
date : February 6, 1998
author: Steve Hamilton
company: Innovative Semiconductors, Inc.

I am by no means a PHY timing expert. But careful reading of the standard, and of draft 1.3 of the 1394a
document, leaves me with the conclusion that 2 issues remain. The 1394A draft might want to provide
additional clarification or restriction here. Discussion of the issues starts below. That discussion refers to
the following drawing. I welcome correction if i have missed something pertinent.

SPEED_SIGNAL_LENGTH

SPEED_SIGNAL_DETECTED

Received
Port

Repeated
Port

DATA PREFIX SPEED SIGNAL
DATA

PREFIX
Data

time to detect
data_coming()

receive_actions() through
start_rx_packets() through

1st for loop

DATA
PREFIX

SPEED SIGNAL DATA PREFIX

SPEED_SIGNAL_LENGTH

TOTAL_PREFIX_TIME

DATA_STARTED

FIFO Lead

Send Speed
code to Link

Data

Dribble DATA_END DATA PREFIX

Dribble DATA_END
DATA
PREFI

X

DATA_
PREFIX_

HOLD

DATA_
PREFIX_

HOLD

delay

delay

SUBGAP
+

ARB_DELAY

ARB_
RESPONSE_

DELAY

ARB_
RESPONSE_

DELAY

GAP
LEFT ?

PHY Timing Issues

A

B

Isssue #1 :

The first issue relates to which critical path determines point B in the above drawing. Point B is
determined by the latest of 3 points. I believe the operating assumption of the specs to date has been that
B is determined by the starting of data arrival. First transitions are detected, then enough of them have
been counted to give the Resync buffer a sufficient lead (in case of clock tolerance issues), and finally
moving the PHY-LINK interface from DATA_COMING to RECEIVE takes some time. These
cummulatively are indicated by “delay” in the drawing. I believe this is what the standard’s
PHY_DELAY refers to, although a precise reading leaves question as to whether the PHY_LINK action is
included (i’ll assume it is).

Two other paths might determine B however. Starting from point A, some time is needed to recognize the
presence of a speed signal (when there is one). The 1394A spec provides some good incites about how to
do this, and why it may require some time. Then, once the speed signal is sent on the repeated port(s),
data cannot be sent until SPEED_SIGNAL_LENGTH plus DATA_PREFIX_HOLD times elapse. These
same 2 intervals (at a minimum) seperate point A from the arrival of data on the receiving port. Therefore
it is the difference between “delay” and SPEED_SIGNAL_DETECTED which determines if this, or the
data arrival, will determine point B. If SPEED_SIGNAL_DETECTED is greater than “delay”, then the
path from point A dictates B. The 1394A spec requires PHY_DELAY to be greater than 60 ns. No spec
is given for SPEED_SIGNAL_DETECTED. But clause 7.10.1 and table 7-19 show how it might easily
take 3 or more 50 MHz clocks (> 60 ns).

So who cares which of those paths determines B? Well what happens to data if speed signalling delays its
transmission on the repeated port? It accumulates in the Resync buffer. If the resync buffer is too full at
the start of the packet, and clock tolerance works against you, it can overflow before packet end. Oops!

A third path may determine point B. The portion of data prefix which is prior to speed signalling is a
different length on the receiving port and the repeating port. The length on the repeating port is reduced
by ARB_RESPONSE_DELAY time, and increased by SPEED_SIGNAL_DETECTED time. If this turns
out to be a net reduction, then TOTAL_PREFIX_TIME may determine point B. This is probably not
likely, and in any case its impact is identical to the previous case.

Isssue #2 :

The second issue deals with idle gap reduction, and with Gap Count tables. The fact is that the gap period
will be reduced through each repeating PHY. The arbitration and transmit start sequences introduce
additional gap period called ARB_DELAY to compensate for this. One intent of the ARB_DELAY
period is to ensure that even with repeaters’ gap reduction, gaps are never reduced below SubActionGap
length. ARB_DELAY is defined as (4 * GapCount * BasePeriod). The current GapCount tables do not
allow sufficient time for this. I remember some reflector discussion on erros in the GapCount tables, but
the proposed table revisions did not account for the effect described below.

No matter which path determines point B, once it is determined, a delay between the incoming and
repeating port is established. To keep things simple lets count this delay in base clocks, rather than time
so we don’t have to worry about clock tolerance between nodes. Since the data, dribble bits, and data end
intervals will have the same number of clocks on both ports, this delay will also characterize the
relationship between the start of the IDLE periods on both ports. On the receiving port the start of the
next packet can occur only after a minimum gap of SUBACTION_GAP plus ARB_DELAY. When it
occurs, it will be reflected on the repeating ports after ARB_RESPONSE_DELAY. Therefore, the gap
length actually seen on the repeating port, which we wish to always exceed a SubActionGap producesd the
following equation which is then reduced.

SUBACTION_GAP + ARB_DELAY + ARB_RESPONSE_DELAY - delay > SUBACTION_GAP

 ARB_DELAY + ARB_RESPONSE_DELAY - delay > 0

 ARB_DELAY > delay - ARB_RESPONSE_DELAY

ARB_RESPONSE_DELAY is speced to be greater than 33 ns and less than delay (so right side never goes
negative). Using PHY_DELAY (60 ns - 144 ns) for delay gives a range of values for the right side of this
equation which is from (144 -33) to (delay - delay) or 111 ns to 0 ns. For the equation to be true we must
use the maximum of these. Substituting for ARB_DELAY and reducing provides an ultimate restriction
on GapCount.

 ARB_DELAY > 111 ns

 4 * GapCount * 10.17 > 111 ns

 GapCount > 111 ns / 40.68 ns = 2.73

GapCount must always be at least 3, even with a hop count of 1. In fact, the above analysis convinces me
that it must be at least (2.73 * H) where H is the number of hops. New style optimizing bus managers
may use ping timing to set gap counts, which is good. However, old style bus managers may still be out
there. If they use the table as is, problems may result.

Please note: The 2.73 multiplier is based upon using PHY_DELAY for delay. We already noted that
considerations other than resync delays may establish delay. Are these other considerations covered under
the definition of PHY_DELAY as “Worst-case repeater delay”.?

