
P1394a/97-086r1

&21*58(17�62)7:$5(��,1&�
�����:KLWWOH�$YHQXH
2DNODQG��&$�������
��������������
���������������)$;

)520� 3HWHU�-RKDQVVRQ

72� ,(((�3����D�:RUNLQJ�*URXS

'$7(� 'HFHPEHU���������

5(� 6XVSHQG���UHVXPH

7KLV�GRFXPHQW� LV�EDVHG�XSRQ� WKH�FRQWULEXWLRQV� LQ�������U���������U���������U��DQG�������U��DQG� LV�DQ
HIIRUW�WR�LQWHJUDWH�WKDW�ZRUN�ZLWK�WKH�3����D�GUDIW�VWDQGDUG��$ORQJ�ZLWK�HGLWRULDO�FKDQJHV�,�KDYH�HQFRXQWHUHG
D� IHZ� DUHDV�ZKHUH� WHFKQLFDO� FKDQJHV� VHHPHG� �DW� OHDVW� WR�PH�� WR� EH� LQ� WKH� VSLULW� RI� WKH� VXVSHQG� �� UHVXPH
ZRUN�� 7KHUH� DUH� HUURUV� DQG� RPLVVLRQV³PRVW� WKH� UHVXOW� RI� WKH� HGLWRU·V� LQFRPSOHWH� FRPSUHKHQVLRQ� RI� DOO
GHWDLOV�RI�WKH�VXVSHQG���UHVXPH�GHVLJQ�HIIRUWV³EXW�,�H[SHFW�WKHP�WR�EH�HDVLO\�UHPHGLHG�

7KH�DGGLWLRQV�WR�3����D�DUH�SUHVHQWHG�ZLWK�D�QXPEHULQJ�VFKHPH�WKDW�PDWFKHV�WKDW�RI�'UDIW������1RYHPEHU
����������7KH�FKDQJHV�EHWZHHQ�WKDW�GUDIW�DQG�WKLV�GRFXPHQW�DUH�VKRZQ�LQ�UHG�DQG�ZLWK�FKDQJH�EDUV�LQ�WKH
PDUJLQ�

7KH� ILUVW� GUDIW� RI� WKLV� GRFXPHQW� ZDV� UHYLHZHG� LQ�)W�� /DXGHUGDOH�� WKLV� UHYLVLRQ� KDV� EHHQ� SUHSDUHG� IRU� WKH
IROORZ�XS�3+<�GHVLJQHU·V�UHYLHZ�VHVVLRQ�LQ�$OEXTXHUTXH�

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

2 This is an unapproved standards draft, subject to change © 1997 IEEE

6. PHY register map (cable environment)

7KH�3RUW� 6WDWXV� SDJH� KDV� QHZ� UHJLVWHU� ILHOGV� WR� FRQWURO� WKH� VXVSHQG� DQG� UHVXPH�SURFHVV�� %HFDXVH� WKHVH
ILHOGV� VKDOO� EH� DFFHVVLEOH� WR� UHPRWH� 3+<� UHJLVWHU� UHDGV� DQG� ZULWHV�� 3+<� UHJLVWHUV� ������ DQG� ������ DUH
GHILQHG�ZLWK�VSHFLDO�EHKDYLRUV��=HURV�ZULWWHQ�WR�HLWKHU�UHJLVWHU�KDYH�QR�HIIHFW��$�RQH�ZULWWHQ�WR�3+<�UHJLV�
WHU������� VHWV� WKH�FRUUHVSRQGLQJ�ELW� WR�RQH�ZKLOH�D�RQH�ZULWWHQ� WR� WKH�RWKHU�3+<�UHJLVWHU���������FOHDUV
WKH� FRUUHVSRQGLQJ� ELW� SRVLWLRQ� WR�]HUR��)RU� FRQYHQLHQFH� RI� UHIHUHQFH�� WKH� HQWLUH� GHILQLWLRQ� RI� WKH� 3RUW
6WDWXV�SDJH�IURP�3����D�'UDIW�����LV�UHSURGXFHG�EHORZ�

In the cable environment, the extended PHY register map illustrated by figure 6-1 shall be implemented by all designs
compliant with this supplement. Reserved fields are shown shaded in grey.

The meaning, encoding and usage of all the fields in the extended PHY register map are summarized by table 6-1. Power
reset values not specified are resolved by the operation of the PHY state machines subsequent to a power reset.

Figure 6-1 — Extended PHY register map for the cable environment

Table 6-1 — PHY register fields for the cable environment

Field Size Type Power reset value Description

Physical_ID 6 r The address of this node determined during self-identification. A value of 63
indicates a malconfigured bus; the link shall not transmit any packets.

R 1 r When set to one, indicates that this node is the root.

PS 1 r Cable power status (see clause 7.2).

RHB 1 rw 0 Root hold-off bit. When set to one, instructs the PHY to attempt to become the
root during the next tree identify process.

Physical_ID PSR

RHB IBR Gap_count

Max_speed

Page_select

Extended (7)

Token

Total_ports

Link_active PwrContender

Port_select

Contents

0 1 2 3 4 5 6 7Address

00002

00012

00102

00112

01002

01012

01102

01112

Wake_link ISBR Loop Pwr_fail Enab_accel Enab_multi

Register0Page_select

Register7Page_select

… …

10002

11112
…

Timeout Port_status

Delay

Jitter

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 3

IBR 1 rw 0 Initiate bus reset. When set to one, instructs the PHY to set ibr TRUE and
reset_time to RESET_TIME. Unless suspend or resume is in progress for
any of the PHY’s ports, these values in turn cause the PHY to initiate a bus reset
without arbitration; the reset signal is asserted for 166 µs. This bit is self-clear-
ing.

Gap_count 6 rw 3F16 Used to configure the arbitration timer setting in order to optimize gap times
according to the topology of the bus. See 4.3.6 of IEEE Std 1394-1995 for the
encoding of this field.

Extended 3 r 7 This field shall have a constant value of seven, which indicates the extended
PHY register map.

Total_ports 4 r vendor-dependent The number of ports implemented by this PHY.

Max_speed 3 r vendor-dependent Indicates the speed(s) this PHY supports:
0002 98.304 Mbit/s
0012 98.304 and 196.608 Mbit/s
0102 98.304, 196.608 and 393.216 Mbit/s
0112 98.304, 196.608, 393.216 and 786.43 Mbit/s
1002 98.304, 196.608, 393.216, 786.432 and 1,572.864 Mbit/s
1012 98.304, 196.608, 393.216, 786.432, 1,572.864 and 3,145.728 Mbit/s

All other values are reserved for future definition

Token 1 r vendor-dependent When set to one, indicates that the PHY is capable of token-style arbitration
(which shall be separately enabled for each port by the enab_token bit).

Delay 4 r vendor-dependent Worst-case repeater delay, expressed as 144 + (delay * 20) ns.

Link_active 1 rw 1 Link active. Cleared or set by software to control the value of the L bit trans-
mitted in the node’s self-ID packet 0, which shall be the logical AND of this bit
and LPS active. If hardware implementation-dependent means are not available
to configure the power reset value of the Link_active bit, the power reset value
shall be one.

Contender 1 rw See description Cleared or set by software to control the value of the C bit transmitted in the
self-ID packet. If hardware implementation-dependent means are not available
to configure the power reset value of this bit, the power reset value shall be
zero.

Jitter 3 r vendor-dependent The difference between the fastest and slowest repeater data delay, expressed
as (jitter + 1) * 20 ns.

Pwr 3 rw vendor-dependent Power class. Controls the value of the pwr field transmitted in the self-ID
packet. See clause 7.4.1 for the encoding of this field.

Wake_link 1 rw 0 Wakeup notification. When set to one, if the PHY/link interface is disabled the
PHY shall signal LinkOn if any port commences resume operations.

ISBR 1 rw 0 Initiate short (arbitrated) bus reset. A write of one to this bit instructs the PHY
to set isbr TRUE and reset_time to SHORT_RESET_TIME. Unless sus-
pend or resume is in progress for any of the PHY’s ports, these values in turn
cause the PHY to arbitrate and issue a short bus reset. This bit is self-clearing.

Loop 1 rw 0 Loop detect. A write of one to this bit clears it to zero.

Pwr_fail 1 rw 0 Cable power failure detect. Set to one when the PS bit changes from one to
zero. A write of one to this bit clears it to zero.

Timeout 1 rw 0 Arbitration state machine timeout. A write of one to this bit clears it to zero.

Port_status 1 rw 0 Bias change detect. Set to one when TP bias changes on any disabled port. The
state of TP bias for enabled ports does not affect this bit. Port status change
detect. The PHY sets this bit to one if any of Connected, Bias, Disabled or Fault
change for a port whose Int_enable bit is one. A write of one to this bit clears
it to zero.

Enab_accel 1 rw 0 Enable arbitration acceleration. When set to one, the PHY shall use the
enhancements specified in clause 7.9.

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

4 This is an unapproved standards draft, subject to change © 1997 IEEE

The RHB bit should be zero unless it is necessary to establish a particular node as the cycle master. In particular, bus
manager- and isochronous resource manager-capable nodes should not set their RHB bit(s) to one and should not attempt
to become the root unless there is no cycle master. This recommendation is made in anticipation of a requirement for
Serial Bus to Serial Bus bridges to become root to distribute the cycle clock.

When any one of the Loop, Pwr_fail, Timeout or Port_status bits transitions from zero to one, PHY_interrupt shall be set
to one. If the link is active, PHY_interrupt is reported as S[3] in a PHY status transfer, as specified by clause 5.3; other-
wise a PHY interrupt shall cause LinkOn to tbe asserted. These bits in PHY register five are unaffected by writes to the
register if the corresponding bit position is zero. When the bit written to the PHY register is one, the corresponding bit is
zeroed.

The upper half of the PHY register space, addresses 10002 through 11112, inclusive, provides a windows through which
additional pages of PHY registers may be accessed. This supplement defines pages zero, one and seven: the Port Status
page, the Vendor Identification page and a vendor-dependent page. Other pages are reserved.

The Port Status page is used to access configuration and status information for each of the PHY’s ports. The port is
selected by writing zero to Page_select and the desired port number to Port_select in the PHY register at address 01112.
The format of the Port Status page is illustrated by figure 6-2 below; reserved fields are shown shaded in grey.

Enab_multi 1 rw 0 Enable multi-speed packet concatenation. When set to one, the link shall signal
the speed of all packets to the PHY.

Page_select 3 rw vendor-dependent Selects which of eight possible PHY register pages are accessible through the
window at PHY register addresses 10002 through 11112, inclusive.

Port_select 4 rw vendor-dependent If the page selected by Page_select presents per port information, this field
selects which port’s registers are accessible through the window at PHY regis-
ter addresses 10002 through 11112, inclusive. Ports are numbered monotoni-
cally starting at zero, p0.

Figure 6-2 — PHY register page 0: Port Status page

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description

AStat BStat Ch Connected

Contents

0 1 2 3 4 5 6 7Address

10002

10012

10102

10112

11002

11012

11102

11112

Bias

Negotiated_speed Int_enable

Suspend Port_disable Enab_token Fault

Disabled

Resume Port_enable Disab_token Clr_fault

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 5

The meanings of the register fields within the Port Status page are defined by the table below.

Table 6-2 — PHY register Port Status page fields

Field Size Type Power reset
value Description

AStat 2 r TPA line state for the port:

002 = invalid
012 = 1
102 = 0
112 = Z

BStat 2 r TPB line state for the port (same encoding as AStat)

Ch 1 r If equal to one, the port is a child, else a parent. The meaning of this bit is
undefined from the time a bus reset is detected until the PHY transitions to
state T1: Child Handshake during the tree identify process (see 4.4.2.2 in
IEEE Std 1394-1995).

Connected 1 r 0 If equal to one, the port is connected, else disconnected. This bit reports the
value of the connected variable for the port (see the connection_status() func-
tion in table 7-18).

Bias 1 r If equal to one, bias voltage is detected (possible connection). The value
reported by this bit is filtered by hysteresis logic, with a time of
CONNECT_TIMEOUT, to reduce multiple status changes caused by contact
scrape when a connector is inserted or removed.

Disabled 1 r See description If equal to one, the port is disabled. The value of this bit subsequent to a
power reset is implementation-dependent, but should be a hardware config-
urable option. A single configuration option may control the power reset
value for all ports.

Negotiated_speed 3 r Indicates the maximum speed negotiated between this PHY port and its
immediately connected port; the encoding is the same as for the PHY register
Max_speed field.

Int_Enable 1 rw 0 Enable port status change interrupts. When set to one, the PHY shall set
Port_status to one if any of Connected, Bias, Disabled or Fault (for this port)
change state.

Suspend 1 rwa

a. These bits have special behaviors that permit remote PHY register writes to selectively modify them. A
write of zero to any of these bits shall have no effect. A write of one shall have the effect specified in the
table. More than one bit may be modified in a single register write.

1 Initiate suspend. If written as one, commence operations as a suspend initia-
tor. While the suspend handshake with the peer PHY is in progress this bit
reads as one; otherwise it reads as zero.

Port_disable 1 rwa 0 Port disable. When set to one the PHY shall disable the port. While the dis-
able process is active this bit reads as one; otherwise this bit reads as zero.

Enab_token 1 rwa 0 Enable token-style arbitration. When set to one, the enhancements specified
in clause 7.9 shall be enabled for this port.

Fault 1 r 0 Set to one if an error is detected during a suspend or resume operation.

Resume 1 rwa 0 If written as one the PHY shall attempt to resume normal operations on the
port. While resuming, this bit reads as one; otherwise it reads as zero.

Port_enable rwa 0 Port enable. If written as one the PHY shall enable the port. While the enable
process is active this bit reads as one; otherwise this bit reads as zero.

Disab_token rwa 0 Disable token-style arbitration. If written as one the Enab_token bit shall be
cleared to zero. This bit always reads as zero.

Clr_fault rwa 0 Clear fault(s). If written as one, the Fault bit shall be cleared to zero. This bit
always reads as zero.

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

6 This is an unapproved standards draft, subject to change © 1997 IEEE

The AStat, BStat, Ch and Connected fields are present in both the legacy and extended PHY registers and have identical
meanings, defined by table 6-2 above, in both cases.

PHY registers 10102 and 10112 in the Port Status page shall be accessible to register read requests made by the link via
the PHY/link interface. The behavior of a register write request addressed to either of these registers is unspecified; the
link should use a remote access packet to modify their contents.

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 7

7. Cable physical layer performance enhancement specifications

1HZ�H[WHQGHG�3+<�SDFNHWV�DUH�GHILQHG�WR�SHUPLW�UHPRWH�UHDG�DQG�ZULWH�DFFHVV�WR�WKH�3+<�UHJLVWHUV�DQG
WR�UHPRWHO\�UHTXHVW�D�3+<�SRUW�WR�IXQFWLRQ�DV�D�UHVXPH�LQLWLDWRU��$V�D�FRQVHTXHQFH�RI�WKHVH�FKDQJHV��WKH
W\SH�ILHOG��SUHYLRXVO\���ELWV��KDV�EHHQ�UHGXFHG�WR���ELWV�

7.4.5 Ping packet

The reception of the cable PHY packet shown in figure 7-5 shall cause the node identified by phy_ID to transmit self-ID
packet(s) that reflect the current configuration and status of the PHY. Because of other actions, such as the receipt of a
PHY configuration packet, the self-ID packet transmitted may differ from that of the most recent self-identify process.

7.4.6 Remote access packet

The reception of the cable PHY packet shown in figure 7-6 shall cause the node identified by phy_ID to either read or
write the selected PHY register and subsequently return a remote reply packet that contains the current value of the PHY
register (see clause 7.4.7).

Figure 7-5 — Ping packet format

Table 7-6 — Ping packet fields

Field Comment

phy_ID Physical node identifier of the destination of this packet

type Extended PHY configuration packet type (zero indicates ping packet)

Figure 7-6 — Remote access packet format

Table 7-7 — Remote access p acket fields

Field Comment

phy_ID Physical node identifier of the destination of this packet.

type Extended PHY packet type:
1 Register read (base registers)
5 Register read (paged registers)
6 Register write (paged registers)

page This field corresponds to the Page_select field in the PHY registers. The register read or
write behaves as if Page_select was set to this value.

port This field corresponds to the Port_select field in the PHY registers. The register read or
write behaves as if Port_select was set to this value.

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (0) 0000 0000 0000 000000 00

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type port reg data00 page

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

8 This is an unapproved standards draft, subject to change © 1997 IEEE

7.4.7 Remote reply packet

Subsequent to the reception of a remote access packet, the PHY shall transmit the packet shown in figure 7-7.

A PHY shall transmit a remote reply packet within PING_RESPONSE_TIME after the receipt of a remote access packet.

7.4.8 Resume packet

The reception of the cable PHY packet shown in figure 7-8 shall any node to commence resume operations for all PHY
ports that are both connected and suspended. This is equivalent to zeroing the Suspend bit in PHY register 10112 in the
Port Status page for each of these ports.

reg This field, in combination with page and port, specifies the PHY register. If type indicates
a read of the base PHY registers reg directly addresses one of the first eight PHY registers.
Otherwise the PHY register address is 10002 + reg.

data This field is meaningful only if type indicates a write, in which case the PHY shall update
the addressed PHY register as if a local write request had specified the data value.

Figure 7-7 — Remote reply packet format

Table 7-8 — Remote reply packet fields

Field Comment

phy_ID Physical node identifier of the source of this packet.

type Extended PHY packet type:
3 Register contents (base registers)
7 Register contents (paged registers)

page This field corresponds to the Page_select field in the PHY registers; in conjunction with
port and reg it identifies the register whose contents are returned in data.

port This field corresponds to the Port_select field in the PHY registers; in conjunction with
page and reg it identifies the register whose contents are returned in data.

reg This field, in combination with page and port, identifies the register whose contents are
returned in data. If type indicates a base PHY register, reg directly addresses one of the first
eight PHY registers. Otherwise the PHY register address is 10002 + reg.

data The current value of the PHY register addressed by the immediately preceding remote
access packet. If the register is reserved, data shall be zero.

Figure 7-8 — Resume packet format

Table 7-7 — Remote access packet fields (Continued)

Field Comment

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type port reg data00 page

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (F16) 0000 0000 0000 000000 00

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 9

7.5 Cable PHY line states

This clause defines new rules by which a PHY decodes the interpreted arbitration signals (Arb_A and Arb_B) into a line
state; it is in addition to IEEE Std 1394-1995 clause 4.3.3, “Cable PHY line states.”

The RX_TOKEN_GRANT line state is recognized when received by a parent port during the normal arbitration phase.

7.9.1 Data transmission and reception

Data transmission and reception are synchronized to a local clock that shall be accurate within 100 ppm. The nominal
data rates are powers of two multiples of 98.304 Mbit/s for the cable environment.

7.9.1.1 Cable environment data transmission

Data transmission entails sending the data bits to the connected PHY along with the appropriately encoded strobe signal
using the timing provided by the PHY transmit clock. If the connected port cannot accept data at the requested speed
(indicated by the speed_OK[i] flag being FALSE), then no data is sent, which leaves the drivers in the "01" data prefix
condition.

Table 7-9 — Resume packet fields

Field Comment

phy_ID Physical node identifier of the source of this packet

type Extended PHY configuration packet type (F16 indicates resume packet)

Table 7-10 — Cable PHY received arbitration line states

Interpreted arbitration signals

Arb_A Arb_B Line state name Comment

1 Z RX_DISABLE The peer PHY is requesting the recipient to disable
the receiving port and to initiate bus reset on all
other active ports.

0 0 RX_SUSPEND Exchange TpBias handshake with the peer PHY
and place the connection into the suspended state.
Also initiate suspend (i.e., propagate
TX_SUSPEND) on all other active ports.

0 Z RX_TOKEN_GRANT The parent PHY is granting the bus (although no
TX_REQUEST was sent by the child)

Z 1 TX_DISABLE Request the peer PHY to disable the connected
port.

0 0 TX_SUSPEND Request the peer PHY to handshake TpBias and
enter the suspended state. The request is also prop-
agated by the peer PHY to its other active ports.

Table 7-11 — Data transmit actions (Sheet 1 of 2)

static dataBit tx_data, tx_strobe; // Memory of last signal sent

void tx_bit(dataBit bit) { // Transmit a bit
 int i;

 wait_event(PHY_CLOCK_indication); // Wait for clock
 if (bit == tx_data) // If no change in data

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

10 This is an unapproved standards draft, subject to change © 1997 IEEE

The edge rates and jitter specifications for the transmitted signal are given in clause 4.2.3 of IEEE Std 1394-1995.

Starting data transmission requires sending a special data prefix signal and a speed code. The speed_OK[i] flag for each
port is TRUE if the connected PHY has the capabilities to receive the data:

Ending a data transmission requires sending extra bits (known as “dribble bits”) which flush the last data bit through the
receiving circuit. The number of dribble bits required varies with the transmission speed: one, three or seven extra bits for
S100, S200 and S400, respectively. An extra bit is required to put the two signals TPA and TPB into the correct state; the
value of the bit depends upon whether the bus is being held (PH_DATA.request(DATA_PREFIX) or not
(PH_DATA.request(DATA_END)):

 tx_strobe = ~tx_strobe; // Invert strobe
 tx_data = bit;
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receivePort)
 if (speed_OK[i]) {
 portData pd = {phyData(tx_strobe), phyData(tx_data)};
 portT(i, pd);
 } else
 portT(i, TX_DATA_PREFIX);
}

Table 7-12 — Start data transmit actions

void start_tx_packet(speed) // Send data prefix and speed code
 int i;

 for (i = 0; i < NPORT; i++) {
 if (!active[i])
 speed_OK[i] = FALSE;
 else if (disable[i])
 portT(i, TX_DISABLE);
 else {
 portT(i, TX_DATA_PREFIX); // Send data prefix
 speed_OK[i] = (tx_speed <= max_peer_speed[i]);
 if (speed_OK[i])
 portTspeed(i, tx_speed); // Receiver can accept, send speed intentions
 }
 }
 wait_time(SPEED_SIGNAL_LENGTH);
 for (i = 0; i < NPORT; i++)
 if (active[i])
 portTspeed(i, S100); // Go back to normal signal levels
 wait_time(DATA_PREFIX_TIME); // Finish data prefix
}

Table 7-13 — Stop data transmit actions (Sheet 1 of 2)

void stop_tx_packet (phyData ending_status, speedCode tx_speed) {
 switch (tx_speed) {
 case S400: // Pad with six dribble bits
 tx_bit(1);
 tx_bit(1);
 tx_bit(1);
 tx_bit(1);
 case S200: // Pad with two dribble bits
 tx_bit(1);
 tx_bit(1);
 default:
 break;
 }
 tx_bit((ending_status == DATA_PREFIX) ? 1 : 0); // Penultimate bit...

Table 7-11 — Data transmit actions (Sheet 2 of 2)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 11

NOTE—This algorithm works to force the ending port state to TX_DATA_PREFIX or TX_DATA_END and relies on two
characteristics of packet transmission: there are an even number of bits between the beginning and the end of a packet and a packet
starts with tx_strobe at 0 and tx_data at 1. Thus, when stop_tx_packet is called the port state is either 01 or 10. If the
desired port state is 01 (TX_DATA_PREFIX) and the current port state is 01, this algorithm sets port state to 11 for one bit time, then
back to 01. If the desired ending state is 10 (TX_DATA_END) and the current port state is 01, the port state sequence is 00 followed
by 10. The process is similar if the current port state is 10.

7.9.1.2 Cable environment data reception and repeat

Data reception for the cable environment physical layer has three major functions: decoding the data-strobe signal to
recover a clock, synchronizing the data to a local clock for use by the link layer, and repeating the synchronized data out
all other connected ports. This process can be described as two routines communicating via a small FIFO:

 wait_event(PH_CLOCK.indication()); // Wait for clock
 if (ending_status == DATA_PREFIX) {
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receive_port)
 portT(i, TX_DATA_PREFIX); // ...and the last dribble bit
 wait_time(CONCATENATION_PREFIX_TIME); // Speed signal after this time
 } else if (ending_status == DATA_END) {
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receive_port)
 portT(i, TX_DATA_END);
 wait_time(DATA_END_TIME);
 }
}

Table 7-14 — Data reception and repeat actions (Sheet 1 of 2)

static tpSig old_data, old_strobe; // Memory of last signal sent

// Decode data-strobe stream and load FIFO -- this routine is always running
// (speed code recording is also done here)

void decode_bit (void) {
 repeat {
 if (portRspeed(receive_port) > S100) {
 rx_speed = portRspeed(receive_port);
 speed_signalled = TRUE;
 signal(SPEED_SIGNAL_RECEIVED); // Notify start_rx_packet
 }
 new_signal = tpSignals(); // Get signal
 if (new_signal == IDLE)
 signal(IDLE_DETECTED);
 else {
 new_data = new_signal.TPA; // Received data is on TPA
 new_strobe = new_signal.TPB; // Received strobe is on TPB
 if ((new_signal.TPA != old_strobe) || (new_data != old_data)) {
 // Either data or strobe changed
 FIFO[fifo_wr_ptr] = new_data; // Put data in FIFO
 fifo_wr_ptr = ++fifo_wr_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
 signal(DATA_STARTED); // Signal rx_bit to start
 }
 old_strobe = new_strobe;
 old_data = new_data;
 }
 }
}

// Unload FIFO and repeat data (but suppress dribble bits!)

void rx_bit(dataBit *rx_data, boolean *end_of_data) {
 int i;

Table 7-13 — Stop data transmit actions (Sheet 2 of 2)

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

12 This is an unapproved standards draft, subject to change © 1997 IEEE

Starting data reception requires initializing the data resynchronizer and doing the speed signaling with the sender of the
data. At the same time, the node must start up the transmitting ports by sending a special data prefix signal and repeating
the received speed code. As in the start_tx_packet() function, the node must do the speed signaling exchange for each
transmitting port:

7.9.2 Cable environment arbitration

The cable environment supports the immediate, priority, isochronous and fair arbitration classes. Immediate arbitration is
used to transmit an acknowledge immediately after packet reception; the bus is expected to be available. Priority arbitra-
tion is used by the root for cycle start requests or may be used by any node to override fair arbitration. Isochronous arbi-
tration is permitted between the time a cycle start is observed and the subaction gap that concludes an isochronous period;
isochronous arbitration commences immediately after packet reception. Fair arbitration is a mechanism whereby a PHY
succeeds in winning arbitration only once in the interval between arbitration reset gaps.

 wait_event(PHY_CLOCK_indication); // Wait for clock
 if ((fifo_rd_ptr - fifo_wr_ptr) % FIFO_DEPTH) <= rx_dribble_bits) // FIFO empty?
 *end_of_data = TRUE; // If so, set flag
 else {
 *end_of_data = FALSE; // If not, clear flag...
 *rx_data = FIFO[fifo_rd_ptr]; // ... and get data bit
 fifo_rd_ptr = ++fifo_rd_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
 tx_bit(*rx_data); // Repeat the data bit
 }
}

Table 7-15 — Start data reception and repeat actions

void start_rx_packet () { // Send data prefix and do speed signaling
 int i;

 fifo_rd_ptr = fifo_wr_ptr = 0; // Reset data resynch buffer
 portT(receive_port, IDLE); // Turn off grant, get ready to receive
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receive_port)
 portT(i, TX_DATA_PREFIX); // Send data prefix out repeat ports
 wait_event(SPEED_SIGNAL_RECEIVED | DATA_STARTED | IDLE_DETECTED);
 tx_speed = rx_speed; // Get speed of packet to repeat
 if (rx_speed == S100)
 rx_dribble_bits = 2; // Need for FIFO empty test
 else
 rx_dribble_bits = (rx_speed == S200) ? 4 : 8;
 if (speed_signalled) { // Repeat the speed signal...
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receive_port) {
 speed_OK[i] = (tx_speed <= max_peer_speed[i]);
 if (speed_OK[i])
 portTspeed(i, tx_speed); // Receiver can accept, send speed intentions
 }
 wait_time(SPEED_SIGNAL_LENGTH);
 for (i = 0; i < NPORT; i++)
 if (active[i] && i != receive_port)
 portTspeed(i, S100); // Go back to normal signal levels
 wait_time(DATA_PREFIX_TIME); // Finish data prefix
 wait_event(DATA_STARTED | IDLE_DETECTED); // Wait for decoder to start
 }
 speed_signalled = FALSE; // Reset for each packet
 for (i = 0; i < FIFO_DEPTH/2 - 1; i++)
 wait_event(PHY_CLOCK_indication); // Make sure FIFO is centered
}

Table 7-14 — Data reception and repeat actions (Sheet 2 of 2)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 13

Some of these arbitration classes may be enhanced as defined by this supplement. Ack-accelerated arbitration permits a
PHY to arbitrate immediately following an observed acknowledge packet; this enhancement can reduce the arbitration
delay by a subaction gap time. Fly-by arbitration permits a transmitted packet to be concatenated to the end of a packet
for which no acknowledge is permitted: acknowledge packets themselves or isochronous packets. A PHY shall not use
fly-by arbitration to concatenate an S100 packet after any packet of a higher speed.

Cable arbitration has two parts: a three phase initialization process (bus reset, tree identify and self identify) and a normal
operation phase. Each of these four phases1 is described using a state machine, state machine notes and a list of actions
and conditions. The state machine and the list of actions and conditions are the normative part of the specification. The
state machine notes are informative.

7.9.2.1 Bus reset

The bus reset process starts when a bus reset signal is recognized on a connected port or generated locally. Its purpose is
to guarantee that all nodes propagate the reset signal. This supplement defines two types of bus reset, long bus reset (iden-
tical to that specified by IEEE Std 1394-1995) and arbitrated (short) bus reset. The PHY variable reset_time controls
the length of the bus reset generated or propagated.

7.9.2.1.1 Bus reset state machine notes

Transition All:R0a. This is the entry point to the bus reset process if the PHY experiences a power reset. On power reset,
PHY register values and internal variables are set as specified in this section; in particular all ports are marked disconnected. A solitary
node transitions through the reset, tree identify and self-identify states and enters A0: Idle as the root node.

Transition All:R0b. This is the entry point to the bus reset process if the PHY senses BUS_RESET on any connected
port’s arbitration signal lines (see table 4-28 in IEEE Std 1394-1995).

Transition All:R0c. This is the entry point to the bus reset process if this node is initiating the process. This happens
under the following conditions:

1) Serial Bus management makes a PH_CONTROL.request that specifies a long reset;

2) The PHY detects a disconnect on its parent port; or
3) The PHY stays in any state (except the idle state or a state that has an explicit time-out) for longer than

MAX_ARB_STATE_TIME.

1 Clause 4.4.2.2 of IEEE Std 1394-1995, which describes the tree identify process, is unchanged and is not reproduced in this supplement.

Figure 7-9 — Bus reset state machine

R1: Reset Wait
reset_wait_actions()

arb_timer >= reset_time

R0: Reset Start
reset_start_actions()

initiated_reset = TRUE
reset_time = RESET_TIME

reset_detected()

initiated_reset = FALSE

ibr
|| PH_CONTROL.request(Reset)

|| arb_state_timeout

arb_timer >= reset_time + RESET_WAIT

All:R0b

All:R0c

R0:R1

R1:R0

to T0:reset_complete()
R1:T0 Tree-ID Start

reset_time = RESET_TIME

reset_time = 0

Power reset

initiated_reset = TRUE
reset_time = 0

All:R0a

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

14 This is an unapproved standards draft, subject to change © 1997 IEEE

With the exception of the last condition, the initiation of a bus reset cannot occur until a state’s actions have been com-
pleted.

State R0:Reset Start. The node sends a BUS_RESET signal whose length is governed by reset_time. In the case of
a standard bus reset, this is long enough for all other bus activity to settle down (RESET_TIME is longer than the worst
case packet transmission plus the worst case bus turn-around time). SHORT_RESET_TIME for an arbitrated (short) bus
reset is significantly shorter since the bus is already in a known state following arbitration.

Transition R0:R1. The node has been sending a BUS_RESET signal long enough for all its connected neighbors to
detect it.

State R1:Reset Wait. The node sends out IDLEs, waiting for all its active ports to receive IDLE or
RX_PARENT_NOTIFY (either condition indicates that the connected PHYs have left their R0 state).

Transition R1:R0. The node has been waiting for its ports to go idle for too long (this can be a transient condition caused
by multiple nodes being reset at the same time); return to the R0 state again. This time-out period is a bit longer than the
R0:R1 time-out to avoid a theoretically possible oscillation between two nodes in states R0 and R1.

Transition R1:T0. All the connected ports are receiving IDLE or RX_PARENT_NOTIFY (indicating that the connected
PHYs are in reset wait or starting the tree ID process).

7.9.2.1.2 Bus reset actions and conditions

Table 7-16 — Bus reset actions and conditions (Sheet 1 of 3)

boolean connection_in_progress[NPORT]; // Not referenced outside of the reset state machines
timer connect_timer(); // Timer for connection status monitor

void connection_status() { // Continuously monitor port status in all states
 int i;

 isolated_node = TRUE; // Assume true until first active port found
 for (i = 0; i < NPORT; i++)
 isolated_node &= !active[i];
 for (i = 0; i < NPORT; i++) {
 if (connection_in_progress[i]) {
 if (!connect_detect[i])
 connection_in_progress[i] = FALSE; // Lost attempted connection
 else if (connect_timer >= (isolated_node) ? 2 * CONNECT_TIMEOUT : CONNECT_TIMEOUT) {
 connection_in_progress[i] = FALSE;
 connected[i] = TRUE; // Confirmed connection
 if (isolated_node) // Can we arbitrate?
 ibr = TRUE; // No, transition to R0 for reset
 else
 isbr = TRUE; // Yes, arbitrate for short reset
 }
 } else if (!connected[i]) {
 if (connect_detect[i]) { // Possible new connection?
 connect_timer = 0; // Start connect timer
 connection_in_progress[i] = TRUE;
 }
 } else if (!connect_detect[i]) { // Disconnect?
 connected[i] = FALSE; // Effective immediately!
 if (!active[i]) // No resets if disabled or suspended
 continue; // Keep examining other ports...
 if (root || child[i]) // Parent still connected?
 isbr = TRUE; // Yes, arbitrate for short reset
 else
 ibr = TRUE; // No, transition to R0 for reset
 }
 }
}

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 15

boolean reset_detected() { // Qualify BUS_RESET with port status / history
 int i;

 if (PHY_state == R0 || PHY_State == R1) // Ignore while in reset states themselves
 return(FALSE);
 for (i = 0; i < NPORT; i++)
 if (portR(i) == BUS_RESET) // More than 20 ns (transient DS == 11)
 if (connection_in_progress[i]) {
 reset_time = 0;
 if (isolated_node)
 reset_time = SHORT_RESET_TIME;
 else if (connect_timer >= RESET_DETECT)
 reset_time = RESET_TIME;
 if (reset_time != 0) {
 connection_in_progress[i] = FALSE;
 connected[i] = TRUE
 return(TRUE);
 }
 } else if (active[i]) {
 reset_time = (PHY_state == RX) ? SHORT_RESET_TIME : RESET_TIME;
 return(TRUE);
 } else if (resuming[i]) {
 reset_time = (boundary_node) ? RESET_TIME : SHORT_RESET_TIME;
 return(TRUE);
 }
 return(FALSE);
}

void reset_start_actions() { // Transmit BUS_RESET for reset_time on all ports
 int i;
 root = FALSE;

 PH_EVENT.indication(BUS_RESET_START);
 ibr = isbr = FALSE; // Don’t replicate resets!
 breq = NO_REQ; // Discard any and all link requests
 child_count = physical_ID = 0;
 bus_initialize_active = TRUE:
 if (gap_count_reset_disable) // First reset since setting gap_count?
 gap_count_reset_disable = FALSE; // If so, leave it as is and arm it for next
 else
 gap_count = 0x3F; // Otherwise, set it to the maximum
 for (i = 0; i < NPORT; i++) {
 if (active[i]) // For active ports, propagate appropriate signal
 portT(i, (suspend) ? TX_SUSPEND : BUS_RESET);
 else if (connect_detect[i] && resuming[i])
 portT(i, BUS_RESET);
 else if (disable[i])
 portT(i, IDLE); // Maintain IDLE while TpBias driven low
 else
 portT(i, IDLE); // Ignore disconnected and suspended ports
 child[i] = FALSE;
 child_ID_complete[i] = FALSE;
 }
 arb_timer = 0; // Start timer
}

void reset_wait_actions() { // Transmit IDLE
 int i;

 for (i = 0; i < NPORT; i++)
 portT(i, IDLE);
 arb_timer = 0; // Restart timer
}

Table 7-16 — Bus reset actions and conditions (Sheet 2 of 3)

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

16 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.2.2 Self identify

The self identify process has each node uniquely identify itself and broadcast its characteristics to any management ser-
vices.

boolean reset_complete() { // TRUE when all ports idle or in tree-ID
 int i;

 for (i = 0; i < NPORT; i ++)
 if ((portR(i) != IDLE) && (portR(i) != RX_PARENT_NOTIFY) && port_status[i])
 return(FALSE);
 rx_speed = S100; // For leaf node’s self-ID packet(s)
 return(TRUE); // Transition to tree identify
}

Figure 7-10 — Self-ID state machine

Table 7-16 — Bus reset actions and conditions (Sheet 3 of 3)

root || (portR(parent_port) == RX_SELF_ID_GRANT

concatenated_packet

S0: Self-ID Start
self_ID_start_actions()

S3: Send Speed Capabilities

S2: Self-ID Receive
self-ID_receive_actions()

all_child_ports_identified

S1: Self-ID Grant
self-ID_grant_actions()

if (!root) max_peer_speed[parent_port] = S100;

receive_port = lowest_unidentified_child;

portR(lowest_unidentified_child) == RX_DATA_PREFIX

S0:S2

S1:S2

S2:S2

S0:S1

S1:S4

T2:S0

portR(parent_port) == RX_DATA_PREFIX

receive_port = parent_port;

ping_response

ping_response = FALSE;
S4:S0afrom T2: Parent Handshake

S4: Self-ID Transmit
self_ID_transmit_actions()

to A0: Idle

!ping_response && (root || portR(parent_port) == RX_DATA_PREFIX)

max_peer_speed[parent_port] = portRspeed();
S4:S0bto A0: Idle

S2:S0

(portR(receive_port) == IDLE) || (portR(receive_port) == RX_SELF_ID_GRANT)
|| (portR(receive_port) == RX_DATA_PREFIX && !concatenated_packet)

portTspeed(receive_sport, S100);
max_peer_speed[receive_port] = portRspeed;

arb_timer >= SPEED_SIGNAL_LENGTH
S3:S0

child_ID_complete[receive_port] = TRUE;
portTspeed(receive_port, PHY_SPEED);
max_peer_speed[receive_port] = S100;

arb_timer = 0;

portR(receive_port) == RX_IDENT_DONE
S2:S3

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 17

7.9.2.2.1 Self-ID state machine notes

State S0: Self-ID Start. At the start of the self-ID process, the PHY is waiting for a grant from its parent or the start of
a self-ID packet from another node. This state is also entered whenever a node is finished receiving a self-ID packet and
all its children have not yet finished their self identification.

Transition S0:S1. If a node is the root, or if it receives a RX_SELF_ID_GRANT signal (0Z) from its parent, it enters the
Self-ID Grant state.

Transition S0:S2. If a node receives a RX_DATA_PREFIX signal (10) from its parent, it knows that a self-ID packet is
coming from a node in another branch in the tree.

State S1: Self-ID Grant. This state is entered when a node is given permission to send a self-ID packet. If it has any uni-
dentified children, it sends a TX_GRANT signal (Z0) to the lowest numbered of those. All other connected ports are sent
a TX_DATA_PREFIX signal (01) to warn them of the start of a self-ID packet.

Transition S1:S2. When the PHY receives a RX_DATA_PREFIX signal (10) from its lowest numbered unidentified
child, it enters the Self-ID Receive state.

Transition S1:S4. If there are no more unidentified children, it immediately transitions to the Self-ID Transmit state.

State S2: Self-ID Receive. As data bits are received from the bus they are passed on to the link layer as PHY data indi-
cations. This process is described in clause 4.4.1.2 of IEEE Std 1394-1995. Note that multiple self-ID packets may be
received in this state.

Transition S2:S0. When the receive port goes IDLE (ZZ), gets a RX_SELF_ID_GRANT (0Z) or observes
RX_DATA_PREFIX (10) for a unconcatenated packet it enters the Self-ID Start state to continue the self-ID process for
the next child. The last case guards against a possible failure to observe IDLE.

Transition S2:S2. Multiple self-ID packets are received by the PHY and self_ID_receive_actions reinvoked for each one.

Transition S2:S3. If the PHY gets an RX_IDENT_DONE (Z1) signal from the receiving port, it flags that port as identi-
fied and starts sending the speed capabilities signal. It also starts the speed signaling timer and sets the port speed to the
S100 rate.

State S3: Send Speed Capabilities. If a node is capable of sending data at a higher rate that S100, it transmits on the
receiving child port its speed capability signals as defined in clause 4.2.2.3 of IEEE Std 1394-1995 for a fixed duration
SPEED_SIGNAL_LENGTH.

Transition S3:S0. When the speed signaling timer expires, any signals sent by the child have been latched, so it is safe
to continue with the next child port.

State S4: Self-ID Transmit. At this point, all child ports have been flagged as identified, so the PHY can now send its
own self-ID packet (see clause 7.4) using the process described in clause 4.4.1.1 of IEEE Std 1394-1995. When a non-
root node is finished, it sends a TX_IDENT_DONE signal (1Z) and a speed capability signal as defined in clause 4.2.2.3
of IEEE Std 1394-1995 to its parent and IDLE (ZZ) to its children. The speed capability signal is transmitted for a fixed
time duration (SPEED_SIGNAL_LENGTH). Simultaneously it monitors the bus for a speed capability transmission from
the parent. The root node just sends IDLE (ZZ) to its children. Note that the children will then enter the Idle state
described in the next clause, but they will never start arbitration since an adequate arbitration gap will never open up until
the Self-ID process is completed for all nodes.

Transition S4:A0b. The PHY then enters the Idle state described in the next clause when the self-ID packet has been
transmitted and if either of the following conditions are met:

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

18 This is an unapproved standards draft, subject to change © 1997 IEEE

1) The node is the root. When the root enters the Idle state, all nodes are now sending IDLE signals (ZZ) and
the gap timers will eventually get large enough to allow normal arbitration to start.

2) The node starts to receive a new self-ID packet (RX_DATA_PREFIX – 10). This will be the self-ID packet
for the parent node or another child of the parent. This event shall cause the PHY to transition immediately
out of A0:Idle into A5:Receive.

7.9.2.2.2 Self-ID actions and conditions

Table 7-17 — Self ID actions and conditions (Sheet 1 of 3)

boolean all_child_ports_identified; // Set if all child ports have been identified
int lowest_unidentified_child; // Lowest numbered active child that has not sent its self-ID

void self_ID_start_actions() {
 int i;

 all_child_ports_identified = TRUE; // Will be reset if any active children are unidentified
 concatenated_packet = FALSE; // Prepare in case of multiple self-ID packets
 for (i = 0; i < NPORT; i++)
 if (child_ID_complete[i])
 portT(i, TX_DATA_PREFIX); // Tell identified children to prepare to receive data
 else {
 portT(i, IDLE); // Allow parent to finish
 if (child[i] && active[i]) { // If active child
 if (all_child_ports_identified)
 lowest_unidentified_child = i;
 all_child_ports_identified = FALSE;
 }
 }
}

void self_ID_grant_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (!all_child_ports_identified && (i == lowest_unidentifed_child))
 portT(i, TX_GRANT); // Send grant to lowest unidentified child (if any)
 else if (active[i])
 portT(i, TX_DATA_PREFIX); // Otherwise, tell others to prepare for packet
}

void self_ID_receive_actions() {
 int i;

 portT(receive_port, IDLE); // Turn off grant, get ready to receive
 receive_actions(); // Receive (and repeat) packet
 if (!concatenated_packet) { // Only do this on the first self-ID packet
 if (physical_ID < 63) // Stop at 63 if malconfigured bus
 physical_ID = physical_ID + 1; // Otherwise, take next PHY address
 for (i = 0; i < NPORT; i++)
 portT(i, IDLE); // Turn off all transmitters
 }
}

void self_ID_transmit_actions() {
 int last_SID_pkt = (NPORT + 4) / 8;
 int SID_pkt_number; // Packet number counter
 int port_number = 0; // Port number counter
 quadlet self_ID_pkt, ps;

 receive_port = NPORT; // Indicate that we are transmitting (no port has this number)
 start_tx_packet(S100); // Send data prefix and 98.304 Mbit/sec speed code
 PH_DATA.indication(DATA_START, S100);
 for (SID_pkt_number = 0; SID_pkt_number <= last_SID_pkt; SID_pkt_number++) {

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 19

 selfID.dataQuadlet = 0; // Clear all zero fields in self ID packet
 selfID.type = 0b10;
 selfID.phy_ID = physical_ID;
 if (SID_packet_number == 0) { // First self ID packet?
 selfID.L = LPS && Link_active; // Link active or not?
 selfID.gap_cnt = gap_count;
 selfID.sp = PHY_SPEED;
 selfID.del = PHY_DELAY;
 selfID.c = CONTENDER;
 selfID.pwr = POWER_CLASS;
 selfID.i = initiated_reset;
 } else {
 selfID.seq = 1; // Indicates second and subsequent packets
 selfID.n = SID_pkt_number - 1; // Sequence number
 }
 ps = 0; // Initialize for fresh group of ports
 while (port_number < ((SID_pkt_number + 1) * 8 - 5)) { // Concatenate port status
 if (port_number >= NPORT)
 ; // Unimplemented
 else if (!active[port_number])
 ps |= 0b01; // Unconnected
 else if (child[port_number])
 ps |= 0v11; // Active child
 else
 ps |= 0b10; // Active parent
 port_number++;
 ps <<= 2; // Make room for next port’s status
 }
 selfID |= ps;
 if (SID_pkt_number == last_SID_pkt) { // Last packet?
 tx_quadlet(selfID);
 tx_quadlet(~selfID);
 stop_tx_packet(TX_DATA_END, S100); // Yes, signal data end
 PH_DATA.indication(DATA_END);
 breq = NO_REQ; // Cancel pending requests (only fair and priority possible here)
 } else {
 selfID.m = 1; // Other packets follow, set “more” bit
 tx_quadlet(self_ID_pkt);
 tx_quadlet(~self_ID_pkt);
 stop_tx_packet(TX_DATA_PREFIX, S100); // Keep bus for concatenation
 PH_DATA.indication(DATA_PREFIX);
 PH_DATA.indication(DATA_START, S100);
 }
 }
 if (!ping_response) { // Skip if self-ID packet was in reply to a ping
 for (port_number = 0; port_number < NPORT; port_number++)
 if (root || port_number != parent_port)
 portT(port_number, IDLE); // Turn off transmitters to children
 else
 portT(port_number, TX_IDENT_DONE); // Notify parent that self-ID is complete
 if (!root) { // If we have a parent...
 portTspeed(parent_port, PHY_SPEED); // Send speed signal (if any)
 wait_time(SPEED_SIGNAL_LENGTH);
 portTspeed(parent_port, S100); // Stop sending speed signal
 }
 PH_EVENT.indication(SELF_ID_COMPLETE, physical_ID, root); // Register 0
 }
}

Table 7-17 — Self ID actions and conditions (Sheet 2 of 3)

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

20 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.2.3 Normal arbitration

Normal arbitration is entered as soon as a node has finished the self identification process. At this point, a simple request-
grant handshake process starts between a node and its parent (and all parents up to the root).

void tx_quadlet(quadlet quad_data) { // Send a quadlet...
 int i;

 breq = NO_REQ; // Cancel any request (keep in step with the link)
 for (i = 0; i < 32; i++) { // ...a bit at a time
 tx_bit(quad_data & 0x80000000); // From the most significant downwards
 PH_DATA.indication(quad_data & 0x80000000); // Copy our own self-ID packet to the link
 quad_data <<= 1; // Shift to next bit
 }
}

Table 7-17 — Self ID actions and conditions (Sheet 3 of 3)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 21

Figure 7-11 — Cable arbitration state machine

!root && (child_request() || arb_OK())

arb_timer == subaction_gap
|| arb_timer == arb_reset_gap

gap_detect_actions()

concatenated_packet

// Reinvokes receive_actions()

portR(receive_port) == IDLE || (!concatenated_packet && !fly_by_OK())

arb_timer = 0

portR(parent_port) == RX_GRANT && own_request

// Arbitration WON

A0: Idle
idle_actions()

TX: Transmit
transmit_actions()

RX: Receive
receive_actions()

A2: Grant
grant_actions()

portR(parentPort) == RX_GRANT
&& child_request() && !own_request

portR(requesting_child) == RX_REQUEST_CANCEL

arb_timer = 0

A1: Request
request_actions()

portR(parent_port) == RX_GRANT
&& !(child_request() || own_request)

root && child_request() && !arb_OK()

// Arbitration WON

end_of_packet && !link_concatenation

arb_timer = 0

RX:A0

portR(requesting_child) == RX_DATA_PREFIX

RX:RX

receive_port = parent_port
// Arbitration LOST or deferred

portR(parent_port) == RX_DATA_PREFIX

end_of_packet && link_concatenation

// Reinvokes transmit_actions()

A0:RX

TX:A0

A0:TX

A1:TX

A1:RX

A0:A0

A1:A0

A0:A1

A1:A2

A2:A0

A0:A2

A2:RX

TX:R0

data_coming()

// Arbitration LOST or deferred

to R0: Reset start

!concatenated_packet && fly_by_OK()

// Arbitration WON
RX:TX

ping_response == TRUE
A0:S4 to S4: Self-ID TX

TX:TX

isbr == TRUE

initiated_reset = TRUE
reset_time = SHORT_RESET_TIME

receive_port = requesting_child

S4:A0b

from S4: Self-ID TX

accelerating == TRUE;
arb_timer = 0;

breq == IMED_REQ || (root && arb_OK())

arb_timer = 0

S4:A0a
accelerating == TRUE;

arb_timer = 0;

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

22 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.2.3.1 Normal arbitration state machine notes

State A0: Idle. All inactive nodes stay in the idle state until an internal or external event. All ports transmit the IDLE
arbitration signal (ZZ). Transitions into this state from states where idle was not being sent reset an idle period timer.

Transition A0:A0. If a subaction gap or arbitration reset gap occurs, the PHY notifies the link layer. In addition, if this
is the first subaction gap after a bus reset it signals the completion of the self-identify process and the PHY notifies the
node controller. The detection of an arbitration reset gap marks the end of a fairness interval; the PHY sets the arbitration
enable flag.

Transition A0:A1. If the PHY has a queued request from its own link or receives an RX_REQUEST signal (0Z) from
one of its children (and is not the root), it passes the request on to its parent. The arb_OK() function qualifies asynchro-
nous requests according to the time elapsed since A0: Idle was last entered. In particular, notice that the test for a subac-
tion gap is performed for a single value (equality), not a greater than comparison. If arbitration were to be initiated at
other times between the detection of a subaction gap and an arbitration reset gap, some nodes could mistakenly observe
an arbitration reset gap.

Transition A0:A2. If, on the other hand, the PHY receives a RX_REQUEST signal (0Z) from one of its children, has no
queued requests from its own link and is the root, it starts the bus grant process.

Transition A0:RX. If the PHY receives the RX_DATA_PREFIX signal on any of its ports while idle, it shifts into the
Receive state and notifies the link layer that any pending arbitration requests have been lost.

Transition A0:TX. If the PHY has a queued isochronous request and is the root or if the PHY has a queued immediate
request (generated during packet reception if the link layer needs to send an acknowledge), the PHY notifies the link layer
that it is ready to transmit and enters the Transmit state.

Transition A0:S4. In response to the receipt of a PHY “ping” packet, the variable ping_response is set TRUE and a tran-
sition is made to the Self-ID Transmit State to send the self-ID packet(s).

State A1: Request. At this point, the PHY sends a TX_REQUEST signal (Z0) to its parent and a data prefix (01) to all
its connected children. This will signal all children to get ready to receive a packet.

Transition A1:A0. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child has withdrawn
its request, the PHY returns to Idle state.

Transition A1:A2. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child is still making
a request, the PHY grants the bus to that child.

Transition A1:RX. If the PHY receives a RX_DATA_PREFIX signal (10) from its parent, then it knows that it has lost
the arbitration process and prepares to receive a packet. If the link layer was making the request, it is notified.

Transition A1:TX. If the PHY receives a RX_GRANT signal (00) from its parent and the link layer has an outstanding
request (asynchronous or isochronous), the PHY notifies the link layer that it can now transmit and enters the Transmit
state.

State A2: Grant. During the grant process, the requesting child is sent a TX_GRANT signal (Z0) and the other children
are sent a TX_DATA_PREFIX (01) so that they will prepare to receive a packet.

Transition A2:A0. If the requesting child withdraws its request, the granting PHY sees its own TX_GRANT signal
coming back as a RX_REQUEST_CANCEL signal (Z0) and returns to the Idle state.

Transition A2:RX. If the data prefix signal is received from the requesting child, the grant handshake is complete and
the node goes into the Receive state.

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 23

State RX: Receive. When the node starts the receive process, it clears all its request flags (forcing the link layer to send
new requests if there were any queued) notifies the link layer that the bus is busy and starts the packet receive process
described below. Note that the packet received could be a PHY packet (self-ID, link-on or PHY configuration), acknowl-
edge, or normal data packet. PHY configuration and link-on packets are interpreted by the PHY, as well as being passed
on to the link layer.

Transition RX:A0. If transmitting node stops sending any signals (received signal is ZZ) or if a packet ends normally
when the received signal is RX_DATA_END, the bus is released and the PHY returns to the idle state.

Transition RX:RX. If a packet ends and the received signal is RX_DATA_PREFIX (10), then there may be another
packet coming, so the receive process is restarted.

State TX: Transmit. Unless an arbitrated (short) bus reset has been requested, the transmission of a packet starts by the
node sending a TX_DATA_PREFIX and speed signal as described in clause 4.2.2.3 of IEEE Std 1394-1995 for 100 ns,
then sending PHY clock indications to the link layer. For each clock indication, the Link sends a PHY data request. The
clock indication – data request sequence repeats until the Link sends a DATA_END. Concatenated packets are handled
within this state whenever the Link sends at least one data bit followed by a DATA_PREFIX. The arbitration enable flag
is cleared if this was a fair request.

Transition TX:A0. If the link layer sends a DATA_END, the PHY shuts down transmission using the procedure
described in clause 4.4.1.1 of IEEE Std 1394-1995 and returns to the Idle state.

Transition TX:R0. If arbitration has succeeded and the reset_time variable has a nonzero value, there is no packet to
transmit. The PHY transition’s to the Reset start state to commence a short bus reset.

7.9.2.3.2 Normal arbitration actions and conditions

Table 7-18 — Normal arbitration actions and conditions (Sheet 1 of 3)

int requesting_child; // Lowest numbered requesting child

boolean fly_by_OK() { // TRUE if fly-by acceleration OK

 if (!enab_accel)
 return(FALSE);
 else if (receive_port == parent_port)
 return(FALSE);
 else if (speed == S100 && rx_speed != S100)
 return(FALSE);
 else if (breq == ISOCH_REQ)
 return(TRUE);
 else if (ack && accelerating)
 return(breq == PRIORITY_REQ || (breq == FAIR_REQ && arb_enable));
 else
 return(FALSE);
}

boolean child_request() { // TRUE if a child is requesting the bus
 int i;

 for (i = 0; i < NPORT; i++)
 if (active[i] && child[i] && (portR(i) == RX_REQUEST)) {
 requesting_child = i; // Found a child that is requesting the bus
 return(TRUE);
 }
 return(FALSE);
}

boolean token_request() { // TRUE if at least one token-enabled child needs a grant
 int i;

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

24 This is an unapproved standards draft, subject to change © 1997 IEEE

 for (i = 0; i < NPORT; i++)
 if (active[i] && child[i] && grant_needed[i]) {
 return(TRUE);
 }
 return(FALSE);
}

boolean data_coming() { // TRUE if data prefix is received on any port
 int i;

 for (i = 0; i < NPORT; i++)
 if (active[i] && (portR(i) == RX_DATA_PREFIX)) {
 receive_port = i; // Remember port for later...
 return(TRUE); // Found a port that is sending a data_prefix signal
 }
 return(FALSE);
}

void gap_detect_actions() {

 if (arb_timer >= reset_gap_time) { // End of fairness interval?
 arb_enable = TRUE; // Reenable fair arbitration
 PH_DATA.indication(ARBITRATION_RESET_GAP); // Alert link
 } else if (arb_timer >= subaction_gap_time) {
 PH_DATA.indication(SUBACTION_GAP); // Notify link
 if (bus_initialize_active) { // End of self-identify process for whole bus?
 PH_EVENT.indication(BUS_RESET_COMPLETE);
 bus_initialize_active = FALSE;
 }
 }
}

void idle_actions() {
 int i;

 rx_speed = S100; // Default in anticipation of no explicit receive speed code
 for (i = 0; i < NPORT; i++) // Turn off all transmitters
 portT(i, IDLE);
}

void request_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (active[i] && child[i] && (own_request || i != requesting_child))
 portT(i, TX_DATA_PREFIX); // Send data prefix to all non-requesting children
 portT(parent_port, TX_REQUEST); // Send request to parent
}

boolean arb_OK() { // TRUE if OK to request the bus
 boolean async_arb_OK = FALSE; // Timing window OK for asynchronous arbtration?

 if (arb_timer < subaction_gap_time + arb_delay)
 async_arb_OK = enab_accel && accelerating && ack;
 else if (arb_timer == subaction_gap_time + arb_delay)
 async_arb_OK = TRUE;
 else if (arb_timer >= arb_reset_gap_time + arb_delay)
 async_arb_OK = TRUE;
 if (breq == ISOCH_REQ)
 own_request = !parent_token_enable;
 else if (breq == PRI_REQ)
 own_request = async_arb_OK;
 else if (breq == FAIR_REQ)
 own_request = async_arb_OK && arb_enable;

Table 7-18 — Normal arbitration actions and conditions (Sheet 2 of 3)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 25

7.9.2.3.3 Receive actions and conditions

 else if (isbr)
 own_request = async_arb_OK;
 else
 own_request = FALSE;
 return(own_request);
}

void grant_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (i == requesting_child) {
 portT(i, TX_GRANT); // Send grant to requesting child
 if (token_request[i]) {
 portT(parent_port, TX_DATA_PREFIX]);
 token_request[i] = FALSE;
 }
 token_request[i] = FALSE;
 }
 else if (active[i] && child [i])
 portT(i, TX_DATA_PREFIX); // Send data prefix to all non-requesting children
}

Table 7-19 — Receive actions and conditions (Sheet 1 of 2)

void receive_actions() {
 boolean end_of_data;
 unsigned bit_count = 0, i, rx_data, tx_speed;

 ack = concatenated_packet = FALSE;
 if (!enab_accel && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Cancel the request
 PH_ARB.confirmation(LOST); // And let the link know
 }
 PH_DATA.indication(DATA_PREFIX); // Send notification of bus activity
 start_rx_packet(); // Start up receiver and repeater
 tx_speed = rx_speed;
 PH_DATA.indication(DATA_START, rx_speed); // Send speed indication
 do {
 rx_bit(&rx_data, &end_of_data);
 if (!end_of_data) { // Normal data, send to link layer
 PH_DATA.indication(rx_data);
 if (bit_count < 64) // Accumulate first 64 bits
 rx_phy_pkt.bits[bit_count] = rx_data;
 bit_count++;
 ack = (bit_count == 8); // For acceleration, any 8-bit packet is an ack
 if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Fly-by impossible
 PH_ARB.confirmation(LOST); // Let the link know
 }
 }
 } while (!end_of_data);
 if (portR(receive_port) == IDLE) { // Unexpected end of data...
 if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Discard (unless link believes there was an ACK)
 PH_ARB.confirmation(LOST);
 }
 ack = FALSE; // Disable fly-by acceleration
 return;
 }
 switch(portR(receive_port)) { // Send appropriate end of packet indicator
 case RX_DATA_PREFIX:

Table 7-18 — Normal arbitration actions and conditions (Sheet 3 of 3)

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

26 This is an unapproved standards draft, subject to change © 1997 IEEE

 concatenated_packet = TRUE;
 PH_DATA.indication(DATA_PREFIX); // Concatenated packet coming
 stop_tx_packet(DATA_PREFIX, rx_speed);
 break;

 case RX_DATA_END:
 if (fly_by_OK())
 stop_tx_packet(DATA_PREFIX, tx_speed); // Fly-by concatenation
 else {
 PH_DATA.indication(DATA_END); // Normal end of packet
 stop_tx_packet(DATA_END, tx_speed);
 }
 break;
 }
 if (bit_count == 64) { // We have received a PHY packet
 for (i = 0; i < 32; i++) // Check PHY packet for good format
 if (rx_phy_pkt.bits[i] == rx_phy_pkt.checkBits[i])
 return; // Check bits invalid - ignore packet
 switch(rx_phy_pkt.type) { // Process PHY packets by type
 case 0b00: // PHY config packet
 if (rx_phy_pkt.ext_type == 0) // Ping packet?
 ping_response = (rx_phy_pkt.phy_ID == physical_ID);
 else if ((rx_phy_pkt.ext_type == 1 || rx_phy_pkt.ext_type == 5
 || rx_phy_pkt.ext_type == 6)
 && (rx_phy_pkt.phy_ID == physical_ID))
 remote_access(rx_phy_pkt.page, rx_phy_pkt.port,rx_phy_pkt.reg,
 rx_phy_pkt.data);
 else if (rx_phy_pkt.ext_type == 3) // Resume packet?
 resuming = (rx_phy_pkt.phy_ID == physical_ID);
 else { // Must be PHY configuration packet
 if (rx_phy_pkt.R) // Set force_root if address matches
 force_root = (rx_phy_pkt.address == physical_ID)
 if (rx_phy_pkt.T) { // Set gap_count unconditionally
 gap_count = rx_phy_pkt.gap_count;
 gap_count_reset_disable = TRUE;
 }
 }
 break;

 case 0b01: // Link-on packet
 if (rx_phy_pkt.address == physical_ID)
 PH_EVENT.indication(LINK_ON);
 break;
 }
 }
}

void remote_access() { // Current value of remotely accessed register
 if (rx_phy_pkt.ext_type == 6 && page == 0
 && (reg == 0b1010 || reg == 0b0111))
 write_phy_reg(page, port, reg, data);
 phy_resp_pkt.dataQuadlet = 0;
 phy_resp_pkt.phy_ID = physical_ID;
 phy_resp_pkt.type = 3;
 phy_resp_pkt.data = read_phy_reg(page, port, reg);
 phy_response = TRUE;
}

Table 7-19 — Receive actions and conditions (Sheet 2 of 2)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 27

7.9.2.3.4 Transmit actions and conditions

Table 7-20 — Transmit actions and conditions (Sheet 1 of 2)

void transmit_actions() {

 end_of_packet = FALSE;
 int bit_count = 0, i;
 PHY_packet rx_phy_pkt, tx_phy_pkt;
 phyData data_to_transmit;

 if (breq == FAIR_REQ)
 arb_enable = FALSE;
 breq = NO_REQ;
 tx_speed = speed; // Assume speed has been set correctly...
 // (from PH_ARB.request or concatenated packet speed code)
 receive_port = NPORT; // Impossible port number ==> PHY transmitting
 start_tx_packet(tx_speed); // Send data prefix & speed signal
 if (isbr) // Avoid phantom packets...
 return;
 PH_ARB.confirmation(WON); // Signal grant on Ctl[0:1]
 while (!end_of_packet) {
 PH_CLOCK.indication(); // Tell link to send data
 data_to_transmit = PH_DATA.request(); // Wait for data from the link
 switch(data_to_transmit) {
 case DATA_ONE:
 case DATA_ZERO:
 tx_bit(data_to_transmit);
 if (bit_count < 64) // Accumulate possible PHY packet
 rx_phy_pkt.bits[bit_count] = data_to_transmit;
 bit_count++;
 break;

 case DATA_PREFIX:
 end_of_packet = link_concatenation = TRUE;
 stop_tx_packet(DATA_PREFIX, tx_speed); // MIN_PACKET_SEPARATION needs to be
 break; // guaranteed by stop_tx_packet() and subsequent start_tx_packet()

 case DATA_END:
 stop_tx_packet(DATA_END, tx_speed);
 end_of_packet = TRUE; // End of packet indicator
 break;
 }
 }
 ack = (bit_count == 8); // Used elsewhere to (conditionally) accelerate
 if (bit_count == 64) { // We have transmitted a PHY packet
 for (i = 0; i < 32; i++) // Check PHY packet for good format
 if (tx_phy_pkt.bits[i] == tx_phy_pkt.checkBits[i])
 return; // Check bits invalid - ignore packet
 if (tx_phy_pkt.type == 0b00)
 if (tx_phy_pkt.ext_type == 0) // Ping packet?
 ping_response = (tx_phy_pkt.phy_ID == physical_ID);
 else if ((tx_phy_pkt.ext_type == 1 || tx_phy_pkt.ext_type == 5
 || tx_phy_pkt.ext_type == 6)
 && (tx_phy_pkt.phy_ID == physical_ID))
 remote_access(tx_phy_pkt.page, tx_phy_pkt.port, tx_phy_pkt.reg,
 tx_phy_pkt.data);

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

28 This is an unapproved standards draft, subject to change © 1997 IEEE

 else { // Must be PHY configuration packet
 if (tx_phy_pkt.R) // Set force_root if address matches
 force_root = (tx_phy_pkt.address == physical_ID)
 if (tx_phy_pkt.T) { // Set gap_count unconditionally
 gap_count = tx_phy_pkt.gap_count;
 gap_count_reset_disable = TRUE;
 }
 }
 }
}

Table 7-20 — Transmit actions and conditions (Sheet 2 of 2)

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 29

7.9.3 Port connection

The port connection state machines operate independently for each port, i, where i is greater than or equal to zero and less
than NPORT. While a port is in the active state its arbitration, data transmission, reception and repeat behaviors are spec-
ified by the state machines in clause 7.9.2. When a PHY port is in any state other than active it is permissible for it to
lower its power consumption; the only functional component of a PHY that shall be active in all states is the physical con-
nection detect circuitry.

7.9.3.1 Port connection state machine notes

Transition All:P0. A power reset of the PHY initializes each port as disconnected.

Transition All:P6. If the PHY port’s Disable bit is set to one, either as the result of a register write request from the link
or upon receipt of a PHY remote access packet, the PHY port enters the disabled state.

Figure 7-12 — Port connection state machine

P2: ActiveP0: Disconnected

P5: Suspended
suspended_actions()

P3: Suspend Initiator
suspend_initiator_actions()

!bias[i] && !connected[i]

P1: Resuming
resume_actions()

connected[i] && !disable[i]

P1:P0

P6:P5

connected[i]
P0:P1

bias[i]
P1:P2

!bias[i]
P2:P5

bias[i] && suspend[i]
P2:P3

bias[i] && portR(i) == RX_SUSPEND
P2:P4

P4: Suspend Target
suspend_target_actions()

P3:P5

P4:P5

P6: Disabled
disabled_actions()

!fault[i] && (connected[i] && (resume[i] || bias[i]))
P5:P1

active[i] = FALSE;

!bias[i] && connected[i]
P1:P5

All:P6
!connected[i] && !disable[i]

P6:P0

disable[i]

!connected[i]
P5:P1

active[i] = FALSE;

active[i] = FALSE;

active[i] = TRUE;

fault[i] = FALSE;

fault[i] = FALSE;

!bias[i] && fault[i]
P5:P5

fault[i] = FALSE;

All:P0
Power reset

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

30 This is an unapproved standards draft, subject to change © 1997 IEEE

State P0: Disconnected. The generation of TpBias is disabled and the outputs are in a high-impedance state. The PHY
may place most of its circuitry in a low-power consumption state. The connection detect circuit. shall be active even if
other components of the PHY port are in a low-power state.

Transition P0:P1. When a port’s connection detect circuitry signals that its peer PHY port is physically connected, the
PHY port transitions to the resuming state.

State P1: Resuming. The PHY port tests both the connection status and the presence of TpBias to determine if normal
operations may be resumed. If the port is connected, TpBias is present and there are no other active ports, the PHY waits
five RESET_DETECT intervals before any state transitions. Otherwise, in the case of a boundary node with one or more
active ports, the PHY waits two RESET_DETECT intervals before any state transitions.

Transition P1:P0. A resuming PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P1:P2. If the PHY port is both connected and observes TpBias, it transitions to the active state.

Transition P1:P5. A resuming PHY port that remains connected to its peer PHY port but fails to observe TpBias transi-
tions to the suspended state.

State P2: Active. The PHY port is fully operational, capable of transmitting or receiving and repeating arbitration signals
or clocked data. While the port remains active, the behavior of this port and the remainder of the PHY are subject to the
cable arbitration states specified in clause 7.9.

Transition P2:P3. Upon the receipt of a PHY remote access packet that sets the Initiate_suspend bit to one, the PHY port
leaves the active state to start functioning as a suspend initiator.

Transition P2:P4. If an active port observes an RX_SUSPEND signal it becomes a suspend target leaves the active state.

Transition P2:P5. An active port that fails to observe TpBias transitions to the suspended state in order to test the cable
signals. This transition is usually the result of a physical disconnection or the loss of power to the connected peer PHY
port.

State P3: Suspend Initiator. A suspend initiator. responds to the PHY remote access packet by transmitting a PHY
remote reply packet that with the Initiate_suspend bit set to one. Since the suspend initiator is no longer active, the con-
nection status monitor triggers the generation of bus reset on all of the other active ports at this PHY. In the meantime,
the suspend initiator signals TX_SUSPEND to its connected peer PHY and then waits for TpBias to be driven low. If
NOTIFY_HOLD elapses and the connected peer PHY has not driven TpBias low, the suspend operation has faulted and
the Fault bit is set to one. In either case the suspend initiator disables the generation of TpBias and places the outputs in
a high-impedance state.

Transition P3:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

State P4: Suspend Target. A suspend target propagates the RX_SUSPEND siganl as TX_SUSPEND on all of the PHY’s
other, active ports as part of its normal repeating functions. In the meantime the suspend target drives its TpBias outputs
below 0.4 V in order to signal the suspend initiator that RX_SUSPEND was detected. The suspend target then waits for
TpBias to be drivven low. If BIAS_HOLD elapses and the suspend initiator has not driven TpBias low, the suspend oper-
ation has faulted and the Fault bit is set to one. In either case the suspend target disables the generation of TpBias and
places the outputs in a high-impedance state.

Transition P4:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 31

State P5: Suspended. The PHY may place most of its circuitry in a low-power consumption state. The connection detect
circuit. shall be active even if other components of the PHY port are in a low-power state.

Transition P5:P0. A suspended PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P5:P1. So long as the port’s Fault bit is not one, any one of a number of events cause a suspended PHY port
to transition to the resuming state: a) the receipt of a PHY remote access packet that sets the PHY register Initiate_resume
bit to one, b) the receipt of a PHY resume packet or c) the detection of TpBias.

Transition P5:P5. If the port entered the suspended state in a faulted condition (i.e., TpBias was still present), the fault
is cleared if and when TpBias is removed by the peer PHY.

State P6: Disable. Whenever the Disable bit in the PHY registers is set to one, the PHY port transitions to the disabled
state. The Disable bit may be written either by the attached link or by a PHY remote access packet. The PHY may place
most of its circuitry in a low-power consumption state. The connection detect circuit. shall be active even if other compo-
nents of the PHY port are in a low-power state.

Transition P6:P0. If the Disable bit is zero and the PHY port is not physically connected to its peer PHY port, it transi-
tions to the disconnected state.

Transition P6:P5. Otherwise, if the Disable bit is zero and the PHY port is connected it transitions to the suspended
state.

High Performance Serial Bus (Supplement) P1394a/97-086r1
December 12, 1997

32 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.3.2 Port connection actions and conditions

Table 7-21 — Port connection actions and conditions (Sheet 1 of 2)

void disabled_actions() {
 if (int_enable[i])
 if (link_active && LPS)
 PH_EVENT.indication(INTERRUPT);
 else if (wakeup)
 PH_EVENT.indication(LINK_ON);
}

void resume_actions() {
 connect_timer = 0;
 tpBias(i, 1); // Generate TpBias
 for (j = 0; j < NPORT; j++) // Activate all other ports as resume initiators
 if (i != j)
 resume[i] = TRUE;
 while (((connect_timer < DETECT_MIN) && !bias[i]) // Wait for TpBias
 ;
 if (fault)
 tpBias(i, Z); // Release TpBias
 if (link_active && LPS && int_enable[i])
 PH_EVENT.indication(INTERRUPT);
 else if (!(link_active && LPS) && wakeup)
 PH_EVENT.indication(LINK_ON);
}

void suspend_initiator_actions(int i) {
 connect_timer = 0;
 portT(i, TX_SUSPEND);
 while (connect_timer < SHORT_RESET_TIME)
 ;
 portT(i, IDLE);
 while ((connect_timer < NOTIFY_HOLD) && bias[i])
 ;
 if (!bias[i]) {
 connect_timer = 0;
 tpBias(i, 0);
 while (connect_timer < BIAS_HOLD)
 ;
 }
 tpBias(i, Z);
 if (bias[i]) // Suspend handshake refused by target?
 fault = connect_detect[i]; // Fault if there’s still a physical connection
}

void suspend_target_actions() {
 connect_timer = 0;
 tpBias(i, 0); // Drive TpBias low
 while ((connect_timer < BIAS_HOLD) && bias[i])
 ;
 tpBias(i, Z);
 if (bias[i]) // Suspend initiator reneged?

P1394a/97-086r1 High Performance Serial Bus (Supplement)
December 12, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 33

 fault = connect_detect[i]; // Fault if initiator still connected
}

void suspended_actions() {
 if (int_enable[i])
 if (link_active && LPS)
 PH_EVENT.indication(INTERRUPT);
 else if (wakeup)
 PH_EVENT.indication(LINK_ON);
}

Table 7-21 — Port connection actions and conditions (Sheet 2 of 2)

