CONGRUENT SOFTWARE, INC.
3998 Whittle Avenue

Oakland, CA 94602
(510) 531-5472
(510) 531-2942 FAX

FROM: Peter Johansson

TO: IEEE P1394a Working Group
DATE: November 25, 1997

RE: Suspend / resume

P1394a/97-086r0

This document is based upon the contributions in 97-031r9, 97-053r2, 97-054r2 and 97-055r2 and is an
effort to integrate that work with the P1394a draft standard. Along with editorial changes | have encountered
a few areas where technical changes seemed (at least to me) to be in the spirit of the suspend / resume
work. There are errors and omissions—most the result of the editor’s incomplete comprehension of all

details of the suspend / resume design efforts—but | expect them to be easily remedied.

The additions to P1394a are presented with a numbering scheme that matches that of Draft 1.2, November
21, 1997. The changes between that draft and this document are shown in red and with change bars in the

margin.

This document is on the agenda for review in Ft. Lauderdale and will also be a principal focus of the follow-

up PHY designer’s review session later in December.

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

6. PHY register map (cableenvironment)

The Port Status page has new register fields to control the suspend and resume process. Because these
fields shall be accessible to remote PHY register reads and writes, PHY registers 1010, and 1011, are
defined with special behaviors. Zeros written to either register have no effect. A one written to PHY regis-
ter 1010, sets the corresponding bit to one while a one written to the other PHY register, 1011,, clears
the corresponding bit position to zero. For convenience of reference, the entire definition of the Port
Status page from P1394a Draft 1.2 is reproduced below.

In the cable environment, the extended PHY register map illustrated by figure 6-1 shall be implemented by all designs
compliant with this supplement. Reserved fields are shown shaded in grey.

Contents

Address 0 1 2 3 4 5 6 7
0000, Physi(I:aI_ID I | R PS
0001, RHB IBR | Gap_lcount |
0010, IIExtended (7|) ITotal_portsI |
0011, Max_speed Token Dellay
0100, Link_active [Contender Jitter | Pwr |
0101, Wakeup ISBR Loop Pwr_fail | Timeout Bias_changgEnab_accel| Enab_multi
0110,
0111, IIDage_seIeclt | IPort_selectI |
1000, | | | Registeroloage_se,ect | | |
1111, | | | Register?loage_se,ect | | |

Figure 6-1 — Extended PHY register map for the cable environment

The meaning, encoding and usage of all the fields in the extended PHY register map are summarized by table 6-1. Power
reset values not specified are resolved by the operation of the PHY state machines subsequent to a power reset.

Table 6-1 — PHY register fields for the cable environment

Field Size | Type | Power reset value | Description
Physica ID | 6 r The address of this node determined during self-identification. A value of 63
indicates a malconfigured bus; the link shall not transmit any packets.
R 1 r When set to one, indicates that this node is the root.
PS 1 r Cable power status (see clause 7.2).
RHB 1 rw 0 Root hold-off bit. When set to one, instructsthe PHY to attempt to become the
root during the next tree identify process.

2 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size | Type | Power reset value | Description

IBR 1 rw 0 Initiate bus reset. When set to one, instructs the PHY to seti br TRUE and

reset _time to RESET_TI ME. These valuesin turn cause the PHY toini-
tiate a bus reset without arbitration; the reset signal is asserted for 166 pfs. This
bit is self-clearing.

Gap_count| 6 rw 3k Used to configure the arbitration timer setting in order to optimize gap times
according to the topology of the bus. See 4.3.6 of IEEE Std 1394-1995 fpr the
encoding of this field.

Extended 3 r 7 This field shall have a constant value of seven, which indicates the extended
PHY register map.

Total_ports| 5 r vendor-dependent The number of ports implemented by this PHY.

Max_speed, 3 r vendor-dependent Indicates the speed(s) this PHY supports:

000, 98.304 Mbit/s

001, 98.304 and 196.608 Mbit/s

010, 98.304, 196.608 and 393.216 Mbit/s

011, 98.304, 196.608, 393.216 and 786.43 Mbit/s

100, 98.304, 196.608, 393.216, 786.432 and 1,572.864 Mbit/s
101, 98.304, 196.608, 393.216, 786.432, 1,572.864 and 3,145.728 Mbit/s

All other values are reserved for future definition

Token 1 r vendor-dependent When set to one, indicates that the PHY is capable of token-style arbjtration
(which shall be separately enabled for each port bgribke _token bit).
Delay 4 r vendor-dependent Worst-case repeater delay, expressed as 144 + (delay * 20) ns.
Link_active| 1 rw 1 Link active. Cleared or set by software to control the value of the L bit tfans-

mitted in the node’s self-ID packet 0, which shall be the logical AND of thif bit
and LPS active.

Contender 1 rw See description Cleared or set by software to control the value of the C bit transmittefl in the
self-ID packet. If hardware implementation-dependent means are not available
to configure the power reset value of this bit, the power reset value shal| be

zero.
Jitter 3 r vendor-dependent The difference between the fastest and slowest repeater data delay, ¢xpressed
as (jitter + 1) * 20 ns.
Pwr 3 rw | vendor-dependent Power class. Controls the value of the pwr field transmitted in the selffID
packet. See 4.3.4.1 of IEEE Std 1394-1995 for the encoding of this field
Wakeup 1 rw ? Wakeup notification. When set to one, if the PHY/link interface is disabl¢d the

PHY shall signal LinkOn if either a) any port commences resume operati¢ns or
b) any of of a port’s Con, Bias, Dis or Fault bits change state and Int_enable is
set for that port.

ISBR 1 rw 0 Initiate short (arbitrated) bus reset. A write of one to this bit instructs thel PHY
to seti sbr TRUE andr eset _ti ne to SHORT _RESET_TI ME. These
values in turn cause the PHY to arbitrate and issue a short bus reset. This bit is

self-clearing.
Loop 1 w 0 Loop detect. A write of one to this bit clears it to zero.
Pwr_fail 1 rw 0 Cable power failure detect. Set to one when the PS bit changes from one to
zero. A write of one to this bit clears it to zero.
Timeout 1 rw 0 Arbitration state machine timeout. A write of one to this bit clears it to zgro.
Bias_change 1 rw 0 Bias change detect. Set to one when TP bias changes on any disabled|port. The

state of TP bias for enabled ports does not affect this bit. A write of one tp this
bit clears it to zero.

Enab_accel 1 rw 0 Enable arbitration acceleration. When set to one, the PHY shall use the
enhancements specified in clause 7.9.

Enab_multi| 1 rw 0 Enable multi-speed packet concatenation. When set to one, the link shajl signal
the speed of all packets to the PHY.

© 1997 IEEE Thisis an unapproved standards draft, subject to change 3

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size | Type | Power reset value | Description

Page select | 3 rw | vendor-dependent | Selects which of eight possible PHY register pages are accessible through the
window at PHY register addresses 1000, through 1111,, inclusive.

Port_select | 5 rw | vendor-dependent | If the page selected by Page select presents per port information, this field
selects which port’s registers are accessible through the window at PHY| regis-
ter addresses 109through 1113, inclusive. Ports are numbered monoton
cally starting at zero, pO.

The RHB bit should be zero unless it is necessary to establish a particular node as the cycle master. In particular, bus man-
ager- and isochronous resource manager-capable nodes should not set their RHB bit(s) to one and should not attempt to
become the root unless there is no cycle master. This recommendation is made in anticipation of a requirement for Seria
Bus to Serial Bus bridges to become root to distribute the cycle clock.

When any one of the Loop, Pwr_fail, Timeout or Bias_change bits transitions from zero to one, PHY _interrupt shall be
set to one. PHY _interrupt is reported as S[3] in a PHY status transfer, as specified by clause 5.3. These bits in PHY reg-
ister five are unaffected by writes to the register if the corresponding bit position is zero. When the bit written to the PHY
register is one, the corresponding bit is zeroed.

The upper half of the PHY register space, addresses 1000, through 1111,, inclusive, provides a windows through which
additional pages of PHY registers may be accessed. This supplement defines pages zero, one and seven: the Port Status
page, the Vendor Identification page and a vendor-dependent page. Other pages are reserved.

The Port Status page is used to access configuration and status information for each of the PHY’s ports. The port is
selected by writing zero tBage select and the desired port numberRort_select in the PHY register at address 0111
The format of the Port Status page is illustrated by figure 6-2 below; reserved fields are shown shaded in grey.

Contents

Address 0 1 2 3 4 5 6 7

1000, ASItat BStat Ch Con Bias Dis

1001, Negotiated_speed

1010, Int_enable| Suspend |Port_disablelEnab_token| Fault

1011, Int_disable| Resume |Port_enableDisab_token| Clr_fault

1100,

1101,

1110,

1111,

Figure 6-2 — PHY register page 0: Port Status page

4 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

The meanings of the register fields within the Port Status page are defined by the table below.

Table 6-2 — PHY register Port Status page fields

Field Size | Type Pov\\;gjrurfet Description

AStat 2 r TPA line state for the port:
00, = invalid
0L,=1
10,=0
1,=2

BStat 2 r TPB line state for the port (same encoding as A Stat)

Ch 1 r If equal to one, the port is a child, else aparent. The meaning of thisbitis

undefined from the time a bus reset is detected until the PHY transitions to
state T1: Child Handshake during the tree identify process (see 4.4.2.2in
|EEE Std 1394-1995).

Con 1 r 0 If equal to one, the port is connected, else disconnected. This bit reports the
value of the connected variable for the port (see the connection_status() func-
tion in table 7-18).

Bias 1 r If equal to one, bias voltage is detected (possible connection). The value
reported by this bit isfiltered by hysteresislogic, with atime of

CONNECT _TI MEQUT, to reduce multiple status changes caused by contact
scrape when a connector is inserted or removed.

Dis 1 r See description | If equal to one, the port is disabled. The value of this bit subsequent to a
power reset is implementation-dependent, but should be a hardware config-
urable option.

Negotiated_speed | 3 r Indi cates the maximum speed negotiated between this PHY port and its
immediately connected port; the encoding isthe same asfor the PHY register
Max_speed field.

Int_Enable 1 rwa 0 Enable PHY status changeinterrupts. When set to one, the PHY shall transmit
statusto the link if any of Con, Bias, Dis or Fault change state.

Suspend 1 rwa 1 Initiate suspend. If written as one, commence operations as a suspend initia-
tor. While the suspend handshake with the peer PHY isin progress this bit
reads as one; otherwise it reads as zero.

Port_disable 1 rwa 0 Port disable. When set to one the PHY shall disable the port. While the dis-
able processis active this bit reads as one; otherwise this bit reads as zero.

Enab_token 1 rwé 0 Enable token-style arbitration. When set to one, the enhancements specified
in clause 7.9 shall be enabled for this port.
Fault 1 r 0 Set to oneif an error is detected during a suspend or resume operation.
Int_disable 1 rwa 0 Disable PHY status change interrupts. If written as one, the Int_enable bit
shall be cleared to zero. This bit always reads as zero.
Resume 1 rwa 0 If written as one the PHY shall attempt to resume normal operations on the
port. While resuming, this bit reads as one; otherwise it reads as zero.
Enable_port rwa 0 Port disable. If written asonethe PHY shall enable the port. While the enable
processis active this bit reads as one; otherwise this bit reads as zero.
Disab_token rwa 0 Disable token-style arbitration. If written as one the Enab_token bit shall be
cleared to zero. This bit always reads as zero.
Clr_fault rwa 0 Clear fault(s). If written as one, the Fault bit shall be cleared to zero. Thisbit
always reads as zero.

@ These bits have special behaviors that permit remote PHY register writes to selectively modify them. A
write of zero to any of these bits shall have no effect. A write of one to abit in PHY register 1010, shall
set the bit to one, while awrite of one to a bit in PHY register 1011, shall have the effect specified in the
table. More than one bit may be modified in a single register write.

© 1997 IEEE Thisis an unapproved standards draft, subject to change 5

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

The ASat, BSat, Ch and Con fields are present in both the legacy and extended PHY registers and have identical mean-
ings, defined by table 6-2 above, in both cases.

6 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

7. Cablephysicallayer performanceenhancementspecifications

New extended PHY packets are defined to permit remote read and write access to the PHY registers and
to remotely request a PHY port to function as a resume initiator. As a consequence of these changes, the
type field (previously 6 bits) has been reduced to 4 bits.

7.4.5 Ping packet

The reception of the cable PHY packet shown in figure 7-5 shall cause the node identified by phy_ID to transmit self-1D
packet(s) that reflect the current configuration and status of the PHY. Because of other actions, such as the receipt of a
PHY configuration packet, the self-ID packet transmitted may differ from that of the most recent self-identify process.

transmitted first
00 phy_ID | 00 | type (0) | 00 0000 0000 0000 0000
logical invelrse of first quadlet

transmitted last
Figure 7-5 — Ping packet format

Table 7-6 — Ping packet fields

Field Comment
phy ID |Physical nodeidentifier of the destination of this packet
type Extended PHY eerfiguration packet type (zero indicates ping packet)

7.4.6 Remote access packet

The reception of the cable PHY packet shown in figure 7-6 shall cause the node identified by phy ID to either read or
write the selected PHY register and subsequently return a remote response packet that contains the current value of the
PHY register (see clause 7.4.7).

transmitted first
OO| phy_ID |OO| type |pag|e| port | reg | data
logical invelrse of first quadlet

transmitted last
Figure 7-6 — Remote access packet format

Table 7-7 — Remote access p acket fields

Field Comment

phy_ID Physical node identifier of the destination of this packet.

type Extended PHY packet type:
1 Register read (base registers)
5 Register read (paged registers)
6 Register write (paged registers)

page Thisfield corresponds to the Page_select field in the PHY registers. The register read or
write behaves asif Page_select was set to this value.

port Thisfield corresponds to the Port_select field in the PHY registers. The register read or
write behaves asif Port_select was set to this value.

© 1997 IEEE Thisis an unapproved standards draft, subject to change 7

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

Table 7-7 — Remote access packet fields (Continued)

Field Comment

reg Thisfield, in combination with page and port, specifiesthe PHY register. If type indicates
aread of thebase PHY registersreg directly addresses one of thefirst eight PHY registers.
Otherwise the PHY register addressis 1000, + reg.

data Thisfield ismeaningful only if type indicates awrite, in which case the PHY shall update
the addressed PHY register asif alocal write request had specified the data value.

7.4.7 Remoteresponse packet
Subsequent to the reception of a remote access packet, the PHY shall transmit the packet shown in figure 7-7.
transmitted first

00 phy_ID | 00 | type (3) | 00 0000 0000 data
logical invelrse of first quadlet

transmitted last
Figure 7-7 — Remote response packet format

Table 7-8 — Remote response packet fields

Field Comment
phy_ID Physical node identifier of the destination of this packet.

type Extended PHY packet type (3 indicates a remote response packet)

data The current value of the PHY register addressed by the immediately preceding remote
access packet. If the register is reserved, data shall be zero.

A PHY shall transmit a remote response packet within MAX_BUS HOLD after the receipt of a remote request packet.

7.4.8 Resume packet

The reception of the cable PHY packet shown in figure 7-8 shall cause the node identified by phy ID to commence
resume operations for all PHY ports that are both connected and suspended. This is equivalent to clearing the Suspend bit
to zero in Port Status page PHY register 1011, for each of these ports.

transmitted first
00 phy ID | 00 | type(4) | 00 = 0000 0000 0000 0000
logical invelrse of first quadlet

transmitted last
Figure 7-8 — Resume packet format

Table 7-9 — Resume packet fields

Field Comment
phy_ID Physical node identifier of the destination of this packet

type Extended PHY configuration packet type (4 indicates resume packet)

8 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0
November 25, 1997

High Performance Serial Bus (Supplement)

7.5 Cable PHY line states

This clause defines new rules by which a PHY decodes the interpreted arbitration signals (Arb_A and Arb_B) into aline
state; it is in addition to IEEE Std 1394-1995 clause 4.3.3, “Cable PHY line states.”

Table 7-10 — Cable PHY received arbitration line states

Interpreted arbitration signals
Arb_ A Arb B

Line state name

Comment

1 z RX_DISABLE

The peer PHY isrequesting the recipient to disable
al ports after propagating TX_DISABLE on any
other active ports.

RX_SUSPEND

Exchange TpBias handshake with the peer PHY
and place the connection into the suspended state.
Also initiate suspend (i.e., transmit
TX_SUSPEND) from all other active ports.

RX_TOKEN_GRANT

The parent PHY is granting the bus (although no
TX_REQUEST was sent by the child)

TX_DISABLE

Request the peer PHY to disableall its active ports.

0 0 TX_SUSPEND

Request the peer PHY to handshake TpBias and

enter the suspended state. The request is also prop-
agated by the peer PHY to its other active ports.

The RX_TOKEN_GRANT line state is recognized when received by a parent port during the normal arbitration phase.
7.9.1 Datatransmission and reception

Data transmission and reception are synchronized to a local clock that shall be accurate within 100 ppm. The nomina
data rates are powers of two multiples of 98.304 Mbit/s for the cable environment.

7.9.1.1 Cable environment datatransmission

Data transmission entails sending the data bits to the connected PHY along with the appropriately encoded strobe sign.
using the timing provided by the PHY transmit clock. If the connected port cannot accept data at the requested spee
(indicated by thespeed_OK[i] flag being FALSE), then no data is sent, which leaves the drivers in the "01" data prefix
condition.

Table 7-11 — Data transmit actions

static dataBit tx _data, tx_strobe; /1 Menory of |ast signal sent
void tx_bit(dataBit bit) { /1 Transmit a bit
int i;
wai t _event (PHY_CLOCK i ndi cation); /1 Wait for clock
if (bit == tx_data) /1 1f no change in data
tx_strobe = ~tx_strobe; /1 lInvert strobe
tx_data = bit;
for (i = 0; i < NPORT; i++)
if (active[i] & & i != receivePort) |
if (speed_OK[i]) {
portData pd = {phyData(tx_strobe), phyData(tx_data)};
portT(i, pd);
} else
port T(i, TX_DATA PREFI X);
}
© 1997 IEEE Thisis an unapproved standards draft, subject to change 9

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

The edge rates and jitter specifications for the transmitted signal are given in clause 4.2.3 of |EEE Std 1394-1995.

Starting data transmission requires sending a special data prefix signal and a speed code. The speed_OK[i | flag for each
port is TRUE if the connected PHY has the capabilities to receive the data:

Table 7-12 — Start data transmit actions

voi d start_tx_packet (speed) /T Send data prefix and speed code
int i;
for (i = 0; i < NPORT; i++) {

if (lactive[i])
speed_OK[i] = FALSE;

else if (disable[i])
portT(i, TX_DI SABLE);

el se {
port T(i, TX_DATA PREFI X); /'l Send data prefix
speed_OK[i] = (tx_speed <= max_peer_speed[i]);
if (speed_OK[i])
port Tspeed(i, tx_speed); /1 Receiver can accept, send speed intentions
}

}
wai t _time(SPEED_SI GNAL_LENGTH) ;
for (i = 0; i < NPORT; i++)
if (active[i])
port Tspeed(i, S100); /1 Go back to normal signal |evels
wai t _ti me(DATA_PREFI X_TI ME) ; /1 Finish data prefix

}

Ending a data transmission requires sending extra bits (known as “dribble bits”) which flush the last data bit through the
receiving circuit. The number of dribble bits required varies with the transmission speed: one, three or seven extra bits for
S100, S200 and S400, respectively. An extra bit is required to put the two signals TPA and TPB into the correct state; the
value of the bit depends upon whether the bus is being held (PH_DATA.request(DATA_PREFIX) or not
(PH_DATA.request(DATA_END)):

Table 7-13 — Stop data transmit actions

vol d stop_t x_packet (phyData endi ng_status, speedCode tx_speed) {
switch (tx_speed) {
case S400: /1 Pad with six dribble bits
tx_bit(1);
tx_bit(1);
tx_bit(1);
tx_bit(1);
case S200: /1 Pad with two dribble bits
tx_bit(1);
tx_bit(1);
defaul t:
br eak;
}
tx_bit((ending_status == DATA PREFIX) ? 1 : 0); // Penultimate bit...
wai t _event (PH_CLOCK. i ndication()); /1 Wait for clock
i f (ending_status == DATA PREFI X) {
for (i = 0; i < NPORT; i++)

if (active[i] &k i != receive_port)
port T(i, TX_DATA_PREFI X); /1 ...and the last dribble bit
wai t _ti me(CONCATENATI ON_PREFI X_TI MVE) ; /1 Speed signal after this tine

} else if (ending_status == DATA_END) {
for (i = 0; i < NPORT; i++)
if (active[i] &k i != receive_port)
port T(i, TX_DATA END);
wai t _ti me(DATA_END TI ME);

10 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

NOTE—This algorithm works to force the ending port state to TX _DATA_PREFIX or TX_DATA END and relies on two
characteristics of packet transmission: there are an even number of bits between the beginning and the end of a paakettand a pa
starts witht x_st robe at 0 andt x_dat a at 1. Thus, wherst op_t x_packet is called the port state is either 01 or 10. If the
desired port state is 01 (TX_DATA_PREFIX) and the current port state is 01, this algorithm sets port state to 11 fommnethEnti

back to 01. If the desired ending state is 10 (TX_DATA_END) and the current port state is 01, the port state sequent@risd0 fol

by 10. The process is similar if the current port state is 10.

7.9.1.2 Cable environment datareception and repeat

Data reception for the cable environment physical layer has three major functions: decoding the data-strobe signal to
recover a clock, synchronizing the data to alocal clock for use by the link layer, and repeating the synchronized data out
all other connected ports. This process can be described as two routines communicating via a small FIFO:

Table 7-14 — Data reception and repeat actions

static tpSig old_data, ol d_strobe; /1 Menory of last signal sent

/| Decode data-strobe streamand load FIFO -- this routine is always running
/'l (speed code recording is also done here)

voi d decode_bit (void) {
repeat {
if (portRspeed(receive_port) > S100) {
rx_speed = portRspeed(receive_port);
speed_si gnal l ed = TRUE;

si gnal (SPEED_SI GNAL_RECEI VED) ; /1 Notify start_rx_packet
}
new_si gnal = tpSignals(); /1 Get signal
if (new_signal == IDLE)
si gnal (| DLE_DETECTED) ;
el se {
new_data = new_si gnal . TPA; /! Received data is on TPA
new_strobe = new_signal . TPB; /'l Received strobe is on TPB
if ((new_signal.TPA != old_strobe) || (new_data != old_data)) {
/1 Either data or strobe changed
FIFQfifo_w_ptr] = new_data; /'l Put data in FIFO
fifo_w _ptr = ++fifo_w _ptr % FI FO_DEPTH;, // Advance or wap FIFO pointer
si gnal (DATA_STARTED) ; /1 Signal rx_bit to start
}
ol d_strobe = new_strobe;
ol d_data = new_dat a;
}

}
/1 Unload FI FO and repeat data (but suppress dribble bits!)

void rx_bit(dataBit *rx_data, boolean *end_of data) {

int i;

wai t _event (PHY_CLOCK i ndi cation); /1 Wait for clock

if ((fifo_rd_ptr - fifo_wr_ptr) % FI FO DEPTH) <= rx_dribble_bits) // FIFO enpty?
*end_of _data = TRUE; /1 If so, set flag

el se {
*end_of _data = FALSE; /1 If not, clear flag...
*rx_data = FIFQfifo_rd_ptr]; /1 ... and get data bit
fifo_rd_ptr = ++fifo_rd_ptr % FI FO_DEPTH, // Advance or wap FIFO pointer
tx_bit(*rx_data); /! Repeat the data bit

}

© 1997 IEEE Thisis an unapproved standards draft, subject to change 11

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

Starting data reception requires initializing the data resynchronizer and doing the speed signaling with the sender of the
data. At the same time, the node must start up the transmitting ports by sending a special data prefix signal and repeating
the received speed code. Asinthestart _t x_packet () function, the node must do the speed signaling exchange for each
transmitting port:

Table 7-15 — Start data reception and repeat actions

voi d start_rx_packet () { [T Send data prefix and do speed signaling
int i;
fifo_rd_ptr = fifo_w _ptr = 0; /'l Reset data resynch buffer
port T(receive_port, |DLE); /1 Turn off grant, get ready to receive
for (i = 0; i < NPORT; i++)
if (active[i] &k i != receive_port)
port T(i, TX_DATA_PREFI X) ; /1 Send data prefix out repeat ports
wai t _event (SPEED_SI GNAL_RECEI VED | DATA_STARTED | | DLE_DETECTED);
tx_speed = rx_speed; /'l Get speed of packet to repeat
if (rx_speed == S100)
rx_dribble_bits = 2; /1 Need for FIFO enpty test
el se
rx_dribble_bits = (rx_speed == S200) ? 4 : 8;
if (speed_signalled) { /'l Repeat the speed signal...
for (i = 0; i < NPORT; i++)
if (active[i] & i != receive_port) {

speed_OK[i] = (tx_speed <= max_peer_speed[i]);
if (speed_OK[i])
port Tspeed(i, tx_speed); /'l Receiver can accept, send speed intentions
}
wai t _time(SPEED_SI GNAL_LENGTH) ;
for (i = 0; i < NPORT; i++)

if (active[i] &k i != receive_port)
port Tspeed(i, S100); /1l Go back to normal signal |evels
wai t _ti me(DATA_PREFI X_TI ME) ; /1 Finish data prefix
wai t _event (DATA_STARTED | | DLE_DETECTED); // Wait for decoder to start
}
speed_si gnal | ed = FALSE; /'l Reset for each packet
for (i = 0; i < FIFODEPTH 2 - 1; i++)

wai t _event (PHY_CLOCK i ndi cation); /'l Make sure FIFO is centered
}

7.9.2 Cable environment arbitration

The cable environment supports the immediate, priority, isochronous and fair arbitration classes. Immediate arbitration is
used to transmit an acknowledge immediately after packet reception; the bus is expected to be available. Priority arbitra-
tion is used by the root for cycle start requests or may be used by any node to override fair arbitration. Isochronous arbi-
tration is permitted between the time a cycle start is observed and the subaction gap that concludes an isochronous period;
isochronous arbitration commences immediately after packet reception. Fair arbitration is a mechanism whereby a PHY
succeeds in winning arbitration only once in the interval between arbitration reset gaps.

Some of these arbitration classes may be enhanced as defined by this supplement. Ack-accelerated arbitration permits a
PHY to arbitrate immediately following an observed acknowledge packet; this enhancement can reduce the arbitration
delay by a subaction gap time. Fly-by arbitration permits a transmitted packet to be concatenated to the end of a packet
for which no acknowledge is permitted: acknowledge packets themselves or isochronous packets. A PHY shall not use
fly-by arbitration to concatenate an S100 packet after any packet of a higher speed.

Cable arbitration has two parts: a three phase initialization process (bus reset, tree identify and self identify) and a normal
operation phase. Each of these four phases! is described using a state machine, state machine notes and a list of actions
and conditions. The state machine and the list of actions and conditions are the normative part of the specification. The
state machine notes are informative.

1 Clause4.4.2.2 of |EEE Std 1394-1995, which describesthe treeidentify process, is unchanged and is not reproduced in this supplement.

12 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0
November 25, 1997

7.9.2.1 Busreset

The bus reset process starts when a bus reset signal is recognized on a connected port or generated locally. Its purpose is
to guarantee that all nodes propagate the reset signal. This supplement defines two types of bus reset, long bus reset (iden-
tical to that specified by IEEE Std 1394-1995) and arbitrated (short) bus reset. The PHY variable r eset _t i me controls

the length of the bus reset generated or propagated.

RO: Reset Start

reset_start_actions()

Power reset
-All:ROa

initiated_reset = TRUE
reset_time =0

reset_detected()
-All:ROb

'

initiated_reset = FALSE

ibr
|| PH_CONTROL.request(Reset)

arb_state_timeout
-All:ROc Il arb_ =

R1: Reset Wait

reset_wait_actions()
|

arb_timer >= reset_time

- RO:R1 &>

arb_timer >= reset_time + RESET_WAIT

[}

initiated_reset = TRUE
reset_time = RESET_TIME

'

reset_time = RESET_TIME

-R1:TO

Figure 7-9 — Bus reset state machine

7.9.2.1.1 Busreset state machine notes

Transition All:R0a. This is the entry point to the bus reset process if the PHY experiences a power reset. On power reset,
PHY register values and internal variables are set as specified in this section; in particular al ports are marked disconnected. A solitary

reset_complete()

reset_time =0

node transitions through the reset, tree identify and self-identify states and enters AO: Idle as the root node.

Transition All:ROb. This is the entry point to the bus reset process if the PHY senses BUS RESET on any connected

port’s arbitration signal lines (see table 4-28 in IEEE Std 1394-1995).

Transition All:ROc. This is the entry point to the bus reset process if this node is initiating the process. This happens

under the following conditions:

1) Serial Bus management makes a PH_CONTR&Lest that specifies a long reset;
2) The PHY detects a disconnect on its parent port; or

3) The PHY stays in any stat@xcept the idle state or a state that has an explicit time-out) for longer than
MAX_ARB_STATE_TIME.

With the exception of the last condition, the initiation of a bus reset cannot occur until a state’s actions have been com

pleted.

State RO:Reset Sart. The node sends a BUS_RESET signal whose length is govermeskley _ti ne. In the case of
a standard bus reset, this is long enough for all other bus activity to settle down (RESET_TIME is longer than the worst
case packet transmission plus the worst case bus turn-around time). SHORT_RESET_TIME for an arbitrated (short) bu

reset is significantly shorter since the bus is already in a known state following arbitration.

Transition RO:R1. The node has been sending a BUS_RESET signal long enough for all its connected neighbors to

detect it.

State R1:Reset Wait.

The node sends out

IDLEs, waiting for al

| its active ports to

High Performance Serial Bus (Supplement)

to TO:
Tree-ID Start

receive

RX_PARENT_NOTIFY (either condition indicates that the connected PHYs have left their RO state).

© 1997 IEEE

Thisis an unapproved standards draft, subject to change

High Performance Serial Bus (Supplement)

P1394a/97-086r0
November 25, 1997

Transition R1:RO0. The node has been waiting for its ports to go idle for too long (this can be a transient condition caused
by multiple nodes being reset at the same time); return to the RO state again. This time-out period is a bit longer than the

RO:R1 time-out to avoid a theoretically possible oscillation between two nodes in states RO and R1.

Transition R1:TO. All the connected ports are receiving IDLE or RX_PARENT_NOTIFY (indicating that the connected

PHYs are in reset wait or starting the tree ID process).

7.9.2.1.2 Busreset actions and conditions

Table 7-16 — Bus reset actions and conditions (Sheet 1 of 2)

i sol ated_node &= !active[i];
for (i = 0; i < NPORT; i++) {
if (connection_in_progress[i]) {
if (!connect_detect[i])
connection_in_progress[i] = FALSE; // Lost attenpted connection

connection_in_progress[i] = FALSE;
connected[i] = TRUE; /1 Confirnmed connection
if (isolated_node) /1 Can we arbitrate?
i br = TRUE; /1 No, transition to RO for reset
el se
i sbr = TRUE; /'l Yes, arbitrate for short reset

}
} else if (!connected[i]) {
if (connect_detect[i]) { /| Possi bl e new connection?
connect _timer = 0; /1 Start connect tiner
connection_in_progress[i] = TRUE

}
} else if (!connect_detect[i]) { // Disconnect?
connected[i] = FALSE; /1 Effective i mediately!
if (lactive[i]) /1 No resets if disabled or suspended
conti nue; /'l Keep exam ning other ports...
if (root || child[i]) /'l Parent still connected?
isbr = TRUE; /1 Yes, arbitrate for short reset
el se
ibr = TRUE; /1 No, transition to RO for reset
}
}
}
bool ean reset_detected() { /1 Qualify BUS_RESET with port status / history
int i;

if (PHY_state == RO || PHY_State == R1) /1 lgnore while in reset states thensel ves
return(FALSE) ;
for (i = 0; i < NPORT; i++)
if (portR(i) == BUS_RESET) /! More than 20 ns (transient DS == 11)
if (connection_in_progress[i]) {
reset _time = 0;
if (isolated_node)
reset _time = SHORT_RESET_TI ME;
else if (connect_tinmer >= RESET_DETECT)
reset _time = RESET_TI ME;
if (reset_time !'=0) {
connection_in_progress[i] = FALSE;

bool ean connecti on_i n_progress| NPORT]; [T Not referenced outside of the reset state nachines
timer connect_tiner(); /1 Timer for connection status nonitor
voi d connection_status() { /1 Continuously nonitor port status in all states

int i;

i sol at ed_node = TRUE; /1 Assume true until first active port found

for (i = 0; i < NPORT; i++)

else if (connect_tiner >= (isolated_node) ? 2 * CONNECT_TI MEOUT : CONNECT_TI MEQOUT) {

14 Thisis an unapproved standards draft, subject to change

© 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)

November 25, 1997

Table 7-16 — Bus reset actions and conditions (Sheet 2 of 2)

connected[1] = TRUE
return(TRUE);
}
} else if (active[i]) {
reset _tine = (PHY_state == RX) ? SHORT_RESET_TI ME : RESET_TI ME;
return(TRUE);
} else if (resuming[i]) {
reset _tine = (boundary_node) ? RESET_TIME : SHORT_RESET_TI ME;
return(TRUE);

}
return(FALSE) ;
}
voi d reset _start_actions() { /1 Transmt BUS_RESET for reset_time on all
int i;
root = FALSE;
PH_EVENT. i ndi cat i on(BUS_RESET_START) ;
ibr = isbr = FALSE; /I Don't replicate resets!
breq = NO_REQ; /I Discard any and all link requests

child_count = physical_ID = 0;

bus_initialize_active = TRUE:

if (gap_count_reset_disable) // First reset since setting gap_count?
gap_count_reset_disable = FALSE; // If so, leave it as is and arm it for next

else
gap_count = 0x3F; /I Otherwise, set it to the maximum
for (i=0;i < NPORT; i++) {
if (activeli]) /I For active ports, propagate appropriate signal

portT(i, (suspend) ? TX_SUSPEND : BUS_RESET);
else if (connect_detect[i] && resuming([i])

portT(i, BUS_RESET);
else if (disable[i])

portT(i, IDLE); /I Maintain IDLE while TpBias driven low
else
portT(i, IDLE); /I lgnore disconnected and suspended ports

child[i] = FALSE;
child_ID_complete[i] = FALSE;
}

arb_timer = 0; /I Start timer

}

void reset_wait_actions() { // Transmit IDLE
inti;

for (i=0; i < NPORT,; i++)
portT(i, IDLE);
arb_timer = 0; /I Restart timer

}

boolean reset_complete() { /I TRUE when all ports idle or in tree-ID
inti;

for (i=0; i < NPORT,; i ++)
if ((portR(i) '= IDLE) && (portR(i) '= RX_PARENT_NOTIFY) && port_status]i])

return(FALSE);
rx_speed = S100; /I For leaf node’s self-ID packet(s)
return(TRUE); /I Transition to tree identify

}

ports

© 1997 IEEE Thisis an unapproved standards draft, subject to change

15

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

7.9.2.2 Selfidentify

The self identify process has each node uniquely identify itself and broadcast its characteristics to any management ser-
vices.

S0: Self-ID Start S4: Self-ID Transmit

self_ID_start_actions() self_ID_transmit_actions()

ping_response

@——T2:S0- from T2: Parent Handshake to AO: Idle = - — —S4:S0a—
ping_response = FALSE;

Iping_response && (root || portR(parent_port) == RX_DATA_PREFIX)

. - S4:S0b—
to AQ: Idle max_peer_speed[parent_port] = portRspeed();

S1: Self-ID Grant

self-ID_grant_actions()

all_child_ports_identified
- S1:54

Y

if (Iroot) max_peer_speed[parent_port] = S100;

root ortR(parent_port) == RX_SELF_ID_GRANT
| 0.0t Il (POTtR(parent_port) == RX_SELF_ID_ -

S2: Self-ID Receive

self-ID_receive_actions()
L]

s1:s2 portR(lowest_unidentified_child) == RX_DATA_PREFIX

receive_port = lowest_unidentified_child;

portR(parent_port) == RX_DATA_PREFIX
receive_port = parent_port;

-S0:S2

'

(portR(receive_port) == IDLE) || (portR(receive_port) == RX_SELF_ID_GRANT)
|| (portR(receive_port) == RX_DATA_PREFIX && !concatenated_packet)
S2:S04

[}

S3: Send Speed Capabilities

concatenated_packet

< $2:524
S3:50

portTspeed(receive_sport, S100); portR(receive_port) == RX_IDENT_DONE
max_peer_speed[receive_port] = portRspeed; - S2:S3
child_ID_complete[receive_port] = TRUE;
portTspeed(receive_port, PHY_SPEED);
max_peer_speed[receive_port] = S100;
arb_timer = 0;

Y

arb_timer >= SPEED_SIGNAL_LENGTH

[}

Figure 7-10 — Self-ID state machine
7.9.2.2.1 Self-ID state machine notes

Sate SO: Self-1D Sart. At the start of the self-ID process, the PHY is waiting for a grant from its parent or the start of
a self-1D packet from another node. This state is also entered whenever a node is finished receiving a self-ID packet and
all its children have not yet finished their self identification.

Transition S0:S1. If anode is the root, or if it receives a RX_SELF_ID_GRANT signal (0Z) from its parent, it enters the
Self-1D Grant state.

16 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

Transition S0:S2. If a node receives a RX_DATA_PREFIX signal (10) from its parent, it knows that a self-ID packet is
coming from a node in another branch in the tree.

State S1: Self-1D Grant. This state is entered when a node is given permission to send a self-1D packet. If it has any uni-
dentified children, it sends a TX_GRANT signal (Z0) to the lowest numbered of those. All other connected ports are sent
a TX_DATA_PREFIX signal (01) to warn them of the start of a self-ID packet.

Transition S1:S2. When the PHY receives a RX_DATA_PREFIX signa (10) from its lowest numbered unidentified
child, it enters the Self-ID Receive state.

Transition S1:$4. If there are no more unidentified children, it immediately transitions to the Self-ID Transmit state.

Sate S2: Self-1D Receive. As data bits are received from the bus they are passed on to the link layer as PHY data indi-
cations. This process is described in clause 4.4.1.2 of IEEE Std 1394-1995. Note that multiple self-ID packets may be
received in this state.

Transition S2:S0. When the receive port goes IDLE (ZZ), gets a RX_SELF ID_GRANT (0Z) or observes
RX_DATA_PREFIX (10) for a unconcatenated packet it enters the Self-ID Start state to continue the self-ID process for
the next child. The last case guards against a possible failure to observe IDLE.

Transition S2:S2. Multiple self-1D packets are received by the PHY and self ID_receive actions reinvoked for each one.

Transition S2:S3. If the PHY gets an RX_IDENT_DONE (Z1) signal from the receiving port, it flags that port as identi-
fied and starts sending the speed capabilities signal. It also starts the speed signaling timer and sets the port speed to the
S100 rate.

State S3: Send Speed Capabilities. If a node is capable of sending data at a higher rate that S100, it transmits on the
receiving child port its speed capability signals as defined in clause 4.2.2.3 of |IEEE Std 1394-1995 for a fixed duration
SPEED_SIGNAL_LENGTH.

Transition S3:S0. When the speed signaling timer expires, any signals sent by the child have been latched, so it is safe to
continue with the next child port.

Sate S4: Self-ID Transmit. At this point, all child ports have been flagged as identified, so the PHY can now send its
own self-1D packet (see clause 7.4) using the process described in clause 4.4.1.1 of IEEE Std 1394-1995. When a non-
root node is finished, it sends a TX_IDENT_DONE signal (1Z) and a speed capability signal as defined in clause 4.2.2.3
of IEEE Std 1394-1995 to its parent and IDLE (ZZ) to its children. The speed capability signal is transmitted for a fixed
time duration (SPEED_SIGNAL_LENGTH). Simultaneously it monitors the bus for a speed capability transmission from
the parent. The root node just sends IDLE (ZZ) to its children. Note that the children will then enter the Idle state
described in the next clause, but they will never start arbitration since an adequate arbitration gap will never open up until
the Self-1D process is completed for al nodes.

Transition S4:A0b. The PHY then enters the Idle state described in the next clause when the self-1D packet has been
transmitted and if either of the following conditions are met:

1) The node is the root. When the root enters the Idle state, all nodes are now sending IDLE signals (ZZ) and
the gap timers will eventually get large enough to allow normal arbitration to start.

2) The node starts to receive a new self-ID packet (RX_DATA_PREFIX — 10). This will be the self-ID packet
for the parent node or another child of the parent. This event shall cause the PHY to transition immediately
out of AO:ldle into A5:Receive.

© 1997 IEEE Thisis an unapproved standards draft, subject to change 17

High Performance Serial Bus (Supplement)

P1394a/97-086r0

November 25, 1997

7.9.2.2.2 Self-ID actions and conditions

Table 7-17 — Self ID actions and conditions (Sheet 1 of 2)

bool ean all _child_ports_identified; // Set if all child ports have been identified

void self_ID_start_actions() {
int i;

concat enat ed_packet = FALSE; /1l Prepare in case of nmultiple self-ID packets
for (i = 0; i < NPORT; i++)
if (child_ID conplete[i])

if (all_child_ports_identified)
| owest _unidentified _child = i;
all _child_ports_identified = FALSE;

}
}
}
voi d self_ID grant_actions() {
int i;
for (i = 0; i < NPORT; i++)
if (lall _child_ports_identified & (i == | owest_unidentifed_child))
portT(i, TX_GRANT); // Send grant to |owest unidentified child (if any)
else if (active[i])
portT(i, TX_DATA PREFIX); // Oherwise, tell others to prepare for packet
}
voi d self_ID_receive_actions() {
int i;
port T(receive_port, |DLE); /1 Turn off grant, get ready to receive
receive_actions(); /! Receive (and repeat) packet
if (!concatenated_packet) { /1 Only do this on the first self-1D packet
if (physical _ID < 63) /1 Stop at 63 if mal configured bus
physical _I D = physical _ID + 1; /1 Otherw se, take next PHY address
for (i = 0; i < NPORT; i++)
portT(i, |DLE); /1 Turn off all transmtters
}
}
void self_ID transmt_actions() {

int last_SID pkt = (NPORT + 4) / 8;

int SID_pkt_numnber; /'l Packet nunber counter
int port_nunber = 0; /1 Port nunmber counter
quadl et sel f_I D pkt, ps;

start _tx_packet (S100); /1 Send data prefix and 98.304 Mit/sec speed code
PH_DATA. i ndi cati on(DATA_START, S100);
for (SID_pkt_nunmber = 0; SID_pkt_nunber <= last_SID pkt; SID_pkt_nunber++) {
sel f1 D. dat aQuadl et = 0; /1 Clear all zero fields in self |D packet
sel fID.type = 0b10;
sel fI D. phy_I D = physical _I D;
if (SID_packet_nunmber == 0) { // First self |D packet?
selfID. L = LPS && Link_active; /1 Link active or not?
sel fI D.gap_cnt = gap_count;
sel f1 D.sp = PHY_SPEED;
sel f1 D. del = PHY_DELAY;

int |owest_unidentified_child; /1 Lowest nunbered active child that has not sent its self-1D

all _child_ports_identified = TRUE; /1 WIl be reset if any active children are unidentified

port T(i, TX_DATA PREFI X); /1 Tell identified children to prepare to receive data
el se {

portT(i, |DLE); /1 Al'low parent to finish

if (child[i] && active[i]) { /1 1f active child

recei ve_port = NPORT; /1 Indicate that we are transnmitting (no port has this nunber)

18 Thisis an unapproved standards draft, subject to change

© 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)

November 25, 1997

Table 7-17 — Self ID actions and conditions (Sheet 2 of 2)

sel fI D.c = CONTENDER;
sel fI D. psr = POAER_CLASS;

selfID.i = initiated_reset;

} else {
sel fID.seq = 1; /1 Indicates second and subsequent packets
sel fID.n = SID _pkt_nunber - 1; /1 Sequence nunber

}

ps = 0; /! Initialize for fresh group of ports

while (port_nunber < ((SID _pkt_nunber + 1) * 8 - 5)) { /'l Concatenate port status
if (port_nunber >= NPORT)
; /1 Uni npl emrent ed
else if (lactive[port_number])

ps | = 0b01; /'l Unconnect ed
else if (child[port_nunber])
ps | = Ov1li, /1 Active child
el se
ps | = 0b10; /1 Active parent
port_nunber ++;
ps <<= 2; /I Make room for next port’s status
}
selflD |= ps;

if (SID_pkt_number == last_SID_pkt) { // Last packet?
tx_quadlet(selfID);
tx_quadlet(~selfID);
stop_tx_packet(TX_DATA_END, S100); // Yes, signal data end
PH_DATA.indication(DATA_END);

breq = NO_REQ; /I Cancel pending requests (only fair and priority possible here)
}else {
selfiD.m = 1; /I Other packets follow, set “more” bit

tx_quadlet(self_ID_pkt);
tx_quadlet(~self_ID_pkt);
stop_tx_packet(TX_DATA_PREFIX, S100); // Keep bus for concatenation
PH_DATA.indication(DATA_PREFIX);
PH_DATA.indication(DATA_START, S100);
}
}
if (Iping_response) { /I Skip if self-ID packet was in response to a ping
for (port_number = 0; port_number < NPORT; port_number++)
if (root || port_number != parent_port)
portT(port_number, IDLE); /I Turn off transmitters to children
else
portT(port_number, TX_IDENT_DONE); // Notify parent that self-ID is complete
if (froot) { /' If we have a parent...
portTspeed(parent_port, PHY_SPEED); // Send speed signal (if any)
wait_time(SPEED_SIGNAL_LENGTH);
portTspeed(parent_port, S100); // Stop sending speed signal

}
PH_EVENT.indication(SELF_ID_COMPLETE, physical_ID, root); // Register O
}
}
void tx_quadlet(quadlet quad_data) { /I Send a quadlet...
int i
breq = NO_REQ; /I Cancel any request (keep in step with the link)
for (i=0;i<32;i++) { /I ...a bit at a time
tx_bit(quad_data & 0x80000000); /I From the most significant downwards
PH_DATA.indication(quad_data & 0x80000000); // Copy our own self-ID packet to the link
quad_data <<= 1; /I Shift to next bit
}
}

© 1997 IEEE Thisis an unapproved standards draft, subject to change

19

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

7.9.2.3 Normal arbitration

Normal arbitration is entered as soon as a node has finished the self identification process. At this point, a simple request-
grant handshake process starts between a node and its parent (and all parents up to the root).

20 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

AOQ: Idle A2: Grant
idle_actions() grant_actions()
I I
root && child_request() && !arb_OK()
- A0:A2 -
portR(requesting_child) == RX_REQUEST_CANCEL
- A2:A0-
arb_timer =0
Al: Request
request_actions()
Iroot && (child_request() || arb_OK())
- AO:AL - portR(parentPort) == RX_GRANT
AL:A2 && child_request() && lown_request o
portR(parent_port) == RX_GRANT o
&& !(child_request() || own_request) portR(requesting_child) == RX_DATA_PREFIX
- - A1:A0+ - - - A2:RXA
arb_timer =0 / receive_port = requesting_child
arb_timer == subaction_gap .
|| arb_timer == arb_reset_gap RX: Receive
-A0:A0 - receive_actions()
gap_detect_actions() > ———————
- L
ALRX portR(parent_port) == RX_DATA_PREFIX
portR(parent_port) == RX_GRANT && own_requestAl_Tx ’ receive_port = parent_port o
J Arbitration WON 1A /I Arbitration LOST or deferred
TX: Transmit
transmit_actions()
I
breq == IMED_RE! root && arb_OK
| A0:TX q RE Q |_| (_OK() - _
/I Arbitration WON TXRO isbr == TRUE
end_of_packet && !link_concatenation ’ initiated_reset = TRUE & 10 RO: Reset start
- ——— TX:A0H reset_time = SHORT_RESET_TIME
arb_timer=0
Iconcatenated_packet && fly_by_OK
- __p - Y_By_OKO RX:TX—
ping_response == TRUE /I Arbitration WON
-A0:S4 & t0 S4: Self-ID TX
end_of_packet && link_concatenation
% - S4:Ala- FTX:TX - - -
accelerating == TRUE; /I Reinvokes transmit_actions()
arb_timer = 0; from S4: Self-ID TX
- S4:A0b-
accelerating == TRUE;
arb_timer = 0;
data_comin
FAO:RX — %0 >
/I Arbitration LOST or deferred
portR(receive_port) == IDLE || (!concatenated_packet && !fly_by OK()) RX-AO
i arb_timer =0 ’
< concatenated_packet
RX:RX S
/I Reinvokes receive_actions()

Figure 7-11 — Cable arbitration state machine

© 1997 IEEE Thisis an unapproved standards draft, subject to change 21

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

7.9.2.3.1 Normal arbitration state machine notes

State AO: Idle. All inactive nodes stay in the idle state until an internal or external event. All ports transmit the IDLE
arbitration signal (ZZ). Transitions into this state from states where idle was not being sent reset an idle period timer.

Transition A0:AO. If a subaction gap or arbitration reset gap occurs, the PHY notifies the link layer. In addition, if thisis
the first subaction gap after a bus reset it signals the completion of the self-identify process and the PHY notifies the node
controller. The detection of an arbitration reset gap marks the end of a fairness interval; the PHY sets the arbitration
enable flag.

Transition AO:A1l. If the PHY has a queued request from its own link or receives an RX_REQUEST signal (0Z) from
one of its children (and is not the root), it passes the request on to its parent. The ar b_OK() function qualifies asynchro-
nous requests according to the time elapsed since AO: Idle was last entered. In particular, notice that the test for a subac-
tion gap is performed for a single value (equality), not a greater than comparison. If arbitration were to be initiated at
other times between the detection of a subaction gap and an arbitration reset gap, some nodes could mistakenly observe
an arbitration reset gap.

Transition A0:A2. If, on the other hand, the PHY receives a RX_REQUEST signal (0Z) from one of its children, has no
gueued reguests from its own link and is the root, it starts the bus grant process.

Transition AO:RX. If the PHY receives the RX_DATA_PREFIX signal on any of its ports while idle, it shifts into the
Receive state and notifies the link layer that any pending arbitration requests have been lost.

Transition AO:TX. If the PHY has a queued isochronous request and is the root or if the PHY has a queued immediate
regquest (generated during packet reception if the link layer needs to send an acknowledge), the PHY notifies the link layer
that it is ready to transmit and enters the Transmit state.

Transition A0:$4. In response to the receipt of a PHY “ping” packet, the variable ping_response is set TRUE and a tran-
sition is made to the Self-ID Transmit State to send the self-ID packet(s).

State Al: Request. At this point, the PHY sends a TX_REQUEST signal (Z0) to its parent and a data prefix (01) to all
its connected children. This will signal all children to get ready to receive a packet.

Transition AL:AOQ. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child has withdrawn
its request, the PHY returns to Idle state.

Transition A1:A2. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child is still making
a request, the PHY grants the bus to that child.

Transition AL:RX. If the PHY receives a RX_DATA_PREFIX signal (10) from its parent, then it knows that it has lost
the arbitration process and prepares to receive a packet. If the link layer was making the request, it is notified.

Transition AL:TX. If the PHY receives a RX_GRANT signal (00) from its parent and the link layer has an outstanding
request (asynchronous or isochronous), the PHY notifies the link layer that it can now transmit and enters the Transmit
state.

State A2: Grant. During the grant process, the requesting child is sent a TX_GRANT signal (Z0) and the other children
are sent a TX_DATA_PREFIX (01) so that they will prepare to receive a packet.

Transition A2:A0. If the requesting child withdraws its request, the granting PHY sees its own TX_GRANT signal
coming back as a RX_REQUEST_CANCEL signal (Z0) and returns to the Idle state.

Transition A2:RX. If the data prefix signal is received from the requesting child, the grant handshake is complete and the
node goes into the Receive state.

22 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

Sate RX: Receive. When the node starts the receive process, it clears all its request flags (forcing the link layer to send
new requests if there were any queued) notifies the link layer that the bus is busy and starts the packet receive process
described below. Note that the packet received could be a PHY packet (self-1D, link-on or PHY configuration), acknowl-
edge, or normal data packet. PHY configuration and link-on packets are interpreted by the PHY, as well as being passed
on to the link layer.

Transition RX:AO. If transmitting node stops sending any signals (received signal is ZZ) or if a packet ends normally
when the received signal is RX_DATA_END, the bus is released and the PHY returns to the idle state.

Transition RX:RX. If a packet ends and the received signal is RX_DATA_PREFIX (10), then there may be another
packet coming, so the receive process is restarted.

State TX: Transmit. Unless an arbitrated (short) bus reset has been requested, the transmission of a packet starts by the

node sending a TX_DATA_PREFIX and speed signal as described in clause 4.2.2.3 of IEEE Std 1394-1995 for 100 ns,

then sending PHY clock indications to the link layer. For each clock indication, the Link sends a PHY data request. The

clock indication — data request sequence repeats until the Link sends a DATA_END. Concatenated packets are handle
within this state whenever the Link sends at least one data bit followed by a DATA_PREFIX. The arbitration enable flag
is cleared if this was a fair request.

Transition TX:AO. If the link layer sends a DATA_END, the PHY shuts down transmission using the procedure
described in clause 4.4.1.1 of IEEE Std 1394-1995 and returns to the Idle state.

Transition TX:RO. If arbitration has succeeded and thleset _t i me variable has a nonzero value, there is no packet to
transmit. The PHY transition’s to the Reset start state to commence a short bus reset.

7.9.2.3.2 Normal arbitration actions and conditions

Table 7-18 — Normal arbitration actions and conditions (Sheet 1 of 3)

Int requesting_child; [T Lowest nunbered requesting child
bool ean fly_by_OK() { /1 TRUE if fly-by acceleration OK

if (!enab_accel)
return(FALSE);
else if (receive_port == parent_port)
ret urn(FALSE) ;
else if (speed == S100 && rx_speed != S100)
ret urn(FALSE) ;
else if (bregq == | SOCH_REQ
return(TRUE);
else if (ack && accelerating)
return(breq == PRIORITY_REQ || (breq == FAIR REQ && arb_enabl e));
el se
ret urn(FALSE) ;
}

bool ean chil d_request () { /1 TRUE if a child is requesting the bus
int i;

for (i = 0; i < NPORT; i++)
if (active[i] && child[i] && (portR(i) == RX_REQUEST)) ({ |
requesting_child =i; /1 Found a child that is requesting the bus
return(TRUE);
}
ret urn(FALSE) ;

}

bool ean t oken_request () { /1 TRUE if at |east one token-enabled child needs a grant
int i;

© 1997 IEEE Thisis an unapproved standards draft, subject to change 23

High Performance Serial Bus (Supplement)

P1394a/97-086r0
November 25, 1997

Table 7-18 — Normal arbitration actions and conditions (Sheet 2 of 3)

return(FALSE) ;
}

voi d gap_detect_actions() {

if (arb_tinmer >= reset_gap_tine) {
arb_enabl e = TRUE;

} else if (arb_tiner
PH_DATA. i ndi cat i on(SUBACTI ON_GAP) ;
if (bus_initialize_active) {

for (I = 0; 1 < NPORT; 1++)
if (active[i] && child[i] && grant_needed[i]) {
return(TRUE);
}
return(FALSE) ;
}
bool ean data_com ng() { /! TRUE if data prefix is received on any port
int i;
for (i = 0; i < NPORT; i++)
if (active[i] && (portR(i) == RX_DATA PREFI X)) {
receive_port = i; /'l Renmenber port for later...
return(TRUE); /1 Found a port that is sending a data_prefix signal
}

PH_DATA. i ndi cati on(ARBI TRATI ON_RESET_GAP) ;
>= subaction_gap_time) {

/1 End of fairness interval?
/1 Reenable fair arbitration
/1 Alert link

/1 Notify link
/1 End of self-identify process for whole bus?

PH_EVENT. i ndi cati on(BUS_RESET_COWPLETE) ;
bus_initialize_active = FALSE;

}
}
}
voi d idle_actions() {
int i;
rx_speed = S100; /! Default in anticipation of no explicit receive speed code
for (i = 0; i < NPORT; i++) /1 Turn off all transmitters
portT(i, |DLE);
}
voi d request _actions() {
int i;
for (i = 0; i < NPORT; i++)
if (active[i] && child[i] && (own_request || i != requesting_child))
port T(i, TX DATA PREFIX); // Send data prefix to all non-requesting children
port T(parent _port, TX REQUEST); // Send request to parent

}

bool ean arb_OK() {
bool ean async_arb_OK = FALSE;

/1 TRUE if OK to request the bus
/1 Tim ng wi ndow OK for asynchronous arbtration?

if (arb_timer < subaction_gap_tine + arb_del ay)
async_arb_OK = enab_accel && accel erating && ack;

else if (arb_tiner subaction_gap_time + arb_del ay)
async_arb_OK = TRUE;

else if (arb_timer >= arb_reset_gap_tine + arb_del ay)
async_arb_OK = TRUE;

if (breq == | SOCH_REQ

own_r equest = !parent_token_enabl e;
else if (breq == PRI _REQ

own_request = async_arb_CK;
else if (breq == FAIR_REQ

own_r equest async_arb_OK && arb_enabl e;

24 Thisis an unapproved standards draft, subject to change

© 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)

November 25, 1997

Table 7-18 — Normal arbitration actions and conditions (Sheet 3 of 3)

else I f (1sbr)

own_request = async_arb_OK;
el se

own_request = FALSE;
return(own_request);

}

void grant_actions() {
int i;

for (i = 0; i < NPORT; i++)
if (i == requesting_child) {
portT(i, TX_GRANT); /1 Send grant to requesting child
if (token_request[i]) {
port T(parent _port, TX DATA PREFI X]);
token_request[i] = FALSE;
}
token_request[i] = FALSE;
}
else if (active[i] && child [i])
portT(i, TX DATA PREFIX); // Send data prefix to all non-requesting children

7.9.2.3.3 Receive actions and conditions

Table 7-19 — Receive actions and conditions (Sheet 1 of 2)

vol d recelve_actions() {
bool ean end_of _dat a;
unsigned bit_count = 0, i, rx_data, tx_speed;

ack = concatenated_packet = FALSE;
if (!enab_accel && (breq == FAIR.REQ || breq == PRIOCRITY_REQ) {

breq = NO_REQ /1 Cancel the request

PH_ARB. confirmati on(LOST); /1 And let the link know
}
PH_DATA. i ndi cati on(DATA_PREFI X) ; /1 Send notification of bus activity
start _rx_packet(); /1 Start up receiver and repeater

tx_speed = rx_speed;
PH_DATA. i ndi cati on(DATA_START, rx_speed); // Send speed indication

do {
rx_bit(& x_data, &end_of _data);
if (!end_of _data) { /1 Normal data, send to link |ayer
PH_DATA. i ndi cati on(rx_data);
if (bit_count < 64) /1 Accumul ate first 64 bits
rx_phy_pkt.bits[bit_count] = rx_data;
bi t _count ++;
ack = (bit_count == 8); /'l For acceleration, any 8-bit packet is an ack
if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
breq = NO_REQ /'l Fly-by inpossible
PH_ARB. confirmati on(LOST); // Let the |link know
}
}
} while (!end_of _data);
if (portR(receive_port) == I1DLE) { // Unexpected end of data...

if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ) {
breq = NO REQ // Discard (unless link believes there was an ACK)
PH_ARB. confirmati on(LOST);

}
ack = FALSE; /1 Disable fly-by accel eration
return;
}
switch(portR(receive_port)) { /1 Send appropriate end of packet indicator

case RX_DATA_PREFI X

© 1997 IEEE Thisis an unapproved standards draft, subject to change

25

High Performance Serial Bus (Supplement)

Table 7-19 — Receive actions and conditions (Sheet 2 of 2)

P1394a/97-086r0
November 25, 1997

concat enat ed_packet = TRUE;
PH_DATA. i ndi cat i on(DATA_PREFI X) ; /| Concat enated packet comi ng
st op_t x_packet (DATA_PREFI X, rx_speed);
br eak;
case RX_DATA END:
if (fly_by OK())
st op_t x_packet (DATA_PREFI X, tx_speed); // Fly-by concatenation
el se {
PH_DATA. i ndi cati on(DATA_END) ; /1 Normal end of packet
st op_t x_packet (DATA_END, tx_speed);
}
br eak;
}
if (bit_count == 64) { /1 We have received a PHY packet
for (i =0; i < 32; i++4) /1 Check PHY packet for good fornat
if (rx_phy_pkt.bits[i] == rx_phy_pkt.checkBits[i])
return; /1 Check bits invalid - ignore packet
swi tch(rx_phy_pkt.type) { /'l Process PHY packets by type
case 0b0O: /1 PHY config packet
if (rx_phy_pkt.ext_type == 0) /'l Ping packet?
pi ng_response = (rx_phy_pkt.phy_I D == physical _ID);
else if ((rx_phy_pkt.ext_type == 1 || rx_phy_pkt.ext_type == 5
|| rx_phy_pkt.ext_type == 6)
&& (rx_phy_pkt. phy_I D == physical _I D))
renot e_access(rx_phy_pkt. page, rx_phy_pkt.port, rx_phy_pkt.reg,
rx_phy_pkt . dat a);
else if (rx_phy_pkt.ext_type == 3) // Resune packet?
resum ng = (rx_phy_pkt.phy_I D == physical _ID);
el se { /1 Must be PHY configuration packet
if (rx_phy_pkt.R) /1l Set force_root if address matches
force_root = (rx_phy_pkt.address == physical _I D)
if (rx_phy_pkt.T) { /'l Set gap_count unconditionally
gap_count = rx_phy_pkt.gap_count;
gap_count _reset _di sabl e = TRUE;
}
}
br eak;
case 0bO01: /1 Link-on packet
if (rx_phy_pkt.address == physical _ID)
PH_EVENT. i ndi cati on(LI NK_ON) ;
br eak;
}
}
}
voi d rempte_access() { /1l Current value of renptely accessed register
if (rx_phy_pkt.ext_type == 6 && page ==
&& (reg == 0b1010 || reg == 0b0111))
write_phy_reg(page, port, reg, data);
phy_resp_pkt.dat aQuadl et = O;
phy_resp_pkt.phy_I D = physical _I D;
phy_resp_pkt.type = 3;
phy_resp_pkt.data = read_phy_reg(page, port, reg);
phy_response = TRUE;
}
26 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)

November 25, 1997

7.9.2.3.4 Transmit actions and conditions

Table 7-20 — Transmit actions and conditions (Sheet 1 of 2)

void transmt_actions() {

end_of _packet = FALSE;

int bit_count =0, i;

PHY_packet rx_phy_pkt, tx_phy_pkt;
phyData data_to_transmt;

if (breq == FAIR_REQ
arb_enabl e = FALSE;
breq = NO_REQ

tx_speed = speed; /'l Assume speed has been set correctly...

/1 (from PH_ARB.request or concatenated packet speed code)
recei ve_port = NPORT; /1 I npossible port nunber ==> PHY transmitting
start_tx_packet (tx_speed); /1l Send data prefix & speed signal
if (isbr) /1 Avoi d phantom packets. ..

return;
PH_ARB. confirmati on(VON) ; /1 Signal grant on Ctl[O0:1]
while (!end_of_packet) {
PH_CLOCK. i ndi cation(); /] Tell link to send data
data_to_transmit = PH_DATA.request(); /1 Wait for data fromthe link

switch(data_to_transmt) {

case DATA ONE:

case DATA _ZERO
tx_bit(data_to_transmt);
if (bit_count < 64) /1 Accumul at e possi bl e PHY packet

rx_phy_pkt.bits[bit_count] = data_to_transmt;

bi t _count ++;
br eak;

case DATA PREFI X:

end_of _packet = link_concatenation = TRUE;
stop_t x_packet (DATA_PREFI X, tx_speed); // M N_PACKET_SEPARATI ON needs to be
br eak; /1 guaranteed by stop_tx_packet() and subsequent start_tx_packet ()

case DATA_END:
stop_t x_packet (DATA_END, tx_speed);

end_of _packet = TRUE; /1 End of packet indicator
br eak;
}
}
ack = (bit_count == 8); /'l Used el sewhere to (conditionally) accelerate
if (bit_count == 64) { /1 We have transmitted a PHY packet
for (i =0; i < 32; i++) /1 Check PHY packet for good fornmat
if (tx_phy_pkt.bits[i] == tx_phy_pkt.checkBits[i])
return; /1 Check bits invalid - ignore packet
if (tx_phy_pkt.type == 0b00)
if (tx_phy_pkt.ext_type == 0) /'l Ping packet?

pi ng_response = (tx_phy_pkt.phy_ I D == physical _ID);
else if ((tx_phy_pkt.ext_type == 1 || tx_phy_pkt.ext_type == 5
|| tx_phy_pkt.ext_type == 6)
&& (tx_phy_pkt. phy_I D == physical _I D))
renot e_access(tx_phy_pkt.page, tx_phy_pkt.port, tx_phy_pkt.reg,
tx_phy_pkt. data);

© 1997 IEEE Thisis an unapproved standards draft, subject to change

27

High Performance Serial Bus (Supplement)

Table 7-20 — Transmit actions and conditions (Sheet 2 of 2)

P1394a/97-086r0
November 25, 1997

el se { /1 Must be PHY configuration packet
if (tx_phy_pkt.R) /1 Set force_root if address matches
force_root = (tx_phy_pkt.address == physical _I D)
if (tx_phy_pkt.T) { /1l Set gap_count unconditionally

gap_count = tx_phy_pkt.gap_count;
gap_count _reset _di sabl e = TRUE;

28 Thisis an unapproved standards draft, subject to change

© 1997 IEEE

P1394a/97-086r0

November 25, 1997

7.9.3 Portconnection

High Performance Serial Bus (Supplement)

The port connection state machines operate independently for each port, i, where i is greater than or equal to zero and less
than NPORT. While a port is in the active state its arbitration, data transmission, reception and repeat behaviors are spec-
ified by the state machines in clause 7.9.2. When a PHY port is in any state other than active it is permissible for it to
lower its power consumption; the only functional component of a PHY that shall be active in al statesis the physical con-
nection detect circuitry.

PO: Disconnected

P1: Resuming

-PO:P1

connected][i]

Ibias]i] && !connected][i]

[}

Ibias(i] && connected][i]

Iconnected][i]

[}

fault[i] = FALSE;

connected[i] && !disablel[i]

Iconnected[i] && !disablel[i]

[}

fault[i] = FALSE;

[}

7.9.3.1

resume_actions() P2: Active
I I
o biasi]
L P1:P2 >
active[i] = TRUE;
P1:PO
Ibias]i] && connected][i]
B P1:P2
active[i] = FALSE;
P1:P5-
P5: Suspended
suspended_actions()
I
o Ifault[i] && (connected[i] && (resumeli] || bias]i
| psp1 [l && ([1] && ((i || biasfi))
P5:P1 o
P3: Suspend Initiator
suspend_initiator_actions()
@ P3:P5]))
connected[i] && suspend][i]
- P2:P3]
active[i] = FALSE;
| P4: Suspend Target
o suspend_target_actions()
I
l@————————————P4:P5
connected[i] && portR(i) == RX_SUSPEND -
P6: Disabled I active[i] = FALSE;)
disabled_actions()
P6:P5-]
disableli]
All:P6 -
P6:P0O]
Iconnected[i]
P2:P0O]
active[i] = FALSE;

Figure 7-12 — Port connection state machine

Port connection state machine notes

Transition All:P0O. A power reset of the PHY initializes each port as disconnected.

Transition All:P6. If the PHY port’'s Disable bit is set to one, either as the result of a register write request from the

or upon receipt of a PHY remote access packet, the PHY port enters the disabled state.

© 1997 IEEE

Thisis an unapproved standards draft, subject to change

29

link

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

State PO: Disconnected. The generation of TpBias is disabled and the outputs are in a high-impedance state. The PHY
may place most of its circuitry in a low-power consumption state. The connection detect circuit. shall be active even if
other components of the PHY port are in a low-power state.

Transition PO:P1. When a port’'s connection detect circuitry signals that its peer PHY port is physically connected, the
PHY port transitions to the resuming state.

State P1: Resuming. The PHY port tests both the connection status and the presence of TpBias to determine if normal
operations may be resumed. If the port is connected, TpBias is present and there are no other active ports, the PHY waits
five RESET_DETECT intervals before any state transitions. Otherwise, in the case of a boundary node with one or more
active ports, the PHY waits two RESET_DETECT intervals before any state transitions.

Transition P1:P0. A resuming PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P1:P2. If the PHY port is both connected and observes TpBias, it transitions to the active state.

Transition P1:P5. A resuming PHY port that remains connected to its peer PHY port but fails to observe TpBias transi-
tions to the suspended state.

State P2: Active. The PHY port is fully operational, capable of transmitting or receiving and repeating arbitration signals
or clocked data. While the port remains active, the behavior of this port and the remainder of the PHY are subject to the
cable arbitration states specified in clause 7.9.

Transition P2:P0. An active PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P2:P1. An active port that fails to observe TpBias transitions to the resuming state in order to test the cable
signals and ultimately end in either the disconnected or suspended state. This transition is usually the result of a physical
disconnection or the loss of power to the connected peer PHY port.

Transition P2:P3. Upon the receipt of a PHY remote access packet that sets the Initiate_suspend bit to one, the PHY port
leaves the active state to start functioning as a suspend initiator.

Transition P2:P4. If an active port observes an RX_SUSPEND signal it becomes a suspend target leaves the active state.

State P3: Suspend Initiator. A suspend initiator. responds to the PHY remote access packet by transmitting a PHY
remote response packet that with the Initiate_suspend bit set to one. Since the suspend initiator is no longer active, the
connection status monitor triggers the generation of bus reset on all of the other active ports at this PHY. In the meantime,
the suspend initiator signals TX_SUSPEND to its connected peer PHY and then waits for TpBias to be driven low. If
NOTIFY_HOLD elapses and the connected peer PHY has not driven TpBias low, the suspend operation has faulted and
the Fault bit is set to one. In either case the suspend initiator disables the generation of TpBias and places the outputs in
a high-impedance state.

Transition P3:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

State P4: Suspend Target. A suspend target propagates the RX_SUSPEND siganl as TX_SUSPEND on all of the PHY’s
other, active ports as part of its normal repeating functions. In the meantime the suspend target drives its TpBias outputs
below 0.4 V in order to signal the suspend initiator that RX_SUSPEND was detected. The suspend target then waits for
TpBias to be drivven low. If BIAS _HOLD elapses and the suspend initiator has not driven TpBias low, the suspend oper-
ation has faulted and the Fault bit is set to one. In either case the suspend target disables the generation of TpBias and
places the outputs in a high-impedance state.

30 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)
November 25, 1997

Transition P4:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

State P5: Suspended. The PHY may place most of its circuitry in alow-power consumption state. The connection detect
circuit. shall be active even if other components of the PHY port are in a low-power state.

Transition P5:P0. A suspended PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P5:P1. So long as the port’s Fault bit is not one, any one of a number of events cause a suspended PH
to transition to the resuming state: a) the receipt of a PHY remote access packet that sets the PHY register Initiate |
bit to one, b) the receipt of a PHY resume packet or c) the detection of TpBias.

State P6: Disable. Whenever the Disable bit in the PHY registers is set to one, the PHY port transitions to the disg
state. The Disable bit may be written either by the attached link or by a PHY remote access packet. The PHY ma
most of its circuitry in a low-power consumption state. The connection detect circuit. shall be active even if other cg
nents of the PHY port are in a low-power state.

Transition P6:PO. If the Disable bit is zeroed and the PHY port is not physically connected to its peer PHY port, it t
sitions to the disconnected state.

Transition P6:P5. Otherwise, if the Disable bit is zeroed and the PHY port is connected it transitions to the suspg

Y por
resur

bled
plac
mpo-

an-

nded

State.

© 1997 IEEE Thisis an unapproved standards draft, subject to change 31

High Performance Serial Bus (Supplement) P1394a/97-086r0
November 25, 1997

7.9.3.2 Portconnection actions and conditions

Table 7-21 — Port connection actions and conditions (Sheet 1 of 2)

vol d di sabl ed_actions() {
if (int_enable[i])
if (link_active && LPS)
PH_EVENT. i ndi cati on(| NTERRUPT) ;
else if (wakeup)
PH_EVENT. i ndi cati on(LI NK_ON);

}

void resune_actions() {
connect _timer = O;

tpBias(i, 1); /'l Cenerate TpBi as
for (j = 0; j < NPORT; |++) /'l Activate all other ports as resune initiators
if (i '=17])

resune[i] = TRUE;
while (((connect_tiner < DETECT_MN) && !bias[i]) // Wait for TpBias

fault = !'bias[i];

if (fault)
tpBias(i, 2); /'l Rel ease TpBi as

if (link_active & LPS && int_enable[i])
PH_EVENT. i ndi cati on(| NTERRUPT) ;
else if (!(link_active & LPS) && wakeup)
PH _EVENT. i ndi cati on(LI NK_ON);
}

voi d suspend_initiator_actions(int i) {
connect _tinmer = O;
port T(i, TX_SUSPEND);
whil e (connect _tinmer < SHORT_RESET_TI ME)

portT(i, IDLE);
while ((connect_tiner < NOTI FY_HOLD) && bias[i])

if (!bias[i]) {
connect _tinmer = 0;
tpBias(i, 0);
whil e (connect tinmer < Bl AS _HOLD)
}
tpBias(i, 2);
if (bias[i]) /1 Suspend handshake refused by target?

fault = connect_detect[i]; // Fault if there’s still a physical connection

}

void suspend_target_actions() {
connect_timer = 0;
tpBias(i, 0); /I Drive TpBias low
while ((connect_timer < BIAS_HOLD) && biasJi])

tpBias(i, 2);
if (bias[i]) /I Suspend initiator reneged?

32 Thisis an unapproved standards draft, subject to change © 1997 IEEE

P1394a/97-086r0 High Performance Serial Bus (Supplement)

November 25, 1997

Table 7-21 — Port connection actions and conditions (Sheet 2 of 2)

fault = connect _detect|[1]; // Fault 1f initirator still connected

}

voi d suspended_actions() {
if (int_enable[i])
if (link_active && LPS)
PH_EVENT. i ndi cat i on(| NTERRUPT)
el se if (wakeup)
PH_EVENT. i ndi cati on(LI NK_ON);

© 1997 IEEE Thisis an unapproved standards draft, subject to change

33

