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P1394A Enhancements

1.0  Overview

Engineering never stops. Before the 1394 standard was ever brought to vote, more features 
and enhancements were being discussed (and implemented). In a very real sense, the IEEE 
1394-1995 Standard represents not so much a finished work as a snapshot of a work in 
progress, encompassing the body of knowledge as we knew it in late 1994. 

Silicon changes the engineering thought process. Before silicon exists, fundamental 
changes can be contemplated, changes which may obsolete prior approaches. After sili-
con, new ideas must pass the test of backward compatibility. 

A handful of these backward-compatible enhancements have accumulated. All have been 
publicly disclosed and discussed; some are patented or patent-pending; some are straight-
forward; some are still contentious. Regardless of their legal status or palatability, this 
document will attempt to describe the enhancements in sufficient detail to facilitate techni-
cal discussion.

2.0  Connection Debouncing

Devices on a 1394 bus automatically count off during the bus initialization phase, thereby 
acquiring a physical node number. There may be up to 63 devices on a bus; permissible 
node numbers range from 0–62. A node number of 63 indicates that bus initialization is 
pending, and that a valid node number has not yet been assigned. Central 1394 dogma has 
always dictated that any connection status change—the addition or removal of a device(s) 
from a 1394 bus—will cause the bus to re-initialize.

2.1  Connection Status Change & 1394 Compliance

Section 4.4.2.1 of the 1394-1995 standard covers the bus reset phase of arbitration.  In par-
ticular, Section 4.4.2.1.1 outlines the conditions which cause a node to initiate bus reset.

Transition All:R0b. This is the entry point to the bus reset process if this node is 
initiating the process. This happens under the following conditions:

1) Serial Bus management makes a PHY_CONTROL.request. 

2) The PHY detects a change in any port’s connection status.

3) The PHY stays in any state other than Idle, Reset_Wait, Transmit, or 
Receive for longer than MAX_ARB_STATE_TIME.

So the standard states that a port connection status change shall cause the PHY to transition 
to Reset Start. The earliest silicon implemented exactly that and nothing more; any con-
nection status change caused immediate transition to Reset Start. There are two problems 
with the straightforward implementation.
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FIGURE 1. Connection Asymmetry - Bias voltage is applied to TpA, sensed on TpB. Node A will 
sense the new connection first.

1) The connection process is not symmetric. When PHYs A and B are connected, they will 
generally not recognize the connection at the same time. The earlier node will immedi-
ately go to Reset Start, but will be unable to complete bus initialization until the late 
node also detects the new connect. During this time interval, which may be tens of mil-
liseconds, the early side of the bus thrashes in bus initialization states, and is unable to 
send or receive packets.

2) The connection process isn’t clean; as contacts scrape together, the electrical connec-
tion may be made and broken many times. Bus initialization only requires ~200 µsec-
onds; one new connection may generate a storm of connect/disconnect events.

Both of these mechanisms are of short duration—tens of milliseconds—but during this 
time data throughput is interrupted, which poses a serious drawback for many isochronous 
applications.

2.2  Contact “Bounce”: Proposal for Connection Debouncing

Adding connection debouncing to 1394-1995 operation requires no change to the basic 
state machine. The only real change is to the definition of connection_state_change, the 
second term of the All:R0b transition shown below.

FIGURE 2. 1394-1995 Standard Pathways to Reset State
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bus_reset_signal_received

All:R0a
PH_STATE.ind(BUS_RESET_START);
initiated_reset = FALSE;

All:R0b

PHY_CONT.req(bus_reset) ||
connection_state_change ||
arb_state_timeout

PH_STATE.ind(BUS_RESET_START);
initiated_reset = TRUE;
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The standard requires that a connection flag for each port be latched whenever a connect 
status changes; this stored connect status is old_connect(i). The current connect status, 
connected(i), is continuously compared to old_connect(i), to determine if there has been a 
change.

boolean connection_state_change()  {
// true if any port goes from connected to disconnected or vice-versa
int i;
state_change = FALSE;
for (i = 0; i< nport; i++)  {

if (connected[i]  !=  old_connect[i]);  {  //did connection change?
state_change = TRUE;
old_connect[i]  =  ~old_connect[i];
}

}
return (state_change);
}

FIGURE 3. 1394-1995 Definition of connection_state_change

The simplest way to debounce the connection process is to add per port new connect tim-
ers.  Disconnects may still be recognized immediately. This is sufficient to quell the reset 
storm resulting from contact scraping. 

boolean connection_state_change() {
// true if any port goes from connected to disconnected
// true if any port goes from disconnected to connected for the timeout
boolean static connect_in_progress[NPORT];
boolean state_change = FALSE;
int i;
for (i = 0; i < NPORT; i++) {

if (connect_in_progress[i])
if (~connected[i])

connect_in_progress[i] = FALSE; // lost attempted connection
else if (connect_timer[i] >= CONNECT_TIMEOUT) {

connect_in_progress[i] = FALSE;
old_connect[i] = TRUE; // confirmed connection
state_change = TRUE;
}

else if (connected[i] && ~old_connect[i]) { // possible new connect?
connect_timer[i] = 0; // start connect timer
connect_in_progress[i] = TRUE;
}

else if (~connected[i] && old_connect[i]) { // disconnect?
old_connect[i] = FALSE; // effective immediately
state_change = TRUE;
}

return (state_change);             // collective OR of individual port state changes
}

connect_timer[n]
// count up if port[n] connect_in_progress is true
// count clears to 00 if no port connect_in_progress is true

FIGURE 4. Revised Definition of connection_state_change
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There are several ways to implement the connection timer. The obvious approach is to 
have a timer for each port. However, it’s a lot of bits to count a 25MHz clock up to reason-
able debounce intervals, so the obvious approach is prohibitive.

Nothing is lost if the counter granularity is greater than 40 ns. An N stage counter could be 

used to generate a clock pulse once every (1/24.576)•2N µseconds.  Then each port could 
have a smaller counter which would count these clock ticks. Suppose N is 17; that yields a 
clock tick once every 5.33 milliseconds. If the per port timer is an additional six bits, then 
the timeout is 341.33 milliseconds. Since the first count could occur any time from 0–5.33 
milliseconds (the granularity), the timeout is in the range 336–341.33 milliseconds.

2.3  Connection Asymmetry: Normalization Proposal

Regardless of the implementation details for the connection timer, the other problem of 
connection asymmetry remains. Generally two nodes being connected do not recognize 
the new connection at the same time; the new connect timer by itself does not solve the 
problem. In the case where a new PHY connects to an old PHY, the old PHY could thrash in 
bus initialization states until the new PHY finally recognizes the connection. Even in the 
more benign case of new PHY–new PHY, the connection recognition could be staggered by 
several milliseconds, during which time one side of the new connect hangs.

The asymmetry problem can be fixed simply:

1) During the connection timeout interval, ignore all arbitration states from the newly con-
nected port  except for bus reset (AB = 11). 

2) If bus reset is received during the connection timeout interval, go to Bus Reset Start.

There are still some problem cases.  Suppose a single device with an old PHY is plugged 
into a port on a new PHY which is in an existing 1394 bus. If the new PHY responds imme-
diately upon seeing bus reset on the new connection, then multiple bus resets due to con-
nector scraping are likely. This could be overcome by insisting that new PHYs in existing 
1394 buses will wait for some minimum timeout period for new connections, even if bus 
reset is sensed on the new connection earlier. 

The opposite case, where a single device is plugged into an old PHY on an existing 1394 
bus, is tough to solve.  The old PHY can generate a reset storm regardless; the single device 
should go to Bus Reset Start as soon as bus reset is detected, to insure that it doesn’t add 
any delay to bus initialization.

Cases where two existing 1394 buses are joined are straightforward. If both PHYs of the 
new connection have debounce circuits, then bus initialization will proceed smoothly.  If 
one is one old PHY, and one new, then the new PHY will stall the old PHY for the minimum 
timeout period. If the old PHY is in the “important” bus segment, then data traffic will be 
stopped for the minimum timeout period. Of course, the old PHY will generate a reset 
storm regardless; nothing the new PHY does can prevent some period of traffic interrup-
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tion. The possible prolongation of traffic interruption when old PHY silicon is present is a 
reasonable price to pay for clean operation with new PHY silicon.   

Note: 341.33 milliseconds = (1/24.576MHz) • 223 ; 85.33 milliseconds = (1/24.576MHz) • 221 

The asymmetry fixes force some minor changes to the All:R0a path:

FIGURE 5. Connection Debounce Changes to R0:Reset Start Entry Paths

2.4  Associated Clarifications

A side issue is that of the “sticky bit” used to reset the gap count to its maximum value 
after two bus resets. This bit, called gap_count_reset_disable in Table 4-44 of the standard, 
is set any time the gap count register is written, and cleared by a bus reset If the bit is 
found to be already cleared at the start of a bus reset, then the gap count is reset to its max-
imum value. 

Part of the rationale for this scheme was that any new connect would generate multiple bus 
resets, thus insuring that gap counts would fall back to the default. However software diag-
nostics would be able to initiate a bus reset—thus collecting a fresh batch of self-id pack-
ets—without affecting the gap count. Contact debouncing does away with multiple resets 
for new connects; thus a new connect might create a bus with the gap count set to too low 
a value, or a bus with nodes set to different gap counts. The proposed software work-
around is to mandate that any time the gap count is written, software should initiate a fol-
low-up bus reset. This allows collection of self-id packets (and therefore verification that 
all nodes have correctly updated their gap counts). All nodes’ gap_count_reset_disable 
flags are left set FALSE, and the next bus reset (perhaps from a new connect) will set gap 
counts to the maximum value. 

TABLE 1. Timeout Values for Connection Debouncing

PHY Status
Time to Initiate Bus Reset
After New Connect Detection

Time to Respond to Bus Reset
Detected on New Connect Port

single device phy 335–342 milliseconds 140–280 ns

networked device phy 335–342 milliseconds 79–86 milliseconds

R0:Reset Start

All:R0a PH_STATE.ind(BUS_RESET_START);
initiated_reset = FALSE;

All:R0b

PHY_CONT.req(bus_reset) ||
connection_state_change ||
arb_state_timeout

PH_STATE.ind(BUS_RESET_START);
initiated_reset = TRUE;

(bus_reset_signal_received & connect_in_progress & min_debounce_timeout)

(bus_reset_signal_received on connected port) |
(bus_reset_signal_received & connect_in_progress & leaf) |
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Note that gap_count may be written by either of two methods. The link may directly write 
these parameters to its local PHY with a PHY control request (see Standard Section 4.1.1.1), 
Alternately a link may write these parameters with a link remote configuration request 
(see Standard Section 6.1.1.4). In some early PHY implementations, the link remote con-
figuration request would not write to the local phy. There is no reason for this however; 
future PHY implementations should respond to PHY configuration packets, whether 
received or transmitted.

There is also a force_root bit. Although it is written by the same method as the gap_count, 
it should behave differently with bus resets. In general, it should stay set — so that the 
same node will be root after bus reset — but there are two exceptions.

1) If the force_root bit is set in an isolated node, it should be cleared automatically by the 
next bus reset. The standard specifies that isolated nodes shall not set their force_root 
flag (Section 8.4.2.6). This could be enforced in hardware, but then self-test diagnostics 
would be unable to check this bit in a normal fashion when the device is isolated. Man-
dating its automatic clearing upon bus reset accomplishes the same thing, and allows 
diagnostics programmers some latitude. 

2) If arb_timer ≥ FORCE_ROOT_TIMEOUT in state T0: Tree-ID Start, then force_root 
should be cleared. If this timeout goes off, it is very likely that multiple nodes have their 
force_root bits set. If by chance the right node ended up root anyway, then software 
would not sense the problem. And there is a problem — bus initialization would have 
required an additional 83.3–167 µseconds, which could disrupt isochronous data.

Summary of Changes:

1) Gap_count should still be sticky; it should persist through one bus reset, but not two. 

2) Section 8.4.6.2 permits a bus manager to initiate a bus reset as a means of verifying suc-
cessful write to all nodes gap count registers. Change the permitted action to a manda-
tory action: After the bus manager has broadcast a PHY configuration packet which 
writes the gap_count, it shall initiate a bus reset. This allows the bus manager to con-
firm the write, and conditions the PHYs so that a later bus reset will cause the gap_count 
to revert to its default value.

3) The force_root bit should clear on bus reset if it was set while the node was connected 
to no other node. It should also clear if a force_root_timeout occurs in state T0: Tree-ID 
Start. Otherwise it should be unaffected by bus resets and bus initialization.

4) All future PHY implementations should allow local writes of force_root and gap_count 
by link remote configuration requests. This would help insure consistent bus-wide set-
ting of gap_count and force_root fields. (See Section 5.2.2.)

3.0  Short Arbitrated Bus Reset

Bus initialization is composed of three phases: Bus Reset, Tree ID, and Self ID. The Self 
ID phase requires approximately one µsecond per node, roughly 70 µseconds worst-case 
(63 nodes). Tree ID is quite fast, probably under 10 µseconds. The longest duration phase 
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is Bus Reset—when the bus reset signal AB=11 propagates over the bus—which lasts 
~167 µseconds. The total duration is longer than the cycle time for isochronous data, and 
forces the implementer to add buffer depth if uninterrupted isochronous data flow is 
desired. If enough time could be trimmed from bus initialization, the buffer size might be 
reduced.

The sole reason for the long duration of bus reset is that a transmitting node will not detect 
a colliding bus reset signal. The bus reset state must be long enough to out-wait the longest 
possible packet transmission. The long duration of the bus reset signal tends to guarantee a 
successful bus reset, regardless of what bus activity was in progress.

Suppose a bus is operating normally, and one of the nodes arbitrates for and wins the bus. 
If that node then initiates bus reset, every other node on the bus should cleanly receive the 
bus reset signal with little delay, since winning bus arbitration guarantees that no other 
node can be transmitting. In this scenario, bus reset can be of much shorter duration; 1.3 
µseconds is enough, provided that PHY-to-PHY cable delays never exceed ~ 500 ns, which 
allows about 100 meters of cable or fiber. The worst case bus initialization time drops from 
~250 µseconds to ~80 µseconds; a more common bus of 16 devices would be up and run-
ning in ~20 µseconds.

Such operation is the basis for short arbitrated bus reset. The intent is to provide an accel-
erated reset mechanism for simple connects and disconnects. Full implementation requires 
consideration of the implications for the bus reset states, time-outs, transitions to bus reset, 
a new reset_bus_request—a wealth of details. The implementation of connection 
debouncing is assumed as well.

3.1  Simple Bus Reset & 1394-1995

The bus reset states—Reset Start and Reset Wait—are straightforward, and well described 
by the Standard in Section 4.4.2.1. More is left to the imagination when it comes to the 
transitions into bus reset; the state machine diagrams for tree-id, self-id, and cable arbitra-
tion (Figures 4-23, 4-24, and 4-25 in the 1394 Standard) all have this caveat — NOTE: 
This state machine does not include the reset conditions, since that would result in an 
overly-complex figure. See the All:R0a and All:R0b transition statements on page 102. 
The C code for the various state actions also makes no mention of when the All:R0 transi-
tions are permitted. There is some variation in implementations, due to differing interpre-
tations, particularly with the All:R0a transition. Some clarification and tightening is in 
order, i.e.: 

The All:R0a transition should be taken whenever:

1) bus reset is received on a port whose local drivers are tri-stated, and 
which is receiving arbitration signals (but not receiving data-strobe sig-
nals), 

2) bus reset is received on a port which is sending an arbitration signal 
which does not interfere with a bus reset signal (i.e., the port is not send-
ing a logic 0 arbitration signal on either TpA or TpB).
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3.2  Bus Reset State Changes for Short Arbitrated Reset

The states R0: Reset Start and R1:Reset Wait are affected; both must handle short time-
outs (~ 1 µsec), as well as long time-outs (~167 µsec). Long time-outs are still necessary 
as a fail-safe mechanism. Which timeout is used can be controlled by a new variable 
go_short. If a short reset fails by arbitration timeout in state R1: Reset Wait, then go_short 
should clear, and R0:Reset Start should be re-entered, this time to do a long bus reset. The 
Bus Reset state diagram is revised to include the short reset time-outs; the R0: Reset Start 
and R1: Reset Wait states are otherwise unchanged; no changes need be made to the C 
code for these states.

FIGURE 6. MODIFICATIONS TO R0:R1 AND R1:R0 TRANSITIONS

3.3  TRANSITIONS TO R0: RESET START

The bus can be in any of four phases: Reset, Tree ID, Self ID, or Arbitration. Reset was 
covered in the preceding section. Does short arbitrated bus reset imply any changes for 
Tree ID and Self ID phases? Specifically, is it worth trying a short reset in those states if a 
bus reset is triggered?

Tree ID is a signalling intensive phase. The TX_PARENT_NOTIFY signal (0Z) could inter-
fere with reception of a bus reset signal, depending on details of implementation; the arbi-
tration timeout values for Tree ID states is longer than the short reset time-outs. An 
attempted short reset while the bus is in Tree ID may not succeed in resetting the entire bus 
cleanly. 

TABLE 2. Reset Timer Values

Timer Constants Timeout Value Comment

SHORT_RESET_TIME   (new) 1.3 - 1.4 µs ~ 128/BASE_RATE

LONG_RESET_TIME 166.6 - 166.7 µs ~ 16384/BASE_RATE

SHORT_RESET_WAIT   (new) 1.4 - 1.5 µs ~ 144/BASE_RATE

LONG_RESET_WAIT 166.8 - 166.9 µs ~ 16400/BASE_RATE

R0:Reset Start

All:R0a

All:R0b

R1:Reset Wait

arb_timer ≥ SHORT_RESET_TIME & go_short ||
arb_timer ≥ LONG_RESET_TIME

arb_timer ≥ SHORT_RESET_WAIT & go_short ||
arb_timer ≥ LONG_RESET_WAIT

go_short = FALSE;

reset_complete()
R1:T0

R0:R1

R1:R0
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Self ID is another signalling intensive phase. There is no appreciable idle time on the bus. 
The TX_BUS_GRANT signal (Z0) could interfere with reception of bus reset, as could the 
transmission and reception of self-id packets. Again, a short reset is unlikely to succeed.

The whole rationale for short reset is that arbitration is carried out first, so that the bus is in 
a known receptive state, thus guaranteeing that a short reset will succeed. This also argues 
against trying a short reset while in Tree ID or Self ID; arbitration is not possible until the 
Arbitration phase is reached. 

There are four general circumstances which can lead to bus resets: direct software com-
mand (setting the INITIATE_BUS_RESET bit), state time-outs, connection status changes, 
and reception of the bus_reset signal. Furthermore, the actions to be taken can depend on 
whether the PHY is part of a bus, or is single.

3.3.1  Direct Software Command

Software can set the INITIATE_BUS_RESET (IBR) bit, which always opts for an immediate 
long reset. There should also be a new register bit, specific for initiating short resets—
INITIATE_SHORT_BUS_RESET (ISBR). For simplicity, the new bit ISBR should only initiate 
short resets. If ISBR is set while the PHY is in some phase other than Arbitration, then the 
PHY should continue with normal bus initialization until it reaches the Arbitration phase. 
At that time, the PHY can arbitrate for the bus and initiate short bus reset. Both IBR and 
ISBR bits should always clear upon entry to the R0: Bus Reset state.

What action should an unconnected PHY take if software sets ISBR? This is an arcane point, 
probably of more interest to manufacturing test engineers than users. But assuming the 
PHY has reached the Arbitration phase of bus operation, it should initiate a short bus reset, 
just like a connected PHY. The obvious difference is that, being unconnected, all its 1394 
ports will be tri-stated, so there is no bus activity to observe. But the PHY should send the 
appropriate bus reset, node ID, and gap status messages to the link, as it goes through the 
normal bus initialization steps. 

3.3.2  State Time-outs

State time-outs indicate that the whole bus arbitration mechanism has “broken.” Typically 
these occur as a PHY is powering up, when operation is erratic (future implementations 
would do well to pay special attention to the turn-on timing of the TpBias outputs as a PHY 
powers up). But whatever the cause, the general indication is that the bus is broken, and a 
long reset is called for. 

3.3.3  Connection Status Changes

Short reset was invented specifically to handle new connects and disconnects. In the case 
of connection status changes occurring while in Arbitration phase, the short reset process 
should be initiated. If the PHY is not in Arbitration phase, but still in Bus Reset, Tree ID or 
Self ID, then there is room for discussion. Clearly some situations dictate immediate long 
bus reset—if disconnect is detected on a parent port, for example.  In other situations, an 
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argument could be made for allowing bus initialization to proceed, and then initiating a 
short reset when Arbitration phase is reached. But note that this will cause two bus initial-
izations, one after the other, which may be as awkward to handle as simply forcing a long 
reset when the connection status change is first detected. 

Back to basics—short resets have been invented so that a user can plug in or remove a 
device from a bus running isochronous data, without unduly disrupting the data stream. If 
connection status changes are frequently occurring during bus initialization—more often 
than once a year—then something is going on beyond the simple model of a user occa-
sionally plugging in or removing equipment. With that understanding, it is acceptable that 
connection changes sensed during Tree ID or Self ID result in the immediate triggering of 
a long reset. In a bus with infrequent bus resets, hitting the 80 (or even 250) µsecond win-
dow of bus initialization is unlikely.

Assume that the node(s) with connection status changes are in the Arbitration phase of bus 
operation. Make a distinction between bus nodes and single nodes. Bus nodes are part of 
an existing 1394 bus of two or more nodes, which are up and running in arbitration phase 
before the connection event. Single nodes are nodes which are not connected to any other 
prior to the connection event. There are four cases of interest: disconnection of a parent 
node, disconnection of a child node, connection of a new single node, and connection of a 
new bus node (i.e. connection of two operating 1394 buses together). 

Parent node disconnection is the simplest. Bus arbitration is impossible since the root is 
no longer part of the bus fragment. Initiate long bus reset.

Child node disconnection is straightforward.  As described above, the network node 
sensing the disconnect arbitrates for the bus, and initiates short reset. Whether one node or 
a subnet of several nodes was removed from the bus doesn’t affect the process. 

Single node connection is more interesting. Assume that a new connection is made 
between a single node and a bus node. To insure a successful short arbitrated reset, the two 
nodes have to cooperate; the actions taken by the single node are different from those of 
the bus node. 

The bus node arbitrates for its bus. If it wins arbitration, it initiates a short bus reset. 

The single node has to keep quiet. Ideally it should sit in A0: Idle for a lengthy timeout 
period, to allow sufficient time for the bus node to win arbitration and initiate bus reset. 
When bus reset is sensed on its newly connected port (from the bus node),  it should tran-
sition to bus reset state, and do a short reset. The timeout period should be as long as the 
connection timeout period (342 milliseconds) plus a reasonable time to insure successful 
bus arbitration, plus some reasonable estimate to cover connection asymmetry. There is no 
great advantage in shaving milliseconds off—why go to all this trouble to invent a new 
reset mechanism, and then have it occasionally do a long reset anyway? So let the total 
timeout period be at least 341 (the connection timeout period) + 341 (call this the 
Await_Bus_Reset period) = 682 milliseconds total.
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If the single node times out before bus reset is sensed, then it initiates bus reset itself. 
Since it has no way of knowing what state the other newly connected node is in, it initiates 
a long bus reset. Note that this is the pathway taken by a pair of single nodes. Each waits 
for the other to initiate short bus reset until finally one or the other times out and initiates 
long reset. Since both were single nodes, there is no bus traffic to interrupt, so there is no 
reason not to do a long bus reset.

Connecting two buses together is not likely to produce a short reset. The two nodes with 
new connections arbitrate for their respective buses. Typically one wins before the other, 
and initiates a short reset. If the slower node senses the short reset (it  may not, depending 
on its activity at the time), it initiates a long reset. In the event that the slower node doesn’t  
notice the short reset, then the early node will time out in its bus initialization attempt, and 
will initiate a long reset. While it is possible that the two nodes could initiate short reset at 
the same time, and not fall into a long reset, it is extremely unlikely. 

3.3.4  Reception of Bus Reset Signal

For a bus node with no new connections, the arrival of a short reset will come at a well 
defined time. The initiating node has arbitrated for the bus and won, and has sent out a nor-
mal duration 100 Mb/s data prefix; all other nodes should accordingly be in state A5: 
Receive. A bus reset signal received in any state other than A5:Receive may be assumed to 
be a long reset signal. 

For a bus node with a new connection, arrival of a bus reset signal on the new connect port 
indicates: connection of an older PHY (which doesn’t support short arbitrated bus reset), or 
timeout by a single node (682 milliseconds has elapsed since connection event), or con-
nection of another bus (which has gone through arbitration, and is now trying to initiate a 
short bus reset). In all three cases, a long bus reset is required and/or inevitable.

A single node will be in a state somewhat dependent on local conditions and implementa-
tion. A fully standard compliant PHY will progress through bus initialization to state A0: 
Idle even when unconnected. But software could initiate bus reset, or even packet trans-
mission on an unconnected node, so it is possible for a single node to be in almost any 
state. From the standpoint of getting short resets to reliably work, software diagnostics 
should be cautious about actions on single nodes. There are no status bits which indicate 
that a new connect timeout is in progress, so there is no way for software to determine 
when it is safe to exercise an “unconnected” phy. Implementations may differ regarding 
their susceptibility to interference from such activity.

Regardless of the single node’s state, if a newly connected port detects bus reset, short 
reset should be attempted. The port will be in the connection timeout or the subsequent 
await_bus_reset timeout period (682 ms total) when the bus reset signal is detected. 

The simple pathways to bus reset have gotten considerably more complicated. The next 
figure shows the various pathways, sorted by short/long and initiated_true/false. The con-
venience of not showing bus reset conditions from other states is rapidly losing its “conve-
nience.



P1394A Enhancements January 3, 1997 12

FIGURE 7. Entry Paths to R0:Reset Start

3.4  Bus Arbitration for Short Reset

Finally, the short arbitrated bus reset mechanism introduces a new flag—ISBR_request, 
(Initiate Short Bus Reset—which behaves like a bus request. Its behavior should be the 
same, whether set by direct software write, or by a child connection status change.

The fundamental purpose of this mechanism is to minimize the interference with isochro-
nous data streams.  An ISBR_request should not generate a bus request during isochronous 
data mode. This condition can be met simply—the new ISBR_request should have the same 
timing requirements as a FAIR_request.  In the arbitration state diagrams, wherever a 

R0:Reset Start

All:R0a

(SN && BR_RCV_UP && (CIP || ABR)) ||

PH_STATE.ind(BUS_RESET_START);
initiated_reset = FALSE;
go_short = TRUE;

All:R0b

(PHY_CONT.req(short_bus_reset) && State == A6:TRANSMIT) || 

PH_STATE.ind(BUS_RESET_START);
initiated_reset = TRUE;
go_short = TRUE;

(BN && CCSC && State == A6:TRANSMIT) 

All:R0c
PH_STATE.ind(BUS_RESET_START);
initiated_reset = FALSE;
go_short = FALSE;

 All:R0d
PH_STATE.ind(BUS_RESET_START);
initiated_reset = TRUE;
go_short = FALSE;

PHY_CONT.req(long_bus_reset) ||

(BN && BR_RCV_CP && State==A5:RECEIVE) 

(BN && BR_RCV_CP && State!=A5:RECEIVE) ||

arb_state_timeout ||
parent_node_disconnect ||

(BN && BR_RCV_UP && MIN_DB_timeout) 

SN && ABR_timeout

ABR = Await_Bus_Reset (timeout period of 341 ms)
BN = Bus Node (has recognized connection(s); may have new connections not yet recognized also)
BR_RCV_CP = Bus Reset Signal Received on Connected Port
BR_RCV_UP = Bus Reset Signal Received on Unrecognized Port
CIP = Connect_In_Progress (timeout period of 341 ms)
CCSC = Child Connect Status Change Flag
MIN_DB = Minimum Debounce (timeout period of 85 ms)
SN = Single Node (any new connections not yet recognized, port drivers tri-stated)
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FAIR_request is allowed, an ISBR_request should also be allowed. In the event that both a 
FAIR_request and a ISBR_request are active at the same time, the ISBR_request should be 
given preference. Unlike a FAIR_request, an ISBR_request should persist until bus arbitra-
tion is won (FAIR_requests are cleared by arbitration loss as well). 

The ISBR_request, unlike a FAIR_request, should ignore the arb_enable bit; fair access is 
not an issue for initiating bus reset. 

In the event that a CYCLE_MASTER_request and a ISBR_request are active at the same time, 
the CYCLE_MASTER_request should take precedence if the node is the root; otherwise the 
ISBR_request should take precedence. This allows a cycle start packet and isochronous 
cycle to occur before the bus reset. (Digression: There are numerous bus arbitration 
changes and enhancements that are widely discussed but undocumented. One such pro-
posal is that CYCLE_MASTER_request may be used for purposes other than sending cycle 
start packets—thus the distinction here between root and non-root use of  
CYCLE_MASTER_request. It is possible that the root might use  CYCLE_MASTER_request for 
a non-cycle start packet, in which case ISBR_request would be the preferred request, but 
there is no way to enlighten a PHY to these nuances without inventing a new request type, 
separate and distinct from CYCLE_MASTER_request.)

ISBR_request is cleared only upon entering R0:Reset Start. In the event that the transition 
to Reset Start fails to occur—arbitration is never won—there should be a timeout mecha-
nism, which forces a long reset. The same long timeout period of 341 milliseconds would 
be consistent with other time-outs chosen for the connection status change state machine.

This section has generally described the implementation changes necessary to the arbitra-
tion state machine. Numerous other changes need to be rolled in as well—most for either 
arbitration enhancements or “Open HCI” considerations. Rather than update the state 
machine twice, the explicit revisions will be included in the later section on arbitration 
enhancements. 

4.0  PHY Pinging

PHY pinging is one possible answer to the problem of optimizing the gap count setting. 
Numerous methods have been suggested:

1) Don’t set it; leave it at the default setting. This obviously wastes bandwidth, but would 
be acceptable in many applications.

2) Set it to the correct value for a “maximum” sized 1394 bus—a 16 node daisy-chain 
(there may be up to 63 nodes, but the longest chain of nodes on a bus must be limited to 
16). This saves about 50% of the bandwidth lost by the first method, at the risk of not 
working properly if a user has exceeded the maximum, or if cables longer than the 
“suggested maximum” of 4.5 meters are used.

3) Use the information from the self-ID packets to reconstruct the topology, determine the 
longest daisy-chain, and set the gap count to a computed minimum value. This only 
works if cables truly have a maximum length. Maximum PHY delay is 144 ns; cable 
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delay for a 4.5 meter cable is ~23 ns, so the total delay for one “hop” is  about 167 ns. 
However, there is no hard limit on cable length. One hundred meter cables have been 
discussed; the hop delay for a node with a hundred meter cable rises to roughly 650 ns. 
Clearly this method fails unless there is some way for a bus to be aware of long cables.

PHY pinging is a suggested mechanism for directly measuring bus delays, thereby indi-
rectly detecting long cables. The mechanism is straightforward:

1) A diagnostic node transmits a special ping packet. The ping packet contains a target 
address. The node starts a timer when transmission is complete.

2) The target node receives the ping, and sends back a ping response packet. 

3) The diagnostic node detects the ping response, stops the timer at start of reception, and 
calculates from the timer the propagation delay to the target node. 

The diagnostic node can take a set of these ping measurements, and then determine the 
worst case end-to-end delay through the network, which enables it to set the gap count to a 
minimum value. There are some computational details; for instance PHY delay may cover 
a range, depending on local clock phase relative to the received data, so some margin 
should be added to the gap count for each hop. The fastest to slowest PHY propagation time 
for PHYs is not specified, but probably does not exceed 20 ns for any phy.

4.1  Proposal for PHY Pinging

4.1.1  Ping Packet Format

The ping packet can be a special PHY configuration packet:

FIGURE 8. PHY Ping Packet Format

If a PHY configuration packet has both R and T bits set to 0, then receiving PHYs take no 
action. This permits redefinition of the special R,T=0 configuration packets as a new class 
of PHY packets, with the simplest one—all bits 0 except for the target phy-id—used for the 
ping command.

       gap_cnt   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id        

logical inverse of first quadlet

transmitted first

transmitted lastStandard PHY Configuration Packet

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first

transmitted lastSpecial PHY Ping Packet

RT
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4.1.2  Ping Response Packet

For the purposes of setting the gap count, the contents of the ping response packet are 
unimportant; a simple ack packet would be enough. Additional utility is gained by letting a 
PHY return its self-id packet as a ping response. This allows diagnostic access to the node 
configuration information in self-id packets without initiating a bus reset. This adds some 
extra transitions to the PHY arbitration state machine, but doesn’t actually add much silicon 
hardware. The only modification for the normal self-id transmit process is that the usual 
parent port notification may be skipped; the node may return immediately to state A0:Idle. 

4.1.3  Ping Timer

Requirements for the timer are straightforward. It should start at some fixed time relative 
to the transmission of the ping; it should stop at some fixed time relative to the reception of 
the response.

The ping timer could be located in either PHY or link silicon. Since the ping response 
mechanism requires some modification to PHY silicon, it makes sense to put the timer in 
the PHY as well.  

Some variation in implementation is probably tolerable. A suggested implementation is:

1) Clear and start the timer when the last bit of the ping packet is clocked out.

2) Stop the timer 60–80 ns after the first bit of the response packet is clocked in. 

3) Let the timer keep count of 24.576 MHz clock periods—a count of one equals 40.7 ns.

4) An 8-bit timer will count up to 255•40.7 ns = 10.37 µs, which is almost exactly the 
maximum subaction gap (with gap count = 63). If the delay is longer, reliable bus oper-
ation is impossible (without modified silicon). The timer should be sticky; if it reaches 
its maximum count of 511 (hFF), it should stick and not roll over. A measured ping 
time of 511 (hFF) indicates that the bus has too much delay for reliable operation.

5) The timer count should be accessible as a read-only hardware register in the phy.

4.2  State Machine Modifications

Required state machine modifications are relatively minor. There is a new transmit 
action—start the ping timer if the transmitted packet is a ping command. There is an added 
receive state action—detection of the ping packet with target-id = local id. This must set a 
new ping_response flag, which causes transition back to Self-ID Transmit upon comple-
tion of all receive actions. Finally, the Self-ID Transmit actions must be modified if 
ping_response is set.

4.2.1  New Transmit State Actions

The transmit logic needs to include the simple parsing logic which is already used by the 
receive logic to detect PHY packets. This doesn’t add many gates to the physical design; 
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the same parsing logic block can operate on either the transmit stream or the receive 
stream.

void transmit_actions() {
int i;
int bit_count = 0;
union {

dataBit bits[64]; //re-use this logic (from receive actions)
struct {

unsigned pkt_type:2;
unsigned addr:6;
unsigned R:1;
unsigned T:1;
unsigned gap_count:6;
unsigned byte2:8;
unsigned byte3:8;
dataBit check_bits[32]:32;

} phy_info;
} phy_pkt;

boolean test_end = false;
boolean ping_timer_enable = false; //hold count
phyData data_to_transmit;
imm_req = false; //clear requests
if (fair_req) {

arb_enable = false;
fair_req = false;
}

isoch_req = false;
receive_port = NPORT; //no port has this number => PHY is transmitting
start_tx_packet(req_speed); //send data prefix & speed signal
while (~test_end) {

PH_CLOCK.ind; //tell link to send data
while (~PH_DATA.req & (data_to_transmit));  //wait for data from link
switch(data_to_transmit) {

case DATA_END:
stop_tx_packet(DATA_END);
test_end = true; //end of packet indicator
if (bit_count == 64) { //we have transmitted a PHY packet

boolean good_phy_packet = true; //check for good format
for (i=0; i<32; i++)

good_phy_packet = 
(phy_pkt.bits[i] == ~phy_pkt.phy_info.check_bits[i+32) && good_phy_packet;

if (good_phy_packet && (phy_pkt.phy_info.pkt_type == 0b00)) {
//no action necessary for link-on or self-ID pkts

if (phy_pkt.phy_info.R) //force root, set if address match, else clear
//this should work for transmit and receive state

force_root = (phy_pkt.phy_info.address == physical_ID);
if (phy_pkt.phy_info.T) {

//PHY gap_count set, and set reset_disable
gap_count = phy_pkt.phy_info.gap_count;
gap_count_reset_disable = true;
}

if ((phy_pkt.phy_info.R == false) && (phy_pkt.phy_info.T == false)) {
//new class of PHY packets transmitted

if (phy_pkt.phy_info.R == 0b00_0000) {
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//ping packet detected
ping_timer_enable = true; //clear and enable timer
if (phy_pkt.phy_info.address == physical_ID) ping_response = true;

//node can ping itself
}

}
}

}
break;

case DATA_PREFIX:
stop_tx_packet(DATA_PREFIX);
wait_time (min_packet_separation); //hold bus for concatenated packet
break;

case 0, 1: //send data
tx_bit(data_to_transmit);
if (bit_count < 64) //accumulate first 64 bits
phy_pkt.bits[bit_count++] = data_to_transmit;
break;

}
}

end_of_transmission = true;
}

4.2.2  New Receive State Actions

First, packet reception must stop the ping timer as soon as data starts arriving:  

...
boolean received_data;
fair_req = false;
cycle_master_req = false;
PH_DATA.ind(DATA_PREFIX);
rx_speed = start_rx_packet(); //start up receiver and repeater
PH_DATA.ind(DATA_START(rx_speed)); //send speed indication
ping_timer_enable = false; //halt ping timer
while (~test_end) {
...

Second, the logic must recognize the new ping command packet.

...
switch (phy_pkt.phy_info.pkt_type) {

//process packets differently based on PHY packet type
case 0b00: //PHY config packet

if (phy_pkt.phy_info.R) //PHY force-root, set if address match, else clear
force_root = (phy_pkt.phy_info.address == physical_ID);

if (phy_pkt.phy_info.T) { //PHY gap_count, set always and set reset_disable
gap_count = phy_pkt.phy_info.gap_count;
gap_count_reset_disable = TRUE;
}

if ((phy_pkt.phy_info.R == FALSE) && (phy_pkt.phy_info.T == FALSE) &&
 (phy_pkt.phy_info.gap_count == 0b00_0000) && 

(phy_pkt.phy_info.address == physical_ID))
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//require address match & gap count field all 0’s
ping_response == true; //new ping_response flag

break
case 0b01: //link-on packet

   ...

4.2.3  New Self-ID Transmit State Actions

Actually, the change is to bypass some actions normally taken in this state, if the self-ID 
packet is being sent as a ping response. Specifically, the final tx_ident_done handshake 
and speed signal transmission handshake can be omitted.

...
if (ping_response == FALSE) { //bypass all this if ping_response

for (port_number == 0; port_number < NPORT; i++) {
if (port_number == parent_port) {

portT(i, TX_IDENT_DONE); //notify parent that self-ID is complete
portTspeed (port_number, PHY_SPEED); //send speed signal (if any)
wait_time (SPEED_SIGNAL_LENGTH);
portTspeed(port_number, S100); //stop sending speed signal
ph_event.ind(SELF_ID_COMPLETE, physical_id, root);
}

else
portT(port_number, IDLE); //turn off transmitters to others

}
}

self_ID_complete = TRUE; //signal completion
...

4.2.4  New State Machine Transitions

The new transitions are limited to the jump back to self-id transmit upon receipt of a ping 
command, and the jump back to A0:Idle after transmission of the ping response.

FIGURE 9. New Ping Response State Machine Transitions

S4:Self-ID Transmit A5:Receive

self_ID_complete && ping_response

end_of_reception && ping_response &&

S4:A0

A5:S4
(portR(receive_port) == rx_data_end) A0:Idle

ping_response = FALSE



P1394A Enhancements January 3, 1997 19

5.0  Remote PHY Pinging

There are two limitations to the PHY pinging mechanism: older PHY silicon may not send a 
ping response, and older silicon may not implement the ping timer. The inability to send a 
ping response is unfortunate, but as long as there is at least one ping-able PHY on each 
standard-cable bus segment (a bus segment with all cables ≤ 4.5m), a combination of ping-
ing and calculation will yield an optimal gap count. 

The lack of a ping timer on a local node would make it impossible for that node to gain 
any timing information from the ping response (it might still be useful as a way to check 
the self-ID packets unobtrusively). 

It is not challenging to define a mechanism by which a special node (with new PHY silicon) 
could be commanded by a distant node to send a ping packet, time the response, and send 
the timer data out. Such a mechanism would allow a software upgrade of existing 1394 
devices to utilize PHY ping timing, even if the device itself has an older phy. Inclusion of 
one new phy in the bus (perhaps a bare phy, acting only as a repeater) would thus enable 
phy ping timing.

The mechanism may have a somewhat short lifespan, if future PHY designs all incorporate 
PHY ping timing hardware. It is nonetheless worth discussion if only for the immediate 
advantage of remote PHY pinging.

5.1  Proposal for Remote Pinging

The mechanism of simple PHY pinging consists of a pair of special PHY configuration 
packets, with the second transmitted automatically in response to the first. Remote PHY 
pinging is similar, except that the process grows to a cascade of  four  packets. The middle 
two packets in the sequence are simple PHY pinging. 

All four packets are variants of PHY configuration packets; thus all are 64 bits transmitted 
at the S100 rate. Packet duration including data prefix and data end is roughly 1 µsecond. 
Delay between packets is primarily packet propagation time across the bus. With the most 
extensive bus supportable by 1394 silicon, propagation time cannot exceed 10 µseconds. 
Thus the duration of the entire four-packet process, from transmission of the first packet to 
reception of the last, is ~44 µseconds. That represents an extreme case, with unusually 
large delays. A more typical case would probably average 2–3 µseconds for propagation 
times, for a total of 8–12 µseconds used for the entire process. Since asynchronous packet 
duration is on the order of 44 µseconds (512 bytes payload + 24 bytes header & CRCs = 
536bytes • 8 bits/byte • 10.173 ns/bit = 43.6 µseconds), the bus is inherently able to sup-
port transactions of even the worst case duration for remote pinging.

1) Bus Master node sends remote_ping_command(A, B) to node A.

2) Node A immediately sends ping command to node B.

3) Node B immediately sends its self-ID packet.

4) Node A immediately sends a ping_time packet.
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5.1.1  New Packet Definition

Two new packet formats must be defined: the remote_ping_command, and the ping_time 
packet. The remote_ping_command instructs node A to send out a ping targeted to node B. 
The ping_time packet carries the contents of a node’s ping_timer register. All can be vari-
ations of PHY configuration packets.

The field formerly used solely as gap_cnt (which had meaning only if the T bit was set) 
now becomes a more general purpose key which indicates the type of PHY config packet, 
for all config packets with R, T = 0. Three cases have been defined so far: PHY Ping (key 
field = 00h), Remote Ping (key field = 01h), and PHY Register Data (key field = 03h).

5.2  State Machine Modifications

Transmission of the remote PHY ping packet is normal and straightforward. The transmit-
ting node sends the command, just as it would send any PHY configuration packet.

The node whose ID matches the target ID of the remote ping command has some new 
receive actions: it must save the “byte2” field (formerly part of a reserved field) from the 
remote ping command, and it must set a ping_command bit. Note that gap_count is a mis-
nomer for ping command, but was the original name for the field in PHY configuration 
packets in 1394-1995. In a ping command packet, the “gap_count” field must be 
0b00_0001; it acts as a command type field. The ping_command bit is new. Its actions are 
similar to those of an immediate bus request; the PHY leaves A5:Receive state and quickly 
goes through A0:Idle to A6:Transmit. 

       gap_cnt   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id        

logical inverse of first quadlet

transmitted first                                                    reserved

transmitted lastStandard PHY Configuration Packet

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastPHY Ping Packet

RT

     0 0 0 0 01 0 0 nodeA ID        

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastRemote PHY Ping Packet

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0    ping_time 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastPing Timer Packet

0 0 0 0 nodeB ID  0 0 0 0 0 0 0 0 
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In transmit state, the PHY sends a PHY ping packet. This is a new action; prior PHYs only 
transmitted packets from the link while in transmit state. However, the action is similar to 
transmission of a self-ID packet, so no real invention is necessary.

As explained in a preceding section, the node which receives the ping packet retransmits 
its own self-id packet. Upon detecting the self-id packet, the pinging node (which still has 
the ping_command bit set) halts its ping timer, and sends out the final time in a new ping 
timer packet.

5.2.1  New Receive State Actions

All the new actions are in the section dealing with PHY config packets:

...
switch (phy_pkt.phy_info.pkt_type) {

//process packets differently based on PHY packet type
case 0b00: //PHY config packet

if (phy_pkt.phy_info.R) //PHY force-root, set if address match, else clear
force_root = (phy_pkt.phy_info.address == physical_ID);

if (phy_pkt.phy_info.T) { //PHY gap_count, set always and set reset_disable
gap_count = phy_pkt.phy_info.gap_count;
gap_count_reset_disable = TRUE;
}

if ((phy_pkt.phy_info.R == FALSE) && (phy_pkt.phy_info.T == FALSE) &&
 (phy_pkt.phy_info.gap_count == 0b00_0000) && 

(phy_pkt.phy_info.address == physical_ID))
//require address match & gap count field all 0’s

ping_response = true; //ping_response flag
break
if ((phy_pkt.phy_info.R == FALSE) && (phy_pkt.phy_info.T == FALSE) &&

 (phy_pkt.phy_info.gap_count == 0b00_0001) && 
(phy_pkt.phy_info.address == physical_ID))

//require address match & gap count field =01
ping_command = true; //new ping_command flag

case 0b01: //link-on packet
if (phy_pkt.phy_info.address == physical-ID)

ph_event.ind(link_on);
break

case 0b10: //self-id packets
if (ping_command == true) ping_timer_dump = true;
break

...

5.2.2  New Transmit State Actions

The new actions cover the two new transmit tasks: transmitting a PHY ping packet, and 
transmitting a ping timer packet. 

void transmit_actions() {
int i;
int bit_count = 0;
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quadlet phy_tx_packet;
union {

dataBit bits[64]; //re-use this logic (from receive actions)
struct {

unsigned pkt_type:2;
unsigned addr:6;
unsigned R:1;
unsigned T:1;
unsigned gap_count:6;
unsigned byte2:8;
unsigned byte3:8;
dataBit check_bits[32]:32;

} phy_info;
} phy_pkt;

boolean test_end = false;
boolean ping_timer_enable = false; //hold count
phyData data_to_transmit;
imm_req = false; //clear requests
if (fair_req) {

arb_enable = false;
fair_req = false;
}

isoch_req = false;
receive_port = NPORT; //no port has this number => PHY is transmitting

if ((ping_command == true) && (ping_timer_dump == false)) {
//send PHY ping packet

start_tx_packet(S100); //data prefix
phy_tx_packet = 0x0000_0000 | //format for PHY ping

byte2 << 8; //byte 2 contains target ID of node to be pinged
tx_quadlet(phy_tx_packet); //send packet
tx_quadlet(~phy_tx_packet); //send inverse
stop_tx_packet(TX_DATA_END, S100);
}

if ((ping_command == true) && (ping_timer_dump == true)) {
//send ping timer packet

start_tx_packet(S100); //data prefix
phy_tx_packet = 0x000A_0000 | //format for ping timer packet

ping_timer; //puts ping timer value into low 8 bits
tx_quadlet(phy_tx_packet); //send packet
tx_quadlet(~phy_tx_packet); //send inverse
stop_tx_packet(TX_DATA_END, S100);
ping_command = false;
ping_timer_dump = false;
}

if ((ping_command == false) && (ping_timer_dump == false)) {
start_tx_packet(req_speed); //send data prefix & speed signal
while (~test_end) {

PH_CLOCK.ind;//tell link to send data
while (~PH_DATA.req & (data_to_transmit));  //wait for data from link
switch(data_to_transmit) {

case DATA_END:
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stop_tx_packet(DATA_END);
test_end = true; //end of packet indicator
if (bit_count == 64) { //we have transmitted a PHY packet

boolean good_phy_packet = true; //check for good format
for (i=0; i<32; i++)

good_phy_packet = 
(phy_pkt.bits[i] == ~phy_pkt.phy_info.check_bits[i+32) && good_phy_packet;

if (good_phy_packet && (phy_pkt.phy_info.pkt_type == 0b00)) {
//no action necessary for link-on or self-ID pkts

if (phy_pkt.phy_info.R) //force root, set if address match, else clear
//this should work for transmit and receive state

force_root = (phy_pkt.phy_info.address == physical_ID);
if (phy_pkt.phy_info.T) {

//PHY gap_count set, and set reset_disable
gap_count = phy_pkt.phy_info.gap_count;
gap_count_reset_disable = true;
}

if ((phy_pkt.phy_info.R == false) && (phy_pkt.phy_info.T == false)) {
//new class of PHY packets transmitted

if (phy_pkt.phy_info.R == 0b00_0000) {
//ping packet detected

ping_timer_enable = true; //clear and enable timer
if (phy_pkt.phy_info.address == physical_ID) ping_response = true;
} //node can ping itself

}
}

}
}

break;
case DATA_PREFIX:

stop_tx_packet(DATA_PREFIX);
wait_time (min_packet_separation);//hold bus for concatenated packet
break;

case 0, 1: //send data
tx_bit(data_to_transmit);
if (bit_count < 64)//accumulate first 64 bits
phy_pkt.bits[bit_count++] = data_to_transmit;
break;

}
}

end_of_transmission = true;
}

5.2.3  New State Machine Transitions

The new transitions are very minor; the new ping_command and ping_timer_dump bits 
cause a transition from A0:Idle to A6:Transmit. There is already a transition between these 
states—for immediate request—so this just adds two more possible conditions which may 
cause this transition.
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FIGURE 10. New Remote Ping State Machine Transition

6.0  Multi-Speed Packet Concatenation

Most of the work on the 1394-1995 Standard was completed before 200 Mb/second PHY 
silicon was available. Consequently the details on operation at higher speeds is sketchy. 
The standard does not explicitly forbid concatenating packets of different bit rates 
together, but the writers probably assumed single speed concatenation. 

Multi-speed packet concatenation would allow:

1) Concatenation of a read response of arbitrary speed onto an ack.

2) Concatenation of a chain of isochronous packets, without regard to bit rate.

3) Fly-by arbitration (see later section) without regard to bit rate.

The last point is probably the most important. Fly-by arbitration is one of the bandwidth 
saving arbitration tricks. Without the bandwidth savings, there is little point in 
extending1394 to higher speeds, which has dire effects on the market potential for the 
technology.

6.1  1394-1995 And Multi-Speed Concatenation

There are four areas in the standard which affect concatenation: the transmit_actions for 
state A6:Transmit, the receive_actions for A5:Receive, the detailed operational timing 
parameters (data prefix, speed signal …), and finally annex J, which specifies phy-link sig-
nalling.

6.1.1  Transmit Actions

The C code for transmit_actions only performs the action start_tx_packet(req_speed) at 
the start of transmission of the first packet in a concatenated set. Thus a conforming PHY 
would only transmit a speed signal during the data prefix of the first packet of a concate-
nated chain of packets. Note that a PHY transmitting concatenated packets stays in transmit 

A6:Transmit
imm_req || (root && isoch_req) || ping_timer_dump ||

A0:Idle

    (ping_command && ~ping_timer_enable)
A0:A6

PHY_ARB.conf(WON);
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state. It sends data prefix; it sends packet data; it sends data prefix again; it sends more 
packet data; etc. But it stays in transmit state the whole time, and just switches between 
sending data prefix and sending data. Contrast this with the C code for receive –

6.1.2  Receive Actions

The C code for receive_actions includes the action rx_speed = start_rx_packet(); early in 
the receive code. When packet reception is over, the state machine exits receive state. If a 
concatenated packet follows, it immediately re-enters receive state, which is designated as 
transition A5:A5a -

 Transition A5:A5a. If a packet ends and the received signal is rx_data_prefix (10), then 
there may be another packet coming, so the receive process is restarted.

Restarting the receive process mandates that receive speed be evaluated again. Absence of 
a speed signal will be interpreted as a S100 packet by a 1394-1995 compliant implementa-
tion.  

The C code for the transmit actions isn’t really in synch with the C code for the receive 
actions. Clearly the receive logic expects a speed signal at the start of each packet, whether 
concatenated or stand-alone. But the transmit logic, as coded, will only send a speed signal 
at the start of a chain of concatenated packets. A 1394-1995 compliant receiver will mis-
takenly regard each successive packet in the chain as S100, regardless of the transmit 
intention.

Of course no one would implement something so obviously broken. Unfortunately, there’s 
bound to be some variability in implementation, depending on which sets of logical 
assumptions were adopted by the various design groups.

6.1.3  Timing

The MIN_PACKET_SEPARATION time specified for concatenated packets is 340 ns. If two 
packets were crammed together without concatenation, but with no idle time between 
data_end and data_prefix, the packet separation in that case would be:

DATA_END_TIME  240 ns
+ DATA_PREFIX_TIME 40 

 + SPEED_SIGNAL_LENGTH 100
- ARB_SPEED_SIGNAL_START - 20

360  ns Total

This is almost identical to the MIN_PACKET_SEPARATION time specified, and not by acci-
dent. The MIN_PACKET_SEPARATION was intentionally made long enough to allow speed 
signalling between concatenated packets. No modifications or clarifications are needed for 
the inter-packet timing.
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6.1.4  Annex J - PHY Link Signalling

Annex J defines a mechanism which allows reception of multi-speed concatenated pack-
ets. In fact, the link is generally unable to distinguish between concatenated packets and 
received packets which are closely packed. In all cases, the PHY asserts Ctl[0:1]=10 to 
indicate packet reception. In the time before data starts arriving, the data bus drives all 1’s. 
When data starts coming in, the PHY drives the data bus to a speed_code value for one 
clock cycle before driving receive data across. End of packet is marked by driving 
Ctl[0:1]=00. The same protocol is used whether a packet is concatenated or single.

Transmitting multi-speed concatenated packets is more of a problem. No mechanism is 
defined to allow the link to indicate to the PHY the speed of the “next” concatenated trans-
mit packet. It is an easy thing to invent; the more difficult part is making new PHY silicon 
that operates cleanly with existing link silicon.

6.2  State Machine Modifications for Multi-Speed Concatenation

The A5:Receive state actions are already consistent with multi-speed operation. Concate-
nated packet timing is acceptable as is. Only the transmit logic and phy-link interface 
require thought.

6.2.1  Modifications to Transmit Actions

The only modification necessary is to insure that a speed signal precedes each packet, 
including concatenated packets. This can be accomplished with a minor change to the 
code in the data_prefix case at the end of the transmit actions –

...
case DATA_PREFIX:

stop_tx_packet(DATA_PREFIX);
wait_time (200 ns); //hold bus for concatenated packet
start_tx_packet(req_speed); //send data prefix & speed signal for next pkt
break;

case 0, 1: //send data
tx_bit(data_to_transmit);
if (bit_count < 64)//accumulate first 64 bits
phy_pkt.bits[bit_count++] = data_to_transmit;
break;

}
}

end_of_transmission = true;
}

6.2.2  Modifications to the Phy-Link Interface

The phy-link interface operation must work for both the reception and transmission of 
concatenated packets. The mechanism shown in Annex J for reception is sufficient. How-
ever it does not explicitly mention packet concatenation; that is added below. Transmis-
sion requires a minor addition; the link needs a way of signalling to the PHY what speed 
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the next packet in the concatenated chain will be. That is easily accomplished by letting it 
drive the speed code for the next packet onto the data bus at the same time that it drives the 
bus_hold code onto the control bus.

  

FIGURE 11. Phy-Link Interface - Concatenated Packet Reception

FIGURE 12. Phy-Link Interface - Concatenated Packet Transmission

Inter-operability of PHY and link silicon deserves consideration. New PHY silicon which 
expects the speed code to be transmitted by the link for each concatenated packet will 
interpret 0x00 on the data bus as indicating S100. Current link silicon (probably) assumes 
that each succeeding concatenated packet will be the same speed as the first packet trans-
mitted. This can be solved by adding a control bit in a PHY register—call it 
multi_speed_concat_enable. If set, then the link must transmit the speed code when it 
indicates “holdbus” for concatenated packet. If clear, then all succeeding concatenated 
packets must be the same speed as the first packet transmitted.

7.0  Accelerated Arbitration

There are two arbitration acceleration “tricks”: ack-accelerated arbitration, and fly-by 
arbitration. The implementation strategy is best determined by considering the two mecha-
nisms together, and modifying the arbitration state machine once.

7.1  Ack Accelerated Arbitration

The 1394-1995 standard implements a simple timing strategy for asynchronous arbitra-
tion—arbitration cannot start until the bus has been idle for a subaction_gap_detect_time. 
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For a small bus, a subaction gap may be one µs; a very large bus might be 5 µs; at the 
extreme, the largest gap time that PHY silicon can support is 10 µs. 

This arbitration timing strategy was adopted at a time when the design goals for 1394 were 
modest. Simplicity, time-to-market, and proof-of-concept were of greater importance than 
getting the last bit of bandwidth. But the penalty for bus idle time becomes more onerous 
as the bit rates and bus sizes increase—exactly the growth path for the technology.

In a 1394 bus, the subaction_gap_detect_time is set to be greater than the worst case 
round-trip propagation time across the bus. This insures that when a packet is transmitted, 
no node will start arbitrating for the bus before the acknowledge packet has been transmit-
ted and received; bus arbitration would interfere with packet propagation. 

But in striving for simplicity, no distinction was made between acknowledge packets and 
other packets. Thus the bus remains idle for a subaction_gap_detect_time after transmis-
sion of an acknowledge packet. This is pure wasted bandwidth; there will be no acknowl-
edge packet following an acknowledge packet. Arbitration could start immediately after an 
acknowledge packet, with no fear of interrupting bus activity.

This is an exact parallel to the style of arbitration during isochronous mode operation. 
Since there are no ack packets for isochronous transmissions, arbitration may start imme-
diately after the packet.

7.2  Fly-By Arbitration

The 1394 Standard had one arbitration acceleration mechanism built in—packet concate-
nation. The mechanism is straightforward:

1) Node A sends Node B a read request.

2) Node B sends Node A an acknowledge packet.

3) If Node B can access the data requested by A quickly enough, it holds the bus after the 
ack packet, and concatenates the response packet onto the ack packet.

Whether the response packet is concatenated or not is largely a PHY matter. As illustrated 
in Figure 11, the link is unable to distinguish concatenated packets from closely packed 
packets. Fly-by arbitration is a matter of expanding the scope of the basic concatenation 
mechanism.

Suppose Node B has a packet ready to transmit, and is in the process of arbitrating for the 
bus, when an unrelated packet addressed to node B arrives, is received, and acknowledged 
by transmission of an ack packet. What consequences would there be if B concatenated its 
data packet onto the ack packet? There are some timing issues (see following section), but 
otherwise the bus at the link layer and above is ignorant of concatenation anyway. Provid-
ing fair arbitration rules are still followed—don’t concatenate or arbitrate if arb_enable bit 
is clear—everything works as before.
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There is one further possible extension, but first a note about bus behavior:

FIGURE 13. Distinction Between Parent Port and Child Port Reception

When a node receives a packet on its parent port, it is likely that other nodes are receiving 
the same packet at the same time. Thus any arbitration tricks used during parent port 
reception may be used by multiple nodes at once, which leads to packet collisions …

But when a packet is received on a child port, packet reception is unique; no other node 
can be receiving the packet on a child port at exactly the same time. (More precisely, when 
a node detects end-of-packet on a child receive port, no other node which receives the 
same packet on a child port will detect end-of-packet until at least one hop-delay later.) 

Receiving a packet on a child port presents an opportunity for concatenation in two cases:

1) If the received packet is an acknowledge packet, then an unrelated asynchronous packet 
could be concatenated on-the-fly.

2) If the received packet is an isochronous packet (or a cycle-start packet), then an isoch-
ronous packet could be concatenated on-the-fly.

In either case, without fly-by arbitration, normal arbitration would follow the received 
packet. 1394 makes no guarantees about the order of packet transmission. As long as all 
nodes get to transmit asynchronous packets within a fairness interval, and isochronous 
packets  within an isochronous cycle, the bus is well-behaved. Adding fly-by arbitration 
(and ack-accelerated arbitration) may change the order of packet transmission, but not the 
fundamental fairness of operation.

Note that the fly-by-concatenation mechanism concatenates a packet onto the end packet 
on the transmit ports. The original receive port just sees this extra packet as a separate 
packet coming back—refer to the figure below.
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FIGURE 14. Fly-By Concatenation Process
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7.3  1394-1995 Request Timing and Accelerated Arbitration

There is an inter-operability problem with ack accelerated arbitration. A 1394-1995 com-
pliant node wishing to arbitrate for the bus will wait until after a 
subaction_gap_detect_time plus an additional arb_delay_time before starting arbitration. 
However, it will act immediately upon receiving a child port bus request. This is a problem 
if a compliant node is the root node. The root may be prevented from winning bus arbitra-
tion when it needs to send the cycle start packet if its child nodes are using ack-accelera-
tion. And there are devices with compliant silicon in the market, though most of the later 
silicon available dodges this problem.

The problem is even more severe with fly-by arbitration. This mechanism does away with 
“normal” arbitration; nodes go directly from receive state to transmit state. Packets may 
bounce back and forth across the bus for some time without involving the root node in 
arbitration.

To overcome this incompatibility, the arbitration acceleration mechanisms should only be 
used when the cycle-start-packet is not due. If the bus is asynchronous-only, the arbitration 
tricks may be used freely; otherwise means must be found to sense when the cycle-start 
packet is due.

One approach would be to re-partition the logic between the PHY and link, so that the 
cycle-timer is in the phy. Bad idea. (But the problem does largely go away for integrated 
phy-link ICs.)

A simpler approach would be to invent a new request type for the LReq interface, a 
request which would be similar to a fair request, except that acceleration would be permis-
sible. The original fair request would still be used when a cycle-start-packet is due, as well 
as for backward compatibility with older PHY silicon. This has the convenient advantage 
that only new link silicon, with the necessary linkage to the cycle-start-timer, would ever 
use the new accelerated fair request. 

Finally, there are discussions on using the cycle-master request in a more generic fashion; 
nodes would also be allowed to use the cycle-master request for response packets. This 
would allow a node to respond to multiple read requests—from different requesters—all 
within one fairness interval. Suppose we call these requests priority-requests. The same 
acceleration considerations apply. The root node could always allow accelerated arbitra-
tion modes; other nodes would use accelerated priority arbitration only when it isn’t cycle-
start-time.

TABLE 3. Summary of Bus Requests 

LR[1:3] Name Meaning

000 ImmReq Take control of bus immediately upon detecting idle; do not arbi-
trate. Used for acknowledge transfers

001 IsoReq Arbitrate for the bus; no gaps. Used for isochronous transfers.

010 PriReq Arbitrate after a subaction gap; ignore fair protocol. Used for 
cycle master request and response packet requests.
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7.4  State Machine Modifications for Accelerated Arbitration

For ack acceleration, all of the modifications are of the general nature of shortcuts that 
allow transition out of A0:Idle at an earlier time. An AccPriReq or (AccFairReq & 
arb_enable) allows an early exit from A0, if the request is made before arb_timer > 
subaction_gap_detect_time. The root can transition directly to A6:Transmit; other nodes 
can go directly to A3:Request. The root is allowed to make the fast transition to A6 for 
PriReq as well as AccPriReq; this allows even older links to glean a little extra bandwidth. 
Finally, a minor change to the A0:A4 conditions clarifies the state transition taken by the 
root if a child request and a (PriReq or AccPriReq) go active at the same time—the root 
will ignore the child request and take the bus to transmit its packet. 

FIGURE 15. Modified A0:An State Transitions for Ack Accelerated Arbitration

011 FairReq Arbitrate after a subaction gap, following fair protocol. Used for 
Fair transfers. (In backplane environment, request priority field 
differentiates fair and urgent transfers.)

100 RdReg Return specified register contents through status transfer.

101 WrReg Write to specified register.

110 AccPriReq Use like PriReq when accelerated arbitration OK (not cycle start 
time—unless root)

111 AccFairReq Use like FairReq when accelerated arbitration OK (not cycle start 
time)

TABLE 3. Summary of Bus Requests 

LR[1:3] Name Meaning

A6:Transmitimm_req || (root && isoch_req) || ping_timer_dump ||A0:Idle
    (ping_command && ~ping_timer_enable) ||

A0:A6
PHY_ARB.conf(WON);

((arb_timer≤subaction_gap_detect_time) && ack && root &&
(accpri_req || pri_req || (accfair_req && arb_enable)))

A3:Request

A0:A3

((child_request() ||  isoch_req) && ~root) ||
(arb_timer≤subaction_gap_detect_time) &&
((accpri_req || (accfair_req && arb_enable)) && ack && ~root)

A1:Request Test

A0:A1a

(arb_timer==subaction_gap_detect_time) && ~(ack && 
root && (accpri_req || pri_req || (accfair_req && arb_enable)))

subaction_detect_actions();

A4:Grant
A0:A4

child_request() && root && ~pri_req && ~ accpri_req

A2:Request Delay
A0:A2

arb_timer>arb_reset_gap_detect_time && 
(pri_req || (fair_req && arb_enable) ||
accpri_req || (accfair_req && arb_enable))
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State machine changes for fly-by arbitration are straightforward. There is a new state tran-
sition allowed, direct from A5:Receive to A6:Transmit, provided that the receive port is a 
child port, and (that an isochronous request is active, or that an accelerated request is 
active and that the last packet was an ack). This is all better expressed in Boolean than 
English. Some minor modifications are also necessary to allow accelerated bus requests to 
be made while in A5:Receive, and not be cleared by reception of ack packets.

FIGURE 16. Modified State Transitions for Fly-By Arbitration

The C code for receive_actions specifies the time for clearing bus requests; some minor 
changes are suggested.

...
boolean test_end = false;
boolean received_data;
fair_req = false; //clear at start of receive state actions
if (~root)

pri_req = false; //don’t clear pri_req if root
PH_DATA.ind(DATA_PREFIX); //send notification of receive activity
rx_speed = start_rx_packet(); //start up receiver and repeater

while (~test_end) {
rx_bit(&received_data, &test_end);
if (~test_end) { //normal data, send to link layer

PH_DATA.ind(received_data);
if (bit_count = 8) { //if 8 bits and more coming, not an ack, clr reqs

accfair_req = false;
accpri_req = false;
pri_req = false;
ack = false;

A6:Transmit
(receive_port==child) && (iso_req || (ack && accpri_req) || 

A5:Receive

    
A5:A6

PHY_ARB.conf(WON);

(ack && root && pri_req) || (ack && accfair_req && arb_enable)

(portR(receive_port)==RX_DATA_END) &&

A5:A5f
PH_ARB.req(ACCPRI, req_speed)

accpri_req = true;

A5:A5d
PH_ARB.req(PRI, req_speed)

pri_req = true;

A5:A5e
PH_ARB.req(FAIR, req_speed)

fair_req = true;

A5:A5g
PH_ARB.req(ACCFAIR, req_speed)

accfair_req = true;
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}
if (bit_count<64) //accumulate first 64 bits

phy_pkt.bits[bit_count++] = received_data;
}

}
ending_data = portR(receive_port);
switch (ending_data) { //send end of packet indicator

case RX_DATA_PREFIX : PH_DATA.ind(DATA_PREFIX);   //concatenated packet coming
break

case RX_DATA_END && (iso_req || (ack && accpri_req) || (ack && pri_req && root) ||
(ack && accfair_req && arb_enable) : start_tx_packet();
break //transitions to transmit state next

case RX_DATA_END && ~(iso_req || (ack && accpri_req) || (ack && pri_req && root) ||
(ack && accfair_req && arb_enable) : PH_DATA.ind(DATA_END);
break //normal end of packet

}
stop_rx_packet (ending_data);
...

8.0  Token Style Arbitration

The 1394-1995 Standard actually describes two forms of bus arbitration. The arbitration 
mechanism used in arbitration phase is by now well known—nodes pass requests 
upwards, and receive grants or bus denials in return. But a second style of arbitration is 
involved in the self-ID process. During self-id, each node gets to transmit a packet or set of 
packets (if it has more than 3 ports). The opportunity to transmit circulates through the bus 
in a deterministic order. This self-ID arbitration behaves very much like a token-passing 
mechanism. There is no token, but there is a “bus grant”, which circulates around the bus. 
The state machine rules governing use of the grant—when it can be used to transmit, when 
it must be passed down—give this phase of operation the feel of token-based arbitration.

Fly-by arbitration offers considerable reduction in arbitration overhead. Unfortunately, in 
one of the high-end applications where it would be most attractive, it won’t work well. 

FIGURE 17. The Isochronous Fly-By Problem
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For a multi-media server, an output consisting of one long concatenated packet stream 
would be ideal. Unfortunately, left to its natural behavior, the nodes closer to the root will 
tend to win bus arbitration first. The opportunity to use fly-by arbitration is lost. Some 
additional mechanism is needed to allow Drive F  to transmit its isochronous packet first, 
which will enable the other drives to concatenate their packets, using fly-by arbitration. 
Token style arbitration is such a mechanism.

8.1  Suggested Implementation

This suggested implementation will serve 
as a starting point for discussion. There are 
many options; the implementation is sim-
plified by limiting the operation to fly-by 
arbitration for isochronous transmission, 
and mandating that there will be no nodes 
in the token-capable chain that are not 
token-capable.

Give each port a token enable bit—te for 
short—which will control arbitration behavior during isochronous operation. The simpli-
fying assumption is that if the parent port te bit is set, all the child te bits are automatically 
set. (This assumption can be discarded if the PHY has a way of detecting the cycle start 
message—moderately difficult for a stand-alone phy, but easy and free for an integrated 
phy-link IC.) The te bits generally get configured and remain unchanged for long times. In 
the dedicated multimedia server example, they might even be factory set, or masked into 
the PHY silicon.

If the te bit is set for a parent port, then the node will not arbitrate for an isochronous 
request, but will wait for a bus grant. 

If the te bit is set for a child port, then bus grants received during isochronous operation 
will be passed along to those ports. If a te bit is set for a child port, but the parent te bit is 
clear, then the node must arbitrate for the bus after the cycle start packet is detected. 
(Detection could be done by the link IC, which would always respond with an 
iso_request.)

Note (and avoid) the undesirable situation where a parent node has  its child port te bit 
cleared, and its child node has its parent port te bit set—the parent won’t send a grant, and 
the child won’t request—a silicon implementation of don’t ask, don’t tell. 

Referring to Figure 17, there are two possibilities: the root could be part of the scheme, 
with a te bit set for the server port, or the root could be ignorant, and have its te bit cleared, 
or perhaps have no te bit whatsoever, if its silicon is unaware of token style arbitration.

In the first case, where the root is part of the scheme, the operation is as follows:

1) The root node sends the cycle start packet, which starts isochronous operation. 

Token-Arbitration Capable Node

parent

child 

 port

port

token
enable

token
enable
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2) The root sends a bus grant to its lowest numbered te port, and data prefix to all others.

3) Node A receives the bus grant, and passes it on to its lowest numbered te child port 
(Figure 17 shows a series of two-port nodes; lowest numbered would apply to the more 
general case of nodes with three or more ports). 

4) In similar fashion, the bus grant drops through to node F. Having no te child ports, node 
F uses the grant to transmit its isochronous packet(chain).

5) Node E receives the packet(chain) from its child port. Receipt of a packet on a child 
port with DATA_END termination is the transmit opportunity. If node E has isochronous 
packet(s) to transmit, it concatenates its traffic onto the end of the passing 
packet(chain). Regardless of whether node E concatenates a packet or not, the opportu-
nity to transmit passes up the chain with the DATA_END packet termination.

6)  In a similar fashion, the packet chain grows as it propagates past nodes D, C, B, and A.

If any node had two or more te child ports, it would pass the grant first to its lowest num-
bered child port. When a packet with DATA_END termination returns, it changes the termi-
nation to DATA_PREFIX on the parent port on the fly, and drops the grant to the next te child 
port. When all te child ports have had the opportunity to transmit, then the node concate-
nates its own traffic onto the packet chain, and terminates the chain with DATA_END.

Suppose the root does not have a te bit set for the server chain—perhaps the root silicon 
does not support the feature, or perhaps there are intervening nodes which don’t offer 
token arbitration. Then node A would have its parent port te bit clear. Operation would be 
as follows:

1) The root node sends the cycle start packet, which starts isochronous operation. 

2) All the non-token savvy nodes on the bus would start normal bus arbitration. Node A 
would also participate in arbitration. Node A’s arbitration could be initiated by PHY rec-
ognition of the cycle start package, or it could be initiated by node A’s link IC, which 
would recognize the cycle start message and issue an iso_request. Note that nodeA’s 
link should always issue a bus request, even if it has no data ready for transmission 
itself, if there is any chance that any nodes in the token branch may have isochronous 
packets to send.

3) Sooner or later, node A wins arbitration. When it does, it sends data_prefix up its parent 
port, and drops a bus grant down its lowest numbered child te port.

4) From here, operation is the same as the prior example.

8.2  Advantages

1) The first advantage is the savings in bandwidth over standard arbitration. Assume a 6-
node token chain. In non-token mode, arbitration time would be roughly 0.15µsec (2 + 
4 + 6 + 8 + 10 + 12) = ~ 6 µsec. In token-mode, arbitration time is just the time for the 
bus grant to drop to the end of the chain, about 0.15 µsec(6) = ~ 1 µsec.
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2) Whether the token chain is a straight daisy-chain, or a branched tree, the total time for 
the bus grant to drop is about the same. There is less penalty for a daisy-chain architec-
ture.

3) Again referring to Figure 17, suppose Node A is the master controller for the media 
server. It controls the other nodes by sending them asynchronous packets, polling their 
status, etc. Nodes B–F respond with concatenated ack-response packets, but otherwise 
never autonomously arbitrate for the bus. Any external device which wishes to commu-
nicate with the media server communicates with Node A. 

Given all these limitations on operation—which may be acceptable for specialized 
applications—Nodes B - F would not figure into the gap count determination. Two port 
PHYs and daisy-chain configurations suddenly become an optimal, inexpensive solu-
tion.

8.3  State Machine Modifications for Token Style Arbitration

There are two areas of interest for state machine modifications: starting token arbitration 
(i.e. sending the grant), and the token arbitration process itself (propagating the grant and 
transmitting packets).

There are three classes of nodes in a token enabled bus: nodes in the token chain (which 
have their parent token-enable te bit set), the token parent (which has its child te bits set, 
but not its parent port te bit), and nodes outside the token chain (which have no te bits 
set—and may have no capability for token operation). The token parent has the sole 
responsibility for starting token operation. 

For this discussion, assume that the PHYs have no special ability to detect cycle start pack-
ets—the link already has that capability. For the token parent node, the link has the respon-
sibility of always issuing an isochronous request upon detection of the cycle start packet, 
whether it has a local packet to transmit or not; this is the action that starts token operation.

FIGURE 18. Modified A0:An State Transitions for Token Isochronous Arbitration

A6:Transmitimm_req || (root && isoch_req && ~child_te) || A0:Idle
    ping_timer_dump ||(ping_command && ~ping_timer_enable) ||

A0:A6
PHY_ARB.conf(WON);

((arb_timer≤subaction_gap_detect_time) && ack && root &&
(accpri_req || pri_req || (accfair_req && arb_enable)))

A3:Request

A0:A3

((child_request() ||  (isoch_req && ~parent_te)) && ~root) ||
(arb_timer≤subaction_gap_detect_time) &&
((accpri_req || (accfair_req && arb_enable)) && ack && ~root)

A4:Grant

A0:A4

(child_request() && root && ~pri_req && ~ accpri_req) ||
(root && isoch_req &&  child_te) ||
((portR(receive_port) == RX_TOKEN_GRANT) && parent_te)

Changes/additions are in bold
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Note that RX_TOKEN_GRANT is the same line state as RX_SELF_ID_GRANT; it would be 
confusing to use the latter name in this new context. 

If the token-enabled bus branch is a simple daisy chain, then the additional state machine 
modifications are minor; all that is required is to propagate the token_grant to the end of 
the chain, let the leaf node transmit, and then fly-by arbitration does the rest. If the token-
enabled branch is indeed “branched”, then there must also be a token_active status bit—
ta—which indicates that token operation is in progress, i.e. the token_grant has been 
received and passed on, but not used (to send a packet). This bit allows a node in the token 
chain at a branch point—having multiple child ports—to drop the grant down one child 
port after another until the highest numbered child chain has its transmit opportunity.  The 
following state machine diagrams assume a branched configuration. Only the new or mod-
ified transitions are shown; the unchanged transitions are generally not shown.  

FIGURE 19. Modified A3:A4 State Transition for Token Isochronous Arbitration

If a leaf node receives the token_grant but has no isochronous packet to transmit, i.e. no 
active isochronous request, then it needs to refuse the grant. The conventional way to 
refuse a grant is to send an empty packet—data prefix followed by data end, with no data. 
A convenient short-cut for token-arbitration only is to respond to the token grant (AB=0Z) 
by driving the parent port to AB=Z0; the resulting bus state is AB=00. This seems para-
doxical; AB=Z0 is normally used for TX_REQUEST. However, driving the B pair to logic 0 
will not interfere with receiving data prefix, which is the eventual exit from the refused 
grant scenario. These actions can be included in the grant state actions. The eventual 
reception of data prefix gives a new transition directly to receive state.

FIGURE 20. Modified A4:A5 State Transitions for Token Isochronous Arbitration

A3:Request A4:Grant

Changes/additions are in bold

A3:A4

(portR(parent_port) == rx_grant) 
&& (child_request() || (isoch_request && child_te))

A4:Grant A5:Receive

Changes/additions are in bold

A4:A5
grant_refused && data_coming()

A4:A4a

(portR(receive_port) == RX_TOKEN_GRANT)

refuse_grant;
&& ~isoch_request && leaf_node

A4:A4b

TOKEN_GRANT active && ~isoch_request && 

refuse_grant;
(portR(highest child) == refuse_grant)
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Note that in the figure above two pseudo-transitions are shown—A4:A4a and A4:A4b. 
These are drawn in a manner which suggests that grant actions should restart when the 
transitions are made, which is not true. The “transitions” should be included within the 
grant actions, but are brought out here for purposes of explanation. Such usage is not 
inconsistent with the current 1394 standard—see transitions A5:A5b and A5:A5c. Both 
transitions (and the similar ones added in Figure 16) are link-initiated bus requests, which 
do not re-start the receive actions.

FIGURE 21. Modified A5:An State Transitions for Token Isochronous Arbitration

9.0  Per Port Software Disconnect

This long-simmering feature has been awaiting a compelling argument for adoption. The 
modifications to the phy to allow it to shut down a port are straightforward; the potential 
complications of managing a bus where devices can make local decisions about which 
ports to disconnect are intimidating.

The compelling argument is this: a personal computer with a 1394 hard drive might be 
unable to boot, due to a malfunction of an external 1394 device. If the ROM code of the 
PC had the ability to turn off the external 1394 ports, then at least the computer could boot 
to some useful level automatically, unattended. There are applications where such auto-
matic operation is desirable or mandatory.

The counter-argument has always been that a bus where the presence of a cable does not 
guarantee a connection will be difficult to manage and trouble-shoot, both for human users 
and for software agents. A user nightmare can be avoided if:

1) A device which can perform port disconnections shall have some basic level of bus 
management capability.

2) No port shall be software-disconnected without some visual indication of the discon-
nect.

A6:TransmitA5:Receive

A5:A6

A4:Grant
A5:A4

(((receive_port==highest_child) && iso_req)  || 

PHY_ARB.conf(WON);

(receive_port==child) && ((ack && accpri_req) || 

(portR(receive_port)==RX_DATA_END) &&

(ack && root && pri_req) || (ack && accfair_req && arb_enable)))

((receive_port != highest_child) && token_active)  
(portR(receive_port)==RX_DATA_END) &&

Changes/additions are in bold
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9.1  Disconnect Mechanism

For each port we define a new port disconnect bit. This bit is cleared by all resets, includ-
ing bus resets. When set, it causes:

1) TpBias current for the port is shut off.

2) The port drivers are tri-stated.

3) The port line state receivers are all forced to inert “disconnect” states, with the sole 
exception of the common mode connection status receiver.

4) The port common mode connection status should be a readable bit. Except for being 
readable, it should also be forced inactive, i.e. it should appear to the phy connection 
state machine as a no-connect.

FIGURE 22. Port Disable Logic
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10.0  Incremental Bus Re-Configuration

Bus Reset, long or short, is standard dogma for 1394 connection status changes. The 
attraction is simplicity; the drawback is the possible interruption of service while bus ini-
tialization takes place. A secondary drawback is that the physical node IDs may change 
with each bus re-initialization, which is an annoyance for a local bus, and a big annoyance 
for an extended bus (multiple buses connected by bridges).

A simple observation is that the number of bus resets could be reduced by not doing one 
for a child port disconnect. That does put an extra burden on software; the first warning of 
a disconnect is a lack of response—an interruption of service. But that can also happen 
with short arbitrated bus resets; a disconnect will not be widely known until after one or 
more rounds of bus arbitration; software may detect the interruption of service before bus 
re-initialization in that case also. 

A more polite mechanism would be to send a special alert message after detecting a child 
port disconnect. The node would arbitrate for the bus—normal fair arbitration—and send 
the NODE_DETACHED_ALERT upon winning arbitration. A bus topology manager, if 
present, could ping the sender of the alert message for confirmation. The problem remains 
that software may detect the loss of service before the alert message arrives. But if that can 
be tolerated -

Couldn’t a similar alert mechanism be used for new connections as well? In addition to the 
alert message, some means will be needed to set the physical address of the new node, and 
to keep it quiet until it has that new address. These requirements are not difficult to meet. 
The appeal to all this is that the two PHYs directly involved in the new connection would 
both have to be knowledgeable new silicon, but no other PHY on the bus would have to 
understand the new protocol. (An annoyance with the short arbitrated reset mechanism is 
that every node on the bus has to be short reset savvy; one old long reset PHY will force the 
entire bus into a long reset.)
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10.1  New Connect Re-configuration Changes

Start with the 1394 bus shown on the right. 
There is an existing bus, consisting of 
nodes 0 through 3. Node 3 is the root; node 
0 is the bus manager; node 2 is the node 
which has just detected a new connection 
(JCBN = Just Connected Bus Node). The 
node designated JCSN (Just Connected 
Single Node) is the new node, which does 
not yet have a valid physical ID (63 is the 
chip reset default, but it is an invalid ID, 
indicating to the link that initialization is 
pending, preventing the node from request-
ing the bus).

Once node 2 detects the new connection, it 
sends the standard PARENT (officially 
known as TX_CHILD_NOTIFY) signal to its 
newly connected port. This is the same sig-
nal used in tree-ID. Node 2 should also 
begin sending its speed signal at this time.

Notice that if the newly connected single 
node (JCSN) were actually another bus 
node, then both nodes would drive AB = 1Z 
onto the cable. Because of  the AB swap in 
1394 cables, both sides would see AB = 11, 
which would trigger a bus reset. Bus reset is 
the desired outcome when two buses are 
connected together—so far so good.

Node 63, the JCSN responds by sending 
back the CHILD (officially the 
TX_PARENT_NOTIFY) signal. This is also the same signal used in tree-ID. The JCSN should 
also send its speed signal at this time. Sending the CHILD signal signifies that the JCSN has 
sensed the PARENT signal (and speed signal).   

0

3

1

2

bus
mgr

root JCBN

JCSN
63

1394 Bus With New Connection

2

JCBN

JCSN
63

PARENT 
AB = 1Z

Detail of New Connect Handshake

 CHILD 
AB = 0Z
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Once node 2 detects the CHILD signal (and 
accompanying speed signal), it drops the 
PARENT signal. The JCSN node responds by 
dropping its CHILD signal, and node 2 
begins arbitrating for the bus, using normal 
fair arbitration. When it eventually wins 
arbitration, it sends out a 
NODE_ADDED_ALERT (NAA). 

Despite the return to “normal” bus states, 
node 63 is prevented from transmitting; its 
node ID is still invalid. However, it can now 
receive packets.

The bus manager, if present, returns an 
ADDRESS_SET_PACKET (ASP). (If node 63, 
the JCSN fails to receive this packet, given 
a lengthy timeout period, it will initiate a 
bus reset.) This packet is received by the 
JCSN, and writes directly to the physical ID 
register. Exactly what node ID is used is 
arbitrary, so long as the bus manager 
insures that it is an unused address.

A refinement can allow this mechanism to function correctly even if additional nodes are 
added before the first ADDRESS_SET_PACKET is transmitted. Let all nodes capable of send-
ing a NODE_ADDED_ALERT (NAA) also be capable of detecting one. If an NAA is detected 
while arbitrating for the bus to send one’s own NAA, then set a flag NAP (node addition in 
progress) which will prevent further arbitration for NAA. When and if a subsequent 
ADDRESS_SET_PACKET is detected, the flag is cleared, and NAA arbitration may be 
resumed.  Also note that when NAP is set, the node must block packet transmission to its 
newly connected port.

The biggest drawback to this mechanism is that the bus manager must be ever vigilant, on 
the watch for alert packets which may arrive at any time.

Another drawback is that the regularity and predictability of node IDs has been lost; a list 
of self-id packets is no longer sufficient to reconstruct the topology. If the bus manager 
fails to keep track of the changes as they occur, or if the data is inadvertently lost, it would 
be necessary to do a bus reset to retrieve the topology information. This could be fixed as 
well, though the “fix” has the disadvantage that all PHYs on the bus would need the new 
feature, not just the ones involved in the new connection. But for the sake of furthering the 
discussion…

The problem is that the node IDs are now random. There is no way to parse the ping 
response packets and determine where nodes are in the hierarchy. A brute force way 
around that is to enlarge the ping command; call the new version CPP, for 
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CHILD_PARENT_PING. The target node of a CPP command responds by sending its self ID 
packet, and includes the termination signal TX_IDENT_DONE AB=1Z. Its parent node 
detects the self ID packet and TX_IDENT_DONE, and then transmit its own self ID packet 
(without TX_IDENT_DONE).  Thus the new child_parent_ping operation yields a pair of 
self-id packets; the second self-id packet is guaranteed to come from the parent of the 
node which sent the first self-id packet.

10.2  New Packet Definition

A number of new packets have been referred to by name only. They can all be imple-
mented in the form of PHY configuration packets, as shown below. A complete listing of all 
new PHY configuration packets is also included in the Appendix to this document.

FIGURE 23. New PHY Packets for Incremental Bus Re-configuration

10.3  State Machine Additions for Incremental Bus Re-Configuration

The state machines for incremental bus re-configuration are mostly independent of the 
main PHY state machine. With the exception of transmitting the node added alert and node 

       gap_cnt   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id        

logical inverse of first quadlet

transmitted first                                                    reserved

transmitted lastStandard PHY Configuration Packet

RT

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastChild_Parent_Ping Packet

 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 port_# 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastNode_Added_Alert Packet

 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 port_# 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastNode_Detached_Alert Packet

 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0  new_ID 0 0 1 1 1 1 1 1 0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastAddress_Set Packet
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detached alert, the necessary actions occur in the background as the phy performs its usual 
activities. 

FIGURE 24. Single Node Incremental Re-Configuration State Machine

FIGURE 25. Bus Node Incremental Re-Configuration State Machine

SN0:Idle SN1:Child

SN0:SN1

new_connect && 
(portR(new_conn_port)

portT(new_conn_port)
 == PARENT)

 == CHILD

SN2:Wait

SN1:SN2
(portR(new_conn_port)

portT(new_conn_port)
 == 0Z)

 == ZZ

disconnect SN1:SN0
disconnect || address_set_packet received

SN2:SN0

timeout

to bus reset

BN0:Idle

BN1:Parent

BN0:BN1
new_connect

BN2:Request

BN1:BN2
portR(new_conn_port)

portT(new_conn_port)
           == 10

          == ZZ
disconnect BN1:BN0

disconnect BN2:BN0

NAA_pkt sent

portT(new_conn_port)
== PARENT

BN2 Action:  if ~NAP & (portR(new_conn_port) == ZZ) NAA_BUS_REQUEST = TRUE;

(BN2_actions)

BN3:Wait

BN2:BN3

disconnect || 

BN3:BN0address_set_packet received
enable new_conn port

BN1:R0
portR(new_conn_port)
            == 11 to bus reset

BN3:R0
portR(new_conn_port)

            == 11

to bus reset

to bus reset

                (NAP is set by detection of NAA packet, and cleared by detection of address_set_packet)

BN2:R0
portR(new_conn_port)

            == 11
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11.0  Appendix

11.1  New PHY Configuration Packet Formats

       gap_cnt   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id        

logical inverse of first quadlet

transmitted first                                                    reserved

transmitted lastStandard PHY Configuration Packet

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastPHY Ping Packet

RT

     0 0 0 0 01 0 0 nodeA ID        

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastRemote PHY Ping Packet

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0    ping_time 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastPing Timer Packet

0 0 0 0 nodeB ID  0 0 0 0 0 0 0 0 

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastChild_Parent_Ping Packet

 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 port_#  0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastNode_Added_Alert Packet

 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 port_# 0 0  phy-id      0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastNode_Detached_Alert Packet

 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0  new_ID0 0 1 1 1 1 1 1 0  

logical inverse of first quadlet

transmitted first                                          byte2                 byte3

transmitted lastAddress_Set Packet
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11.2  PHY Registers

FIGURE 26. Phy Register Map

TABLE 4. 

Field Size Type Description

Physical_ID 6 r The address of this node determined during self-ID

R 1 r Indicates node is root

ISBR 1 rw Initiate short bus reset

RHB 1 rw Root holdoff bit

IBR 1 rw Initiate bus reset

Gap_Count 6 rw Arbitration timer setting

Speed 3 r Top speed this phy can handle

# Ports 5 r Number of ports on this phy

LPI 1 r Loop detect interrupt

CPI 1 r Cable power fail interrupt

CPS 1 r Cable power status

BRI 1 r Last bus reset was initiated by this phy

C 1 r Contender bit (external PHY pin)

PWR 3 r Power_class (external PHY pins)

AStat(n) 2 r TPA line state on port n                                                     
11 = Z; 01 = 1; 10 = 0; 00 = invalid

BStat(n) 2 r TPB line state on port n (same code as AStat)

0 1 2 4 5 6 73
Contents

Address

0000

0001

0010

0011

0100

0101

# Ports + 0110

1111

Physical_ID R ISBR

RHB IBR Gap_Count

# PortsSpeed

LPI CPI BRICPS C PWR

AStat0 BStat0 Ch0 Cn0 Cs0 PD0

AStat1 BStat1 Ch1 Cn1 Cs1 PD1

# Ports + 0100

# Ports + 0101

AStatN BStatN ChN CnN CsN PDN

Ping_Timer

Vendor Register(s)

Page# Reserved
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Ch(n) 1 r If Ch=1, port is child; else parent port.

Cn(n) 1 r If Cn=1, port is connected & enabled

Cs(n) 1 r If Cs=1, bias voltage is detected (possible connection)

PD(n) 1 rw PD=1 disables the port

Ping_Timer 8 r Round trip delay for last ping transaction

Vendor Registers 8 - Implementation dependent

Page # 3 rw Multiple pages needed for wide phys                            
write page# to access desired page                                    
write not allowed if page# not valid

TABLE 4. 

Field Size Type Description


