97-058r0

FROM: Jerry Hauck, jerry_hauck@ccm.sc.intel.com
TO: P1394a Working Group

DATE: September 19, 1997

RE: Minimum cycle_offset in cycle start packet

In preparation for discussion on Agenda Item 4.11 in Natick, here is some background
information and a proposal for specifying a minimum cycle_offset value in the cycle start
packet.

cyclelnconsistent Background

OHCI link designs (and | imagine some others) apply a few consistency checks on incoming
cycle start packets. One of the checks compares the cycle_count and second_count fields of
the cycle start packet with the link's internal CYCLE_TIME register. If these fields are not
equal, a cyclelnconsistent interrupt is asserted.

In the case of OHCI, the cyclelnconsistent interrupt confirms that the cycle master's concept of
time has changed (probably due to a new cycle master being selected after a bus reset). One
effect of a cyclelnconsistent is that isochronous transmit or receive streams which were
programmed to start in a specific isoch interval may now have to be rescheduled. (Due to host
bus latencies, OHCI implementations typically schedule work up to two isoch intervals ahead
of "real" time with the assumption that cycle time can be accurately predicted. A
cyclelnconsistent then temporarily invalidates the assumption.)

In summary, without the cyclelnconsistent mechanism, it would be difficult if not impossible for
software to ensure that a specific packet arrive at a target during a specific isoch interval. This
capability is near essential for isoch protocols which require an absolute cycle number to be
encoded in each packet.

Problem Statement

As outlined above, the cyclelnconsistent test relies on cycle slaves seeing their internal cycle
sync event before receiving the corresponding cycle start packet from the master. If the order
of these events are exchanged during normal operation, false cyclelnconsistents will regularly
occur.

Ideally, the exchange of cycle syncs and cycle starts never occurs since the CYCLE_TIME
registers in the master and slaves are synchronized and differ by a fixed offset representing
the propagation delay between the master and each slave. When a cycle master detects an
internal cycle sync #N, a slave will observe its internal cycle sync #N a propagation delay later.
In response to cycle sync #N, the master will generate cycle start #N. A slave then observes
this cycle start #N a propagation delay later. Thus, cycle slaves ideally always see cycle sync
#N followed by cycle start #N.

However, jitter in delivery of cycle start packets must also be considered. For example, if cycle
start N arrives at a slave with worst case propagation delay and cycle start N+1 arrives with
best case delay, then the difference in time between cycle sync N+1 and cycle start N+1 will be
shorter at the slave than at the master. A similar scenario exists in which the difference in time
appears greater at the slave than at the master. In the limiting cases when the cycle master
transmits the cycle start packet too close to it's own cycle sync, the order of the events can
become interchanged when observed at a given cycle slave.

A Possible "Fix"
The exchange of events at the cycle slave can be completely avoided if the cycle master can

guarantee that it's internal cycle sync and cycle start generation are always separated by at
least the worst case delivery jitter of the bus. Specifically,

97-058r0

a) The minimum cycle_offset contained in the cycle start packet must be larger than
the delivery jitter

b) The maximum cycle_offset contained in the cycle start packet must be less than
(3071 - delivery jitter).

In turn, delivery jitter consists of PHY delay jitter and clock drift between the master and slave.
Looking at the clock drift component first, | propose we consider the maximum drift which can
occur over 2 isoch intervals (protecting us even in the event a bus reset clobbers one cycle
start packet). With a maximum difference of 200 ppm between master and slave, the
maximum drift over 250 uSec is 50 nSec.

In considering PHY jitter, a traditional 1394 analysis would consider a 20 nSec per PHY jitter
multiplied by a maximum hop count of 16 for a total PHY jitter of 320 nSec. However,
P1394a's greater independence from a specified maximum hop count and the possibility of
PHY's with larger propagation jitter suggests we consider a larger cumulative jitter. I'll propose
640 nSec.

Combining PHY jitter and clock drift, the worst case delivery jitter for cycle start packets is 640
+ 50 = 690 nSec. In units of the cycle_offset field, 690 nSec ~= 17. So our fix becomes:

a) The minimum cycle_offset = 18.
b) The maximum cycle_offset = 3053.

Except for some extreme scenarios in which a bus reset interrupts cycle start generation, |
believe rules a) and b) above are already met by today's links. Consequently, | believe this
issue becomes one of specmanship and should not need to affect current silicon designs.

Rule a) should be practically met if you consider the time it takes to issue a PriReq and the
duration of DATA_PREFIX the PHY enforces before granting the bus to the link. For
completeness we should specify a minimum (in the anticipation of integrated PHY/LINKS.)

Rule b) should be practically met considering the prioritized arbitration the root possesses.
Cycle starts can normally be delayed at most by a maximum sized asynchronous packet, so
the cycle_offset should be no where near the maximum value. The only scenario which
challenges this is a bus reset which ends near an upcoming cycle sync event. | willing to
accept the low probability of receiving a false cyclelnconsistent in this scenario.

Specific P1394a Proposal

| propose some text along the lines of "If bus arbitration for and transmission of the cycle start
packet communicating the start of interval N both begin within isochronous interval N, then the
minimum cycle_offset specified by the cycle start packet shall be 17." 1 think a note would also
be appropriate to indicated that "Due to the asynchronous occurrence of bus resets, it is
possible in rare circumstances for transmission of a cycle start packets to be delayed into the
interval subsequent to the one in which arbitration was requested. That is, a second cycle
sync occurs before the first cycle Start packet is formed and transmitted. In such rare
circumstances, there is no requirement for the link to enforce the minimum cycle_offset value.”

The intent of my cumbersome wording is to free link designers from additional hardware
enforcement of the minimum cycle_offset under all possible conditions. | think our goal is to
ensure that, during normal operating conditions in which cycle syncs and cycle starts enjoy a
matched 1:1 ratio, false cyclelnconsistents are eliminated.

Hardware could be designed in a manner which guaranteed the min and max values at all
times, but | don't think the effort is justified and | don't feel the specification should require it.

