
INTERRUPTS ON RESUME
98-019r0

Dave Scott
davidx_j_scott@ccm.intel.com

There appears to be general agreement that the generation of interrupts during resume is
broken in two places. One is in the case of a resume command and the other is in the case
of a fault. The problem is that an interrupt could be generated with no change in a
port's connected, bias, fault or disabled bits. The upper layers would not have any
indication of which port generated the interrupt. The following are the recommended
changes to fix these two problems.

Recommended Changes to Table 6-2, Draft 1.5

Fault 1 rw 0 Set to one if an error is detected during a suspend or resume operation. Clearing this bit,
clears both the resume and suspend error.A write of one to this bit clears it to zero.

Recommended Changes to Table 7-17, Draft 1.5

boolean resume_fault[NPORT]; // Set when its peer port does not participate in resume.
boolean suspend_fault[NPORT]; // Set when its peer port does not participate in suspend.

(Continued on the next page)

P0: Disconnected

PORT SUSPEND/RESUME STATE DIAGRAM
Recommend Changes to Figure 7-20, Draft 1.5

P1:Resume
resume_actions()

P2:Active

P5:Suspended
suspended_actions()

P6:Disabled
disabled_actions()

P3:Suspend Initiator
suspend_initiator_actions()

P4:Suspend Target
suspend_target_actions()

fault[i] = FALSE

P5:P0 !connected[i]

P5:P1 connected[i] && (resume[i] || (!suspend_fault[i] && bias[i]))

P1:P2 bias[i] && !fault[i]

P2:P4 bias[i] && (portR(i) == RX_SUSPEND
|| portR(i) == RX_DISABLE_NOTIFY)

P2:P3 !bias[i] || (bias[i] && suspend[i] && signaled)

All:P6 disabled[i] || (disable_notify[i] && signaled)

P1:P5 fault[i]

active[i] = TRUE

active[i] = FALSE

active[i] = FALSE

P6:P5 connected[i]

active[i] = FALSE
P6:P0 !connected[i] && !disabled[i]

fault[i] = FALSE

P6:P5 connected[i] && !disabled[i]

fault[i] = FALSE

P5:P5 !bias[i] && suspend_fault[i]

fault[i] = FALSE

fault[i] = FALSE

Recommended Changes to Clause 7.10.4.1, Draft 1.5

Transition P1:P2. If the PHY port is both connected, did not fault during the resume handshake and observes TpBias, it
transitions to the active state.
Transition P1:P5. A resuming PHY port that remains connected to its peer PHY port but fails to observe TpBias faults
during the resume handshake transitions to the suspended state. The fault condition is cleared so that subsequent detection
of TpBias may cause the port to resume.
Transition P5:P1. Either of two conditions cause a suspended PHY port to transition to the resuming state: a) a nonzero
value for the port’s resume variable or b) the detection of bias if the port’s has not faulted during the preceding suspend
transactionFault bit is zero. A port’s resume variable may be set indirectly as the result of the resumption of other PHY
ports.
Transition P5:P5. If the port transitioned from the active state toentered the suspended state in a faulted condition (i.e.,
TpBias was still present), the fault is cleared if and when TpBias is removed by the peer PHY.

(Continued on the next page)

Recommended Changes to Table 7-32, Draft 1.5

resume_actions(int i) {
while (suspend_in_progress()) // Let any other suspensions complete

; // (we’ll resume those ports)
connect_timer = 0;

 if ((int_enable[i] || resume_int) && !port_event) {
 port_event = TRUE;
 if (link_active && LPS)
 PH_EVENT.indication(INTERRUPT);
 else
 PH_EVENT.indication(LINK_ON);
 }

connect_detect_valid[i] = FALSE; // Bias renders connect detect circuit useless
tpBias(i, 1); // Generate TpBias
if (resume[i] == 0 && !boundary_node)

for (j = 0; j++; j < NPORT)
if (!active[j] && !disabled[j] && connected[j])

resume[j] = TRUE; // Resume all other suspended ports
else

resume[i] = TRUE; // Guarantee resume_in_progress() returns TRUE
while (((connect_timer < BIAS_HANDSHAKE) && !bias[i]) || bus_initialize_active)

; // Wait for peer PHY to generate TpBias
resume_fault[i] = ~bias[i]; // Resume attempt failed if TpBias is absent

 if (resume_fault[i])
activate_connect_detect(i, 0); // restore usefulness of connect detect circuit

 else { // Connection restored to active state
 if ((int_enable[i] || resume_int) && !port_event) {
 // Notify LINK of port going active soon
 port_event = TRUE;
 if (link_active && LPS)
 PH_EVENT.indication(INTERRUPT);
 else
 PH_EVENT.indication(LINK_ON);
 if (bias[i]) { // Connection restored to active state?

while ((connect_timer < 3 * RESET_DETECT) && !bus_initialize_active)
;

if (!bus_initialize_active) { // No other node initiated reset?
if (boundary_node) // Can we arbitrate?

isbr = TRUE; // Yes, don’t wait any longer
else {

while ((connect_timer < 7 * RESET_DETECT) && !bus_initialize_active)
; // Let’s wait a little longer...

if (!bus_initialize_active)
ibr = TRUE; // Sigh! We’ll have to use long reset

}
}

}
}

 fault[i] = ~bias[i]; // Resume attempt failed if TpBias is absent
 if (fault[i]) // If so, restore usefulness of connect detect circuit
 activate_connect_detect(i, 0);

resume[i] = FALSE; // Resume attempt complete
}

void suspend_initiator_actions(int i) {
connect_timer = 0; // Used to debounce bias or for bias handshake
if (!suspend[i]) { // Unexpected loss of bias?

suspend[i] = TRUE; // Insure suspend_in_progress() returns TRUE
if (child[i]) // Yes, parent still connected?

isbr = TRUE; // Arbitrate for short reset
else

ibr = TRUE; // Transition to R0 for reset
while (connect_timer < BIAS_DEBOUNCE)

; // Time for bias to stabilize
}
while ((connect_timer < BIAS_HANDSHAKE) && bias[i])

; // Wait for suspend target to deassert bias
suspend_fault[i] = bias[i]); // Suspend handshake refused by target?
activate_connect_detect(i, BIAS_HANDSHAKE); // Also guarantees handshake timing

}

