
Modified Tree-ID Process for Long-haul Transmission and Long PHY_DELAY

~ An Supplemental Root Contention Resolution Method ~

Takayuki Nyu
C&C Media Research Laboratories

NEC Corporation
4-1-1 Miyazaki Miyamae-ku Kawasaki, 216 Japan

e-mail : new@ccm.cl.nec.co.jp
phone : +81-44-856-2082

fax : +81-44-856-2222

1. Introduction

In August, 1997, the model illustrated in Figure 1 was presented to a meeting of the P1394b study
group. In it, future sub-/full- PHYs are used to extend the distance between nodes. The sub-/full-
PHYs are to be designed to be connectable by way of a short copper cable (maximum length is 4.5
m) either to a IEEE 1394-1995 PHY or to a future P1394a PHY, which would be an extension of
the current IEEE 1394-1995 PHY. The more function blocks in a future P1394a PHY that are
identical to those used in the sub-/full- PHY, the lower the cost of implementing the two PHYs.
That is to say, we want to make the commonality between them as high as possible.

In this regard, we should note that sub-/full- PHYs are connected by a long cable, which means that
any root contention resolution method will have to be able to cope with the excess latency that
results from long-haul transmission and long PHY_DELAY. I propose here a supplemental root
contention resolution method to be overlayed on IEEE 1394-1995. With it, root contention will be
resolved no matter what future modifications might be made in the allowable maximum
cable_delay (distance between nodes) and PHY_DELAY (repeat delay in nodes). Further, because
this method is simply overlayed on IEEE 1394-1995, which is then to be extended into P1394a, its
addition will not in any way reduce commonality between sub-/full- PHYs and P1394a PHYs.

IEEE 1394-1995
PHY

or
P1394a PHY

IEEE 1394-1995
PHY

or
P1394a PHY

Sub-/Full-
PHY

PMD-n
Tx/Rx

Sub-/Full-
PHY

PMD-n
Tx/Rx

Long Cable
(Requirement : 50m at P1394b)

1394 Short Cable
(~ 4.5m)

1394 Short Cable
(~ 4.5m)

Figure 1 : A 1394 model using a long cable

2. Root contention resolution method in IEEE 1394-1995

Currently in IEEE 1394-1995, when root contention occurs between two nodes (hereafter referred
to as nodes A and B), the nodes randomly select and start either their long or short timer. The
value of a long timer is referred to as ROOT_CONTEND_SLOW, and the value of a short timer is
referred to as ROOT_CONTEND_FAST. When time expires, the node retransmits a
PARENT_NOTIFY signal. When node A selects a long timer, and node B selects a short timer,
node B retransmits a PARENT_NOTIFY signal earlier than node A, i.e. node A’s long timer will

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

2

still be operating when the PARENT_NOTIFY signal from node B reaches it. Consequently, node A
will receive the PARENT_NOTIFY signal the instant that time expires, and root contention will be
resolved so long as the two nodes have selected different length timers and the delay between the
nodes is small relative to ROOT_CONTEND_FAST. That is to say, in the worst case, even when
different length timers have been selected, the following conditions must be met:

Condition 1 : ROOT_CONTEND_FAST > 2∗ cable_delay + phy_delay

Condition 2 : ROOT_CONTEND_SLOW – ROOT_CONTEND_FAST > 2∗ cable_delay + phy_delay,

where cable_delay is the propagation delay between nodes A and B, and phy_delay is the repeat
delay in a node[1].

In IEEE 1394-1995, ROOT_CONTEND_SLOW is 570ns ~ 600ns, ROOT_CONTEND_FAST is
240ns ~ 260ns, and PHY_DELAY must be less than 144ns. If PHY_DELAY is equal to 144ns,
Condition 1 will not be met if cable_delay is longer than 48 ns, which corresponds to an
approximate cable length of 8 m, i.e. root contention will not be resolved in this worst case scenario.
Figure 2 shows a case in which node A has selected its long timer and node B its short timer. We
assume that the sum of cable_delay and PHY_DELAY is 200ns; the result is a bus reset.

Parent_Notify

Idle

Parent_Notify

Idle

ROOT_CONTEND_FAST
250ns

ROOT_CONTEND_SLOW
600ns

Node A Node B
delay 200ns

Node B receives a Parent_Notify signal,
and transmits Child_Notify by mistake.

Node B receives a mistake Child_Handshake,
and starts a self-ID process.

Idle
by mistake

Parent_Notify

Self-ID State

Node A awaits Parent_Handshake or
Root_Contention signal, and Bus Reset occurs

after MAX_ARB_STATE_TIME

Node B detects a Root Contention

Node A detects a Root Contention

Child_Notify
by mistake

Figure 2 : Cases of failure to resolve root contention
 (Node A selects long timer and node B selects short timer)

3. Root contention timer in P1394a Draft 1.0

The range of values for root contention timers, i.e. ROOT_CONTEND_FAST and
ROOT_CONTEND_SLOW, is being changed in P1394a draft 1.0 in order to overcome the above

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

3

problem. New values are to be: ROOT_CONTEND_FAST = 760ns ~ 800ns and
ROOT_CONTEND_SLOW = 1600ns ~ 1640ns. In terms of Condition 1, if it is assumed that
PHY_DELAY is equal to 144ns, allowable cable_delay will be 308ns, which corresponds to an
approximate cable length of 56m, and in terms of Condition 2, will be 328ns, which corresponds
to an approximate cable length of 59m. Therefore, root contention will be resolved if the distance
between nodes is less than 56m. PHY_DELAY is variable , however, determined by the self-id
packet, and if the maximum PHY_DELAY of 444ns were selected, Condition 1 would not be met if
cable_delay were longer than 158 ns, i.e. root contention would still not be resolved if transmission
were longer than approximately 28 m.

4. Proposal of supplemental process for root contention resolution

One approach to this problem is to increase the value of the timers even further; another is to
resolve root contention with a method that is independent both of the distance between nodes and
of the repeat delay in them. That is what I propose here. The basic process is as follows:

1st : The two nodes detect both the duration of the tx_parent_notify
(tx_prop_time) and the duration both of the rx_parent_notify and of
rx_root_contention (rx_prop_time).

2nd : The nodes compare tx_prop_time to rx_prop_time.

3rd : A node whose tx_prop_time is less than rx_prop_time will take the role of
bus root, with the other node becoming a child node. If tx_prop_time
should happen to equal rx_prop_time for both nodes, each will randomly
choose to set its back-off timer either to zero or to BACK_OFF_TIME, and
each will retransmit a PARENT_NOTIFY signal, either at the instant of
a zero-set or at the expiration of a BACK_OFF_TIME, as the case may be.

5. Modified tree identify process

We have created a PHY timing constant, referred to as LONG_DIST_TIME, in order to make our
method compatible with existing root contention resolution. A state T4 is added to the existing
Tree-ID state machine. If either the duration of tx_parent_notify or the duration both of
rx_parent_notify and of rx_root_contention exceeds LONG_DIST_TIME, root contention resolution
will be switched to the proposed method, which has no influence on the handshake process for
times of less than LONG_DIST_TIME.

Figure 3 shows an example. It was assumed that the sum of cable_delay and PHY_DELAY is 300
ns and that LONG_DIST_TIME is 200ns. Node A detects both α and β as both tx_prop_time and
rx_prop_time respectively. Node B detects both α and β, as rx_prop_time and tx_prop_time,
respectively. Since α is longer than β in this example, node A will be root and node B will be child.

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

4

Parent_Notify

Parent_Notify

Idle

Idle

start of tx_timer
(tx_timer=0)

start of tx_timer
(tx_timer=0)

start of rx_timer
(rx_timer=0)

start of rx_timer
(rx_timer=0)

Root_Contention
(t=300ns)

Root_Contention
(t=500ns)

stop of tx_timer
(tx_timer=100ns)

stop of tx_timer
(tx_timer=500ns)

t=0

stop of rx_timer
(rx_timer=100ns)

stop of rx_timer
(rx_timer=500ns)

Parent_Notify

Child_Notify

Tree ID process is
complete.

t=200ns

t=600ns

t=800ns

t=1.2µs

t=200

tx_timer > LONG_DIST_TIME
 switch to new method

tx_timer > rx_timer

node A is child.

tx_timer < rx_timer

node B is parent,
that is root.

200ns

t=500ns

rx_timer > LONG_DIST_TIME
switch to new method

Node A Node B
delay 300ns

α
β

Figure 3: Root contention resolution with the proposed method

5.1. Additional PHY timing constants

The following condition must hold in order to properly use both the proposed method and the
existing method.

 LONG_DIST_TIME < ROOT_CONTEND_FAST

LONG_DIST_TIME should be set to the closest value to ROOT_CONTEND_FAST in order to use
the existing method as much as possible. Since ROOT_CONTEND_FAST in IEEE 1394-1995 is
240 ns ~ 260 ns, LONG_DIST_TIME could be set to 200 ns.

If root contention occurs precisely midway between nodes, the duration of tx_parent_notify will
equal the duration both of rx_parent_notify and of rx_root_contention, in which case the two nodes
will retransmit PARENT_NOTIFY signals at different times, each of which may be referred to as
that node’s long_contend_time. This will resolve root contention. Long_contend_time is set either to
zero or to BACK_OFF_TIME, for which two or three clock times will be enough.

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

5

Table 1 : Additional PHY timing constants

Timing constant Minimum Maximum Comment

LONG_DIST_TIME 160ns 200ns Timing of transition from existing
resolution method of root contention to
proposed method (20 / base_rate)

BACK_OFF_TIME 40ns 80ns Time to wait in state T4 before
transition to state T2. (8 / base_rate)

5.2. Additional cable PHY code definition

Table 2 : Additional cable PHY code definition

timer tx_timer; // timer for measuring the duration of tx_parent_notify
timer rx_timer; // timer for measuring the duration of rx_parent_notify
int tx_prop_time; // the duration of tx_parent_notify
int rx_prop_time // the duration of rx_parent_notify
boolean rx_timer_off // set when reception of rx_parent_notify is complete
boolean long_delay // reset when a node in state T3 receives rx_idle at state T3 and
 rx_timer is less than LONG_DIST_TIME.
boolean contention_in_PHY // set when contention occurs in a PHY
baserate_time long_contend_time // amount of time to wait for re-start tx_parent_notify

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

6

5.3. Tree-ID state machine

R1:T0

T0:Tree-ID Start
tree_ID_start_action

T1:Child Handshake
child_handshake_actions

T2:Patent Handshake

T3:Root Contention

(child_count == NPORT)||
((arb_timer >= (force_root?
FORCE_ROOT_TIMEOUT : 0))&&
(child_count == NPORT - 1))

(arb_imer >= CONFIG_TIMEOUT)
&&(child_count < NPORT-1)

signal PH_STATE.ind
(CONFIG_TIMEOUT);

from R1:
Reset
Wait

T3:T1

(portR(parent_port) ==
RX_ROOT_CONTENTION) &&
(tx_timer <= LONG_DIST_TIME)

(root || (portR(parent_port) ==
RX_PARENT_HANDSHAKE))

to S0: Self-ID Start

T2:S0

T2:T3

T3:T2

child_handshake_complete();
T1:T2

root_contend_actions

T0:T0

T0:T1

T4:Root Contention
for Long Delay

root_contend_actions2

T3:T4

 ((portR(parent_port)==RX_PARENT_NOTIFY) //
(portR(parent_port)==RX_IDLE))

&& (rx_timer>LONG_DIST_TIME)
&& long_delay == true

((rx_timer_off==true) &&
(tx_prop_time > rx_prop_time))

T4:T2a
portT(parent_port,
 TX_PARENT_NOTIFY);(rx_timer_off == true) &&

(portR(parent_port) ==
RX_PARENT_NOTIFY)

child[parent_port] = true;
/* node is now root */

T4:T1

T4:T2b

((rx_timer_off==true) &&
(tx_prop_time == rx_prop_time) &&

(arb_timer > long_contend_time))

portT(parent_port,
 TX_PARENT_NOTIFY);

T2:T4

(portR(parent_port) ==
RX_ROOT_CONTENTION) &&
(tx_timer > LONG_DIST_TIME)

portT(parent_port,
 TX_PARENT_NOTIFY);

(portR(parent_port)==IDLE) &&
(arb_timer > contend_time))child[parent_port] = true;

/* node is now root */

(portR(parent_port) ==
RX_PARENT_NOTIFY)&&
(arb_timer>contend_time)

T3:T3long_delay =false

 (portR(parent_port)==RX_IDLE)
&& (rx_timer < LONG_DIST_TIME)

parent_handshake_actions()

Figure 4 : Modified Tree-ID state machine

 The section enclosed by dashed lines represents the added method.

5.3.1. Tree-ID state machine notes

State T4 : Root Contention for Long Delay. In this state, both nodes compare the
duration of tx_parent_notify (tx_prop_time) and the duration both of rx_parent_notify
and of rx_root_contention (rx_prop_time). If tx_prop_time is longer than rx_prop_time,
the node will be a child node. If rx_prop_time is longer than tx_prop_time, the node will be
a parent node (i.e. a root). If tx_prop_time is equal to rx_prop_time, PARENT_NOTIFY
signal will be retransmitted after respective long_contend_times.

Transition T3 : T3. If a node receives an IDLE signal when rx_timer is less than
LONG_DIST_TIME, the long_delay flag is set to false.

Transition T3 : T4. If a node receives an IDLE or PARENT_NOTIFY signal and the
long_delay flag is set to true when rx_timer is longer than LONG_DIST_TIME, it changes
the method of resolution from the existing to the added.

Transition T4 : T1. If rx_prop_time is longer than tx_prop_time and the node receives a
rx_parent_notify, the node takes on the role of a bus root.

Transition T4 : T2a. If tx_prop_time is longer than rx_prop_time, the node once again

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

7

sends a PARENT_NOTIFY signal.

Transition T4 : T2b. If tx_prop_time is equal to rx_prop_time, each node node waits for
long_contend_time in state T4 and then once again sends a PARENT_NOTIFY signal.

Transition T2 : T4. If root contention is detected when tx_timer is longer than
LONG_DIST_TIME, a node changes the method of resolution for the existing to the
added.

5.3.2. Tree-ID actions and conditions

Table 3 : modified IEEE 1394-1995 Table 4-45

void tree_ID_start_actions() {
int i, temp_count;
long_delay = false; // set long_delay flag
contention_in_PHY = false; // set contention_in_PHY flag
arb_timer = 0; // start timer
while(true) { // loop forever
 temp_count = 0; // temporary child counter
 for (i = 0; i < NPORT; i++)

if (∼connected[i] || portR(i) == RX_PARENT_NOTIFY) {
 // when unconnected or receiving "you are my
parent"
 child[i] = true; // set child flag
 temp_count++; // and increment counter
 child_count = temp_count; // set current child count
 } // end of forever loop
}
void child_handshake_actions() {
int i;
root = true; // root will stay true if all ports are child ports
for (i = 0; i < NPORT; i++) {
 if (connected[i] && child[i])
 portT(i, TX_CHILD_NOTIFY); // you are my child
 else if (connected[i]) {
 portT(i, TX_PARENT_NOTIFY); // you are my parent
 parent_port = i; // there is at most one port with child==false
 root = false; // cannot be root since there is a parent
 }
}
boolean child_handshake_complete() { // true id all active children in "Start Self_ID"
int i;
for (i = 0; i < NPORT; i++)
 if (child[i] && connected[i] && (portR(i) != RX_CHILD_HANDSHAKE)
 return false; // active child not giving "you are my parent"
return true; // will also be true if there are no active
children
}
void parent_handshake_actions(){
tx_timer = 0; // start transmition timer
if (portR(parent_port) == RX_PARENT_NOTIFY) {

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

8

 rx_timer = 0;
 contention_in_PHY = true;
}
}
void root_contend_actions() {
int i;
contend_time = (random_bool() ? CONTEND_SLOW : CONTEND_FAST);
long_delay = true; // set long delay flag
for (i = 0; i < NPORT; i++) {
 if (child[i])
 portT(i, TX_CHILD_NOTIFY); // you are my child
 else
 portT(i, IDLE); // abandon "you are my parent" request
 }
arb_timer = 0; // start arbitration timer
if (contention_in_PHY == false) {
rx_timer = 0; // start reception timer
}
tx_prop_time = tx_timer;
}

void root_contend_actions2() {
long_contend_time = (random_bool() ? 0 : BACK_OFF_TIME);
if (long_delay == false){
 tx_prop_time = tx_timer; // set transmission time
}
for (i = 0; i < NPORT; i++) {
 if (child[i])
 portT(i, TX_CHILD_NOTIFY); // you are my child
 else
 portT(i, IDLE); // abandon "you are my parent" request
 }
if (long_delay == false) {

rx_timer = 0; // start reception timer
}
while (portR(parent_port) == RX_PARENT_NOTIFY) {
 rx_timer_off = false;
}
if (portR(parent_port) == IDLE) {
 rx_timer_off = true;
 rx_prop_time = rx_timer;
 arb_timer = 0; // start arbitration timer
}

6. Advantages of proposed method

Figure 5 shows an example of the use of the existing root contention method alone. It is assumed,
as it was in the example illustrated in Figure 3, that delay between nodes A and B is 300 ns. 1 µs

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

9

and 2 µs were chosen, respectively, for ROOT_CONTEND_FAST and ROOT_CONTEND_SLOW,
so that root contention will be resolved even when PHY_DELAY is 444 ns and cable length is 50 m.
Nodes A and B wait until their timers expire for, respectively, a W1 of 0.9 µs and a W2 of 0.5 µs.
The Tree-ID process is complete at 2.8 µs. In this example, 1.6 µs more time is consumed than was
with the proposed method applied in the example in Figure 3.

Parent_Notify

Parent_Notify

Idle

Idle

Root_Contention
(t=300ns)

Root_Contention
(t=500ns)

t=0

Parent_Notify

Child_Notify

Tree ID process is
complete.

t=200ns

t=2.8µs

Node A Node B
delay 300ns

ROOT_CONTEND_FAST
1µs

ROOT_CONTEND_SLOW
2µs

t=800ns

t=1.3µs

t=1.6µs

t=2.5µs

t=600ns

W1

W2

Figure 5 : Using existing method only.
(ROOT_CONTNED_FAST=1us, ROOT_CONTNEND_SLOW=2us)

To : IEEE P1394a Working Group / 1997. Sept. 25,26 / NEC Corporation

10

7. Conclusion

I have described the weakness of the existing root contention resolution method in IEEE 1394-1995
and P1394a under conditions of long delay between nodes, and proposed a supplemental root
contention resolution method that is independent of the delay between nodes. The proposed
method appears to be very promising for accommodating long distance cable (>50m) and long
PHY_DELAY.

Reference

1. Dave LaFollette, “ SubPhy Root Contention “, 1997 Aug. 1
2. IEEE P1394a Draft 1.0
3. IEEE std 1394-1995

