
1

FROM: Jerry Hauck, jerry_hauck@ccm.sc.intel.com

TO: P1394a Working Group

DATE: October 8, 1997

RE: Isochronous period too long

Subclause 9.20 of the P1394a Draft 1.1 states:

If the cycle master detects an isochronous period that exceeds the maximum time, it shall
clear its own cmstr bit and cease transmission of cycle start packets. The cycle too long
condition is defined as the failure to detect a subaction gap within 125 µs of the transmission
of a cycle start packet.

This subclause seems to imply that the “maximum time” allowed for isochronous
traffic (including cycle starts) is 125 µs and that adherence to that maximum time
would allow isochronous transmissions to continue indefinitely and on time. I
propose that the 125 µs limit as defined is not sufficient to allow indefinite, on-
time isochronous transmission. Furthermore, I believe there is a legitimate
motivation to ensure that non-cycle start asynchronous packets can make
forward progress even in the presence of maximum-sized isochronous periods.

Analysis

Consider the following limiting model of bus behavior:

Isoch --SG----AD- DP | CS | DE -IG- Isoch --SG----AD- DP | CS

IsochPeriod

Legend:
SG = Subaction Gap
AD = Arb Delay
DP = Data Prefix
DE = Data End
 IG = Isoch Gap
CS = Cycle Start

Isoch = Abstract collection of all Isoch stuff including DP/DE, etc.

Note: For this example, I’ve defined the IsochPeriod to include the Arb delay which follows a
subaction gap.

Consider three possible durations for the IsochPeriod described above:

 i. IsochPeriod > 125 µs: This is a trivial case ... after a finite number of back
to back isoch intervals, there will be at least one interval during which two

2

cycleSync’s occur within the same period. Consequently, cycles are lost
because the bandwidth is over subscribed. No asynch packets (other than
cycle start) are ever sent.

 ii. IsochPeriod = 125 µs: This is the boundary case. Whatever phasing the
cycleSync interval has with the cycle start packet will remain constant over
all cycle start packets. There is an exact one-to-one ratio of cycleSync’s to
IsochPeriod’s. This case can repeat indefinitely without loss of isochronous
data or cycles, but no asynchronous packets other than cycle start can ever
be sent.

 iii. IsochPeriod < 125 µs: This case guarantees that asynchronous packets
can be sent with some frequency. This does not guarantee that an asynch
packet can be sent each isochronous period, however. Since the cycleSync
period = 125 µs and the IsochPeriod < 125 µs, the phasing of cycleSync's
relative to the end of the isoch period will "walk". Said differently in each
successive isoch interval, the next cycle sync will occur later in time relative
to the end of the last isoch packet. After a finite number of back-to-back
isoch periods, there will be at least one phase alignment in which the PriReq
to the PHY resulting from the cycleSync occurs after the subaction_gap +
arb_delay interval. When this occurs, the PHY will have to wait until an
arb_reset_gap + arb_delay interval elapses before granting the bus for a
cycle start. While waiting for this arb_reset_gap, the PHY is guaranteed to
recognize and grant any arbitration request from any node which was
triggered by the subaction gap. Voila ... an asynch packet gets a chance.
The number of back-to-back isoch cycles which occur before an
asynchronous packet sees an opportunity becomes a function of how close
the IsochPeriod is to 125 µs.

It is my understanding that Draft 1.1 of P1394a intended to allow case ii above;
i.e., isochronous transmission could continue forever without any guarantee for
asynchronous delivery. To allow case ii:

IsochPeriod = 125 µs
DP+CS+DE+IG+Isoch+SG+AD = 125 µs

The description in 9.20 implies that a timer (which I'll call cycleTooLongTimer)
starts counting with the start of the cycle start packet and ends with the
subaction gap indication. Therefore, the proper trigger point to allow case ii
would be given from the above as:

cycleTooLongTimer + AD > 125 µs

So, it appears that the "proper" time-out should be 125 µs – AD, not the 125 µs
limit noted in 9.20. With a gap count of 63, AD ~ 2.6 µs, giving a time-out of
~122.4.

3

However, my analysis was based on bus timings on the wire. We need to
consider PHY and LINK delays. For example, the subaction gap indication from
the PHY takes a finite propagation time as does the GRANT indication for the
start of the cycle Start packet. The delays are offsetting and, if they are equal,
the analysis is unchanged. (To be precise, we’d also have to look at the
variations in the elapsed time between detecting cycleSync and getting that
indication latched in the PHY. I’m assuming the jitter on this is quite low and in
the noise.)

Modified Proposal

After some consideration, I think case iii is a compelling target for P1394a.
Consider the case when two independent buses are joined and the isochronous
bandwidth is instantaneously overallocated. Normally, this situation corrects itself
by requiring each isoch talker to reaffirm channel and bandwidth allocations.
Unfortunately, such reaffirmations are asynchronous packets and might never
get sent when the isoch cycle length falls in case i or ii. Triggering “isochronous
period too long” for both case i and ii ensures that a bus with oversubscribed
isochronous bandwidth can gracefully recover.

Adopting case iii as the only valid operating regime, the ideal P1394a trigger
point would be given as:

cycleTooLongTimer >= 125 µs – AD, or
cycleTooLongTimer >= 122.4 µs (with a gap count of 63)

Of course, each implementation would have to adjust their time-out depending
on when they actually start and stop the period timer. If there are differing
pipeline delays for the timer’s start and stop events, adjustment of the trigger
would be required.

Since the specification of a presise time-out isn’t called for in this application, I
suggest that a reasonable detection range be allowed for by the spec in order to
ease implementation. This also allows us to be a bit sloppy with regards to the
issue of PHY/LINK notification delays, precise start/stop timing definitions, etc.
Consequently, I propose the following replacement text for subclause 9.20:

If the cycle master detects an isochronous period that exceeds the allotted time, it shall clear
its own cmstr bit and cease transmission of cycle start packets. The cycle too long condition
shall be detected whenever the duration of the current isochronous period, if maintained in
subsequent periods, would starve transmission of asynchronous packets other than cycle
starts.

To meet this requirment, implementations with a discrete PHY and a dedicated period timer
should trigger no less than 115 µs and no more than 120 µs after sending a cycle start unless
a subaction gap or bus reset indication is first observed.

4

Implementations without a dedicated period timer should observe the cycle_offset fields of
consecutive cycle start packets and trigger when, in the absence of intervening asynchronous
traffic, a subsequent cycle_offset either remains constant or increases relative to a previous
cycle_offset. Bus events which constitute asynchronous traffic in such an implementation
include:

a) bus reset indication,
b) arbitration reset gap indication, or
c) reception or transmission of an asynchronous packet other than cycle start.

