify the extended transaction code used for lock requests. The meaning of
extended_tcode values are defined by IEEE Std 1394-1995.

5.2.9 REMOTE_DESTINATION register

The REMOTE_DESTINATION register is used to specify the 64-bit Serial Bus address to which a remote request is
addressed. figure 5-12 below illustrates the format of this register.

The destination_bus_ID and dest_phy_ID fields shall be set to a value that identifies the remote node to which the
request is to be addressed. Registers within the other portal are addressable when destination_bus_ID and dest_phy_ID
are set to the value of other_portal_node_ID reported in the PORTAL_CONTROL register.

The destination_offset_hi and destination_offset_lo fields shall be set, respectively, to the most- and least-significant por-
tions of the 48-bit destination_offset to which the remote request is to be addressed.

5 Read request for data block

6 – 8 Not supported for remote requests

9 Lock request

A16 – B16 Not supported for remote requests

C16 – F16 Reserved for future standardization by Serial Bus

Figure 5-12 — REMOTE_DESTINATION format

Value Description

ignored

definition

initial values

read values

write effects

stored

last write

ones

destination_offset_hi

destination_offset_lo

destination_bus_ID dest_phy_ID

ones last write

stored

6

32

10 16

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

28 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.10 NODE_ENABLE register

The NODE_ENABLE register is a read-only register that provides information about the current state of the Serial Bus
bridge. This register is a bit map that represents, for each of the 63 possible physical_ID’s of nodes locally connected to
a bridge’s portal, whether or not asynchronous transaction requests and responses are forwarded by the bridge. figure 5-
12 below shows the format of this register.

The NODE_ENABLE register is a bit mask whose 64 bits represent all the possible physical_ID’s of nodes connected to
a portal of the Serial Bus bridge. If the corresponding bit is zero, transaction requests from the specified node are refused
with an address error. If transaction forwarding is enabled for a particular node, i.e., the corresponding bit is one, then the
request packet received on the portal is retransmitted according to the information in the ROUTING_BOUNDS register.

The NODE_ENABLE register shall be cleared to zero by the bridge upon either of two events: a) a bus reset is observed
on the Serial Bus connected to the bridge portal, or b) the receipt of a quadlet write transaction addressed to the bridge
portal’s RESET_NOTIFICATION register.

Individual bits in the NODE_ENABLE register may be modified by means of a write to the RESET_ACKNOWLEDGE
register. When a bridge portal receives a quadlet write transaction addressed to the RESET_ACKNOWLEDGE register
for which the source_bus_ID field is either 3FF16 or equal to the most significant 10 bits of the portal’s NODE_IDS reg-
ister and both the bus_ID and generation_number fields in the data payload exactly match the current contents of the
RESET_NOTIFICATION register, the bridge shall set the bit in the NODE_ENABLE register that corresponds to
source_physical_ID in the write transaction. The most significant bit in the NODE_ENABLE register corresponds to
physical_ID 63 and the least significant bit corresponds to physical_ID zero.

5.2.11 OUTBOUND_SPEED_MAP register

This register has nearly the same format as a row from the bus manager SPEED_MAP register. The 16 quadlets of the
portal’s OUTBOUND_SPEED_MAP register represent SPEED_MAP.speed_code[i] through speed_code[i + 63], inclu-
sive, where i is equal to 64 times the portal’s NODE_IDS.phy_ID. When the destination_bus_ID of an outbound asyn-

Figure 5-13 — NODE_ENABLE format

definition

initial values

read values

write effects

ignored

last successful update

zeros

node_enable_hi

node_enable_lo
32

32

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 29

chronous packet is equal to the portal’s bus ID, the destination_physical_ID shall be used as an index to
OUTBOUND_SPEED_MAP to obtain the transmission speed for the packet. Otherwise the packet is in transit to another
bus and the transmission speed shall be obtained from OUTBOUND_SPEED_MAP.speed_code[63].

Subsequent to a power reset or bus reset, the all entries in the OUTBOUND_SPEED_MAP shall be set to indicate S100.
Either the bridge portal or the bridge manager may update this register with values that more accurately represent the
speed characteristics and topology of the local nodes, including other bridge portals. The value of
OUTBOUND_SPEED_MAP.speed_code[63] shall not exceed the speed at which the bridge portal may transmit to any
other bridge portal on the connected bus.

5.2.12 STREAM_CONTROL registers

The STREAM_CONTROL registers are an array of quadlet registers, each of which may control the inbound or outbound
routing of a stream by a bridge portal. The number of registers implemented shall be specified by the streams field in the
Bridge_Capabilities configuration ROM entry. The registers are addressed as STREAM_CONTROL[0] (the lowest
address) through STREAM_CONTROL[streams - 1], inclusive. Corresponding STREAM_CONTROL registers from
each bridge portal function as pairs; that is, a stream received according to the parameters of STREAM_CONTROL[n] on
one portal is retransmitted according to the parameters of STREAM_CONTROL[n] on the other portal. The format of the
STREAM_CONTROL register is illustrated by figure 5-14 below.

The st field shall specify the state of the bridge portal with respect to the stream, as encoded by the table below.

When st equals three and the isochronous bit is one, the bridge portal initiates Serial Bus requests to reallocate isochro-
nous bandwidth after a bus reset; these operations are described in more detail in X.

The channel field shall specify the channel number in the stream packet. This field is valid only when st is nonzero.
When the portal is configured to listen, channel specifies which stream packets to receive. Otherwise channel specifies
the channel number to be transmitted in the stream packet. A stream packet’s channel number may be modified as it
passes through a bridge.

Figure 5-14 — STREAM_CONTROL format

Value of st Stream status

0 Inactive

1 Listener

2 Talker

3 Talker (reallocation proxy)

definition

initial values

read values

write effects

payload

zeros

last write

stored

overheadchannel spdist

ignored

zeroslast write

stored

2 31 146 4

rsv
2

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

30 This is an unapproved standards draft, subject to change © 1997 IEEE

The i, or isochronous bit, shall be zero for asynchronous stream operations and one for isochronous stream operations.

When the value of st is two or three, the spd field shall specify the speed at which the stream packets are transmitted, as
encoded by the table below.

The overhead field shall encode a value that indicates the amount of isochronous bandwidth allocated in addition to that
allocated for the isochronous stream packet. Isochronous bandwidth is expressed in terms of bandwidth allocation units,
defined by IEEE Std 1394-1995. One bandwidth allocation unit represents the time required to transmit one quadlet of
data at a future S1600 data rate, roughly 20 nanoseconds. Isochronous overhead includes both arbitration time and the gap
that follows an isochronous stream packet. When overhead is zero, the additional bandwidth is 512 bandwidth allocation
units. Otherwise, the additional bandwidth is overhead * 32 bandwidth allocation units.

The payload field shall specify the maximum number of quadlets that may be transmitted in a single isochronous packet
for this stream. The value of payload does not include the isochronous header, header CRC or data CRC required as part
of an isochronous stream packet; it counts only those quadlets that are part of the data payload.

The values of spd, overhead and payload in the STREAM_CONTROL register shall describe the bandwidth allocated for
the isochronous stream. If the bandwidth allocation is modified, these fields shall be updated accordingly. When overhead
is zero, the bandwidth allocation is 512 + (payload + 3) * 2 4 - spd bandwidth allocation units. Otherwise the bandwidth
allocation is overhead * 32 + (payload + 3) * 2 4 - spd bandwidth allocation units.

NOTE—In the formulae above there is a negative exponent at the S3200 data rate. When dividing by two at this data rate the result
shall be rounded up to the next larger integer value.

5.2.13 REMOTE_PAYLOAD register

The REMOTE_PAYLOAD register is used obtain data returned by a response to a remote read request, to provide data
for a remote write request or first to specify the argument and data values for a remote lock request and subsequently to
obtain the old data value returned by the lock response. Although figure 5-12 below illustrates a 64-bit

Value of spd Data rate

0 S100

1 S200

2 S400

3 S800

4 S1600

5 S3200

6 — 7 Reserved

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 31

REMOTE_PAYLOAD register, the size of the REMOTE_PAYLOAD register is vendor-dependent and specified in con-
figuration ROM. The REMOTE_PAYLOAD register shall be at least an octlet and, if larger, shall be a integral number of
quadlets. The maximum size shall be less than or equal to 64 quadlets.

If a bridge portal implements a REMOTE_PAYLOAD register larger than an octlet, the entire register shall be accessible
by both block read or block write transactions whose data_length field is equal to the size of the REMOTE_PAYLOAD
register reported by configuration ROM

When the REMOTE_REQUEST register is used to initiate a read request, the bridge shall update the
REMOTE_PAYLOAD register with the data value(s) received in the read response packet. When the
REMOTE_REQUEST register is used to initiate a write request, the bridge shall obtain the data value(s) for the request
from the REMOTE_PAYLOAD register at the time the go bit is set. When an application initiates a lock request via the
REMOTE_REQUEST register, the REMOTE_PAYLOAD register shall be used for both purposes: the arg_value and
data_value fields are obtained when the go bit is set and the register is updated with the old_value when the lock response
packet is received.

Figure 5-15 — REMOTE_PAYLOAD format

definition

initial values

read values

write effects

stored

last store or last successful update

zeros

remote_payload_hi

remote_payload_lo
32

32

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

32 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 33

6. Bridge manager facilities

Bridge managers are implemented as a unit architecture within a Serial Bus node. This clause describes the facilities that
a bridge manager shall support in order to interoperate with Serial Bus bridge(s) and other bridge manager(s). These facil-
ities are configuration ROM entries (which are used to identify the presence of the bridge manager within a Serial Bus
node) and control and status registers, CSR’s (which are used to control the operations of and obtain status from the
bridge manager).

6.1 Bridge manager configuration ROM

Each bridge manager shall implement configuration ROM in the general format defined by IEEE Std 1394-1995. Appen-
dix X contains a sample of a valid configuration ROM for a bridge manager and illustrates the usage of the entries
defined below.

6.1.1 Bus_Info_Block

A bridge portal’s configuration ROM shall contain a Bus_Info_Block, as defined by IEEE Std 1394-1995.

6.1.2 Node_Capabilities entry

The mandatory Node_Capabilities in the root directory contains subfields defined by ISO/IEC 13213:1994. All Serial Bus
nodes shall implement the spt, 64, fix, lst and drq bits.

Bridge managers shall set the drq bit to one to indicate that the STATE_CLEAR.dreq bit is implemented.

6.1.3 Bus_Dependent_Info entry

The Bus_Dependent_Info entry is a directory entry in the root directory that specifies the location of the
Bus_Dependent_Info directory within configuration ROM. Figure 6-1 shows the format of this entry.

The entry is identified by the key_type and key_value fields which together have a value of C216.

The indirect_offset field specifies the number of quadlets from the address of the Bus_Dependent_Info entry to the
address of the Bus_Dependent_Info directory within configuration ROM.

NOTE—If a node implements both bridge and bridge manager capabilities, only one Bus_Dependent_Info entry is required in the root
directory.

6.1.4 Bridge_Manager_Capabilities entry

The Bridge_Capabilities entry is an immediate entry in the Bus_Dependent_Info directory that specifies the capabilities
of the bridge manager. Figure 6-2 shows the format of this entry.

Figure 6-1 — Bus_Dependent_Info entry format

Figure 6-2 — Bridge_Manager_Capabilities entry format

C216 indirect_offset
8 24

0216 reserved
8 24

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

34 This is an unapproved standards draft, subject to change © 1997 IEEE

The entry is identified by the key_type and key_value fields which together have a value of 0216.

6.2 Bridge manager control and status registers

In addition to the control and status register (CSR) requirements defined by IEEE Std 1394-1995 for transaction-capable
nodes, Serial Bus bridge managers define common registers within the Serial Bus-dependent portion of initial units space.
Initial units space occupies the addresses at FFFF F000 080016 and above. The locations of bridge portal registers, sum-
marized in table 6-1, are specified in terms of offsets within initial register space, where the base of initial register space
(from the beginning of initial node space) is FFFF F000 000016.

The following sections provide detailed definitions of the registers implemented by Serial Bus bridges.

6.2.1 RESET_NOTIFICATION register

The RESET_NOTIFICATION register provides a common location for nodes to receive an indication of a bus reset on
another bus within the Serial Bus net. All transaction capable nodes that initiate requests to nodes on other buses shall
implement the RESET_NOTIFICATION register with the format shown in figure 6-3 below. This class of nodes includes
bridges, bridge managers, any node that initiates asynchronous requests to remote nodes and any node that establishes
ownership of isochronous resources on other buses. It does not necessarily include either isochronous talkers or listeners.

The bus_ID field indicates which bus has been reset. The bridge manager is expected to propagate the bus reset notifica-
tion by writing the same value to the RESET_NOTIFICATION register(s) of all bridge(s) previously enumerated by the
bridge manager.

The generation_number field is a counter maintained by the bridge portal that observed the bus reset on its Together, the
bus_ID and generation_number fields uniquely identify a bus reset event within a Serial Bus net. Serial Bus nodes that
initiate transaction requests to remote nodes shall use the bus_ID and generation_number fields as a key in a procedure to
reestablish pathways to remote nodes, described in X.

Table 6-1 — Bridge portal register locations

Offset Name Description

241816 RESET_NOTIFICATION Bus resets that occur on remote buses are indicated by the
a quadlet write to this register with the value of the
bus_ID of the reset bus and a generation_number.

Figure 6-3 — RESET_NOTIFICATION format

definition

initial values

read values

write effects

bus_ID reserved generation_number

last update ones last update

stored ignored stored

ones

610 16

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 35

7. Remote requests

The REMOTE_REQUEST, REMOTE_DESTINATION and REMOTE_PAYLOAD registers provide a facility for a read,
write or lock request subaction to be originated by the bridge’s other portal and for the response to be returned. This facil-
ity is available whether or not the bridge is configured to route asynchronous or isochronous packets.

8. Asynchronous operations and routing

This section describes the normal operations of a bridge to route asynchronous transactions once the bridge has been con-
figured by a bridge manager. See a later section, “Serial Bus net configuration”, for initialization details.

Bridge portals function as inbound portals when they eavesdrop on their bus to detect asynchronous primary packets to
be forwarded to another bus. A portal that transmits a primary packet on its bus is acting as an outbound portal. Unless a
bridge portal is deactivated for asynchronous traffic, it is capable of acting as either an inbound or outbound portal.

The table below enumerates the transaction codes recognized by inbound and outbound portals in their forwarding of
asynchronous primary packets.

8.1 Inbound portal operations

Each bridge portal shall eavesdrop on all asynchronous primary packets on its connected Serial Bus in order to determine
whether the destination is local or remote and, if remote, whether or not it shall be forwarded to the outbound portal.
Asynchronous packet routing is determined by a combination of the source and destination ID fields in the packet, the
PORTAL_CONTROL.rte value, the portal’s bus ID and the state of the NODE_ENABLE bits. These interrelationships
are summarized by table 8-2.

Table 8-1 — Asynchronous primary packet transaction codes

Code Subaction Payload

0 Write request Quadlet

1 Write request Block

2 Write response —

4 Read request Quadlet

5 Read request Block

6 Read response Quadlet

7 Read response Block

9 Lock request Block

B16 Lock request Block

Table 8-2 — Asynchronous packet routing

Destination Source

rte Bus ID PHY ID Bus ID Action

—
3FF16 or

NODE_IDS.bus_ID
— —

Local packet. Acknowledge per IEEE Std
1394-1995 and draft standard P1394a.

0
Neither 3FF16 nor

NODE_IDS.bus_ID
— —

Routing disabled. Ignore nonlocal packet and
do not transmit an acknowledgment.

Nonzero
— — 3FF16

Unable to route. Ignore packet and do not trans-
mit an acknowledgment.

3FF16 3F16 Not 3FF16
Global broadcast. Forward packet to outbound
portal but do not transmit an acknowledgment.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

36 This is an unapproved standards draft, subject to change © 1997 IEEE

When the portal’s NODE_ENABLE register determines routing eligibility, the packet’s 6-bit source physical ID is used
as an index into the register’s bits. The most significant bit of the first quadlet of NODE_ENABLE corresponds to a phys-
ical ID of 63 and the least significant bit in the same quadlet represents a physical ID of 32. Physical ID’s 31 through
zero, inclusive, map to the most significant to the least significant bits, respectively, of the second quadlet of
NODE_ENABLE. When an asynchronous packet is otherwise eligible to be forwarded to the outbound portal, the action
taken is specified by the value of the NODE_ENABLE bit mapped from the packet’s 6-bit source physical ID. If the bit
is zero, the packet shall not be forwarded and the portal shall return an address error response. Otherwise the portal trans-
mits an ack_pending and forwards the packet to the outbound portal.

NOTE—The timing requirements of IEEE Std 1394-1995 for the transmission of an acknowledge packet preclude most firmware
implementations of the above algorithm.

Once a portal has determined that an asynchronous packet is to be forwarded, that packet shall be replicated on the
bridge’s internal switching fabric and thus made available to the outbound portal. The implementation details of the inter-
nal switching fabric, in particular the buffering requirements (if any) and the timing of the exchange of asynchronous pri-
mary packets between portals, are beyond the scope of this standard.

8.2 Outbound portal operations

Asynchronous primary packets available on the bridge’s internal switching fabric have already been screened according
to the algorithm described in clause 8.1. As a result, outbound bridge portals simply replicate all packets from the internal
switching fabric to the portal’s connected Serial Bus. The speed at which an outbound asynchronous packet shall be trans-
mitted is determined by both the destination bus ID and physical ID, as specified by table 8-3.

2
>= bus_ID_lower_bound

and
<= bus_ID_upper_bound

—

NODE_IDS.bus_ID

Remote packet origination. Forward packet to
outbound portal according to NODE_ENABLE
and (if forwarded) transmit an ack_pending or
ack_complete.

Neither 3FF16 nor
NODE_IDS.bus_ID

Remote packet in transit. Forward packet to
outbound portal and transmit an ack_pending or
ack_complete.

3
< bus_ID_lower_bound

or
> bus_ID_upper_bound

—

NODE_IDS.bus_ID

Remote packet origination. Forward packet to
outbound portal according to NODE_ENABLE
and (if forwarded) transmit an ack_pending or
ack_complete.

Neither 3FF16 nor
NODE_IDS.bus_ID

Remote packet in transit. Forward packet to
outbound portal and transmit an ack_pending or
ack_complete.

All other combinations not described above Unable to route. Ignore packet and do not trans-
mit an acknowledgment.

Table 8-3 — Outbound packet speed

Destination

Bus ID PHY ID Speed

NODE_IDS.bus_ID
Not 3F16 OUTBOUND_SPEED_MAP.speed_code[PHY ID]

3F16 S100

3FF16 3F16 S100

Neither 3FF16 nor
NODE_IDS.bus_ID

— OUTBOUND_SPEED_MAP.speed_code[63]

Table 8-2 — Asynchronous packet routing (Continued)

Destination Source

rte Bus ID PHY ID Bus ID Action

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 37

After transmitting an outbound asynchronous packet, the bridge portal expects to observe an acknowledge packet. The
action taken by the bridge portal depends upon the acknowledgment, as defined in table 8-4.

Table 8-4—Outbound portal actions in response to acknowledgment

Name Action

ack_complete If the packet was a request subaction, the bridge shall transmit the appropriate
response packet (with resp_code that indicates RESPONSE COMPLETE) to the
node identified by source_node_ID in the request.

If the packet was a response subaction no further action is required.

ack_pending If the packet was a request subaction no further action is required.

A pending acknowledgment to any other primary packet is an error but requires
no action by the bridge.

ack_busy_X
ack_busy_A
ack_busy_B

The bridge may retransmit the packet in the next fairness interval in accordance
with BUSY_TIMEOUT.

If the bridge abandons retry attempts and the packet was a request subaction the
bridge shall transmit the appropriate response packet (with resp_code that indi-
cates TBD) to the node identified by source_node_ID in the request.

If the bridge abandons retry attempts and the packet was a response subaction no
further action is required.

ack_tardy To be determined...

ack_conflict_error
ack_data_error
ack_type_error

ack_address_error

If the packet was a request subaction, the bridge shall transmit the appropriate
response packet (with resp_code that indicates RESPONSE COMPLETE) to the
node identified by source_node_ID in the request.

If the packet was a response subaction no further action is required.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

38 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 39

9. Stream operations and routing

This section describes the normal operations of a bridge to route stream data once an application has configured interven-
ing bridge(s) to support an end-to-end path between a talker and a listener.

Bridges that support asynchronous streams shall be able to recognize stream packets (identified by their channel number)
on an inbound portal and retransmit the stream packet (with a remapped channel number) on an outbound portal. Bridges
that support isochronous streams in addition shall support the distribution of a synchronized cycle clock throughout the
Serial Bus net.

Bridge portals function as inbound portals when they eavesdrop on their bus to detect stream packets to be forwarded to
one or more other buses. A portal that repeats an stream packet on its bus is acting as an outbound portal.

The clauses that follow describe cycle clock replication and the algorithms that govern the operation for each mode of
portal behavior.

9.1 Cycle clock replication

Just as there is a single cycle master node that provides uniform system time to a Serial Bus, a net of buses interconnected
by bridges requires a single cycle master as the source of system time for the entire net. This singular cycle master is
name the net cycle master.

NOTE—A usable name is needed for this singular cycle master. The affectionate term “cycle monster” is undoubtedly too informal for
a standard but it pleases the editor to use this nickname until the working group selects a more formal appellation.

The net cycle master may be a cycle master-capable node or it may be one of the portals of one of the bridge(s) that con-
nect the Serial Bus net. In either case, the net cycle master is selected and enabled by the bridge manager.

Once a net cycle master is active, the bridges propagate cycle start packets in accordance with the value of the clk field in
each portal’s PORTAL_CONTROL register. A bridge that propagates the cycle time observes cycle start packets on only
one portal; the remaining bridge portals shall be cycle masters or they shall be inactive with respect to isochronous traffic.

The value of the clk field is set by the bridge manager as it enumerates buses in the Serial Bus net and determines the
routing for isochronous data. The bridge manager shall set the value of each portal’s clk field subject to the following
restrictions:

a) Any number of portals may have a clk value of zero.

b) At most one portal may have a clk value of one.

c) No portal shall have a clk value of two unless at least one other portal has a clk value of one. If there is at least
one such portal, any number of portals may have a clk value of two.

Note that the value of clk determines the portal’s behavior for all other isochronous data. The reception or transmission of
isochronous data is inhibited on all portals with a clk value of three, regardless of the state of the portals’
CHANNEL_SWITCH registers. This is an important consideration when the physical topology of the Serial Bus net
includes loops, since it permits the bridge manager to parse the Serial Bus net into a tree.

A bridge shall have a single, free-running cycle timer shared by all portals1. The cycle timer shall be resynchronized in
accordance with cycle start packets observed by one of the portals. This portal is identified by a value of one for the clk
field in its PORTAL_CONTROL register.

1 This is a logical requirement, not an implementation. A bridge design may have separate cycle timers for the portals so long as the
implementation provides a method to retain synchronization between the timers.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

40 This is an unapproved standards draft, subject to change © 1997 IEEE

When the bridge’s cycle timer generates a cycle synchronization event (i.e., the cycle_count portion increments when a
125 µs period elapses), the PHY’s of all portals whose clk field has a value of two shall arbitrate for the bus and transmit
a cycle start packet as specified by IEEE Std 1394-1995.

During an isochronous cycle, any portal whose PORTAL_CONTROL.clk field is nonzero shall forward isochronous data
packets in accordance with the algorithms described in clauses 9.2 and 9.3.

9.2 Inbound portal operations

During an isochronous cycle, inbound portals eavesdrop on all stream packets in order to examine the channel field in the
packet header. Although the details are dependent upon the implementation, it is assumed that each portal has a bit mask
that identifies which of the 64 channels are to be buffered and, after a constant isochronous delay across the bridge’s
internal switching fabric, subsequently retransmitted by the other portal.

The information necessary to determine whether or not a particular channel is to be retransmitted resides in the inbound
portal’s STREAM_CONTROL register(s). If the st field has a value of one, the portal is enabled to listen to and forward
packets identified by the channel field in the STREAM_CONTROL register.

An inbound portal shall forward a stream packet by making it available to the bridge’s internal switching fabric, with the
expectation that the other portal subsequently retransmits the packet.

9.3 Outbound portal operations

Outbound portals shall maintain queue(s) of isochronous packets observed on the bridge’s internal switching fabric that
match the portal’s criteria for retransmission. Isochronous stream packets shall be retransmitted on a particular isochro-
nous cycle number that is a fixed number of cycles later than the cycle during which the packet(s) were observed by the
inbound portal.

Stream packets distributed via the bridge’s internal switching fabric shall be identified to the outbound portal by vendor-
dependent methods.

Before the packet may be retransmitted, the outbound portal shall transform the packet header according to the informa-
tion in the STREAM_CONTROL register. The STREAM_CONTROL register specifies the channel number for the
retransmitted stream packet header. This register also specifies the speed at which the stream packet shall be transmitted.

9.4 Common Isochronous Packet format time stamps

The bridge is responsible to both filter and transform packets with respect to channel numbers, as described in the preced-
ing clauses. Isochronous stream packets, if they are in the Common Isochronous Packet (CIP) format specified by IEC
61883/FDIS require additional transformations of optional time stamp data contained within their data payloads. The time
stamp transformations are explained below.

CIP stream packets may contain isochronous time stamp information that is absolute rather than relative. That is, the time
stamps contained within header data are a fixed offset ahead of, in the most significant bits, the isochronous cycle times
contained in the cycle start packet that indicates the cycle in which the packets are transmitted. Time stamps may be
found in one of two places in packets that conform to CIP format:

— the syt field of the second quadlet of a two-quadlet CIP header if the fmt field in that quadlet has a value between
zero and 1F16, inclusive; and

— the cycle_count and cycle_offset fields of the isochronous source packet header.

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 41

Both of these time stamps are specified in absolute values that reference a future cycle time. Since isochronous packets
experience a constant delay when routed through a bridge it is sufficient to transform the time stamp(s) by the addition of
this constant. The value, in units of cycles, shall be obtained from the isochronous_delay field in the Bridge_Capabilities
entry in configuration ROM.

For the syt field, the transformation shall be performed by applying the following formula (shown in C code notation):

syttransmitted = (sytobserved + (isochronous_delay << 12)) & 0x0000FFFF;

Because IEEE Std 1394-1995 constrains cycle_count to the range zero to 7999, inclusive, the transformation of the
cycle_count component of the source packet header differs. The addition of the constant isochronous delay to the
cycle_count shall be performed modulus 8000, as shown below:

cycle_counttransmitted = (cycle_countobserved + isochronous_delay) % 8000;

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

42 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394.1 Draft 0.03 High Performance Serial Bus Bridges
October 18, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 43

10. Reset notification

To be determined...

11. Serial Bus net configuration

The bridge manager, once selected as described in the preceding section, is responsible to: a) enumerate all the connected
buses within the Serial Bus net and assign each a unique bus_ID; b) configure each Serial Bus bridge so that it properly
routes asynchronous and isochronous data from one bus to another; and c) arbitrarily parse the Serial Bus net topology
into (logically) a tree topology even if it is (physically) connected with loops. The sections that follow describe the pro-
cedures the bridge manager uses to accomplish these goals.

In the discussion of the procedures that follow, a few definitions are necessary. The global variable max_bus_ID, which
is initialized to zero at the start, represents the highest bus_ID assigned to any bus in the Serial Bus net. A bus is enumer-
ated if a broadcast write has occurred to the NODE_IDS register of all nodes connected to the bus. At this point, the state
of the bridges is indeterminate and the bus is unconfigured. An unconfigured bridge on an enumerated bus that is to be
configured is the target bridge. Each target bridge becomes outbound configured when all of its PORTAL_CONTROL[n]
registers are initialized and when those portions of its ROUTING_BOUNDS registers necessary to forward transactions
from the bridge manager are initialized. When all bridges on an unconfigured bus are outbound configured, the bus is out-
bound configured as well. During the traversal of the Serial Bus net, the information needed to complete configuration of
the outbound configured bridges accumulates each time max_bus_ID is incremented. When the last bus is enumerated, it
is possible to update all the remaining portions of the bridge ROUTING_BOUNDS registers. Once this update is com-
plete, the bridges and the buses are fully configured.

NOTE—Should a possible algorithm by which the bridge manager configures the net be described in an informative annex? There are
probably many ways to configure the net and we should not specify one of them as normative.

High Performance Serial Bus Bridges P1394.1 Draft 0.03
October 18, 1997

44 This is an unapproved standards draft, subject to change © 1997 IEEE

