
IEEE p1394a ballot review submission.
Dr. David V. James 11

From: Dr. David V. James
Email: davej@lsi.sel.sony.com
Phone: +1.408.955.6295

To: p1394a Ballot Response Committee
Data: February 2, 1999
RE: BusyA/B retry, Document #99-002r0

Attached is a proposal for revisions of the A/B retry protocols, which is believed to fix perceived problems
with the existing 1394-1995 specification. At the last meeting, I accepted the action item of generating this
type of proposal, with the assistance of Farrell Ostler and Jerry Hauck.

Farrell and I ended up generating this proposal, after several days of iterative designs. To our belief, it fulfills
the requirements of Jerry Hauck.

However, Jerry was unavailable during this time and has therefore not approved this draft. To expedite the
process, we are posting this draft for general BRC review.

 DVJ

February 2, 1999
P1394a/D99-002r0 A/B RETRY PROTOCOL

IEEE p1394a ballot review submission.
12 Dr. David V. James

1. Congestion management

1.1 Receive-queue reservations

1.1.1 Receive-queue reservations

To ensure forward progress, fair arbitration protocols and fair acceptance protocols are necessary. Fair
arbitration protocols allow each nodes to transmit packets; fair acceptance protocols ensures that transmitted
packets will eventually be accepted, rather than busied. Acceptance protocol fairness is based on reserving
future queue space to older sets of requests, where the age of a request is based on the time of its initial retry.

Allocation reservations have timeouts, so that the reservation can be reclaimed in the absence of retries.
Reservation timeouts may occur when an active node is reset, when transmission errors corrupt the packet
header, or if the packet can’t be transmitted before its time-of-death is reached. The minimal interval
between retries is specified, to avoid falsely triggering one of these missing-retry timeouts.

For fairness, each producer shall eventually tag its oldest request and its oldest response, with a reservation-
requested label. A high performance producer may tag multiple requests (or responses) with reservation-
requested labels, if each of these is directed to a different consumer.

The basis of the reservation protocols is as follows:

1) Age labels. The producer initially labels its oldest retries with a reservation-requested retry_1 label;
newer requests are labeled with a retry_X label.

2) Assignment. Reservations are assigned to retry_1 packets, by returning an ack_busy_A or
ack_busy_B label.

3) Servicing. The oldest of the retry_A/retry_B packet retries are allowed to consume queue space
while other are busied.

February 2, 1999
PROPOSED REVISION P1394a/D99-002r0

IEEE p1394a ballot review submission.
Dr. David V. James 13

1.2 Producer reservation request

The producer’s handling of transmission labels is specified by the state machine of table 1. Although not
listed in this table, the producer shall retry a previously busied subaction with no more than AC intervening
arbitration gaps.

Row 1: Reservation assignments are discarded during a bus reset.

Row 2: The packet is initially sent with a retry_X indication.

Row 3: The packet is no longer retried when its time-of-death timeout has been exceeded or when a busy
acknowledge (ack_busy_X, ack_busy_A, or ack_busyB) is not returned.

Row 4: The oldest packet changes from retry_X for retry_1 when busied for the first time. The intent is to
request a reservation on the next retry.

Row 5: The oldest packet inherits the ack_busy_A acknowledge, accepting this reservation assignment.

Row 6: The oldest packet inherits the ack_busy_B acknowledge, accepting this reservation assignment.

Row 7: The newer packets continue to retry with their initial retry_X label.

Table 1—State transition table for reservation assertion

inputs

R
ow

results

old state ack-returned condition new state transmitted
send.rt

— Reset completion 1 DONE —

DONE newer packet available 2 SEND retry_X

SEND TimeOfDeath()||!AckBusy(); 3 DONE —

oldest&&ack_busy_X 4 — retry_1

oldest&&ack_busy_A 5 — retry_A

oldest&&ack_busy_B 6 — retry_B

!oldest&&AckBusy(); 7 — retry_X

February 2, 1999
P1394a/D99-002r0 A/B RETRY PROTOCOL

IEEE p1394a ballot review submission.
14 Dr. David V. James

1.3 Consumer reservation filters

Revisions to the inbound busyA/B retry state machine (page 191, 1394-1995) are proposed, for the following
reasons:

1) No resynchronization. The existing protocols doesn’t automatically resync when producer and con-
sumer have inconsistent reservation histories. State machines need to remain wait for a retry-timeout
so that any outstanding (but unaccounted for) reservations will be serviced.

2) Retry timeouts. The retry timeout for the producer (once every 4 arbitration intervals) is inconsistent
with that of the consumer (once every 3 arbitration intervals) based on some interpretations.

3) No counts. Its unclear how to extend the current specification to incorporate reservation counts.

To fix these known problems and clarify the definition, new inbound state machines are proposed for
p1394a. Both of these are thought to be correct and complete. Option A is preferred by the authors of these
proposals (Farrell Ostler and David James), but option B is more consistent with past nomenclature and may
therefore be more acceptable to reviewers. We propose to post both to the reflector, to solicit comments from
a broader audience.

February 2, 1999
PROPOSED REVISION P1394a/D99-002r0

IEEE p1394a ballot review submission.
Dr. David V. James 15

1.3.1 Inbound reservation filter, design A

This reservation filter has two states: USE_A and USE_B. The ‘A’ and ‘B’ reservations have precedence
when in the USE_A and USE_B states respectively, as specified in table 2. Acceptance filters remain in
these states for a minimum of four arbitration intervals, so that any outstanding (but unaccounted for)
reservations will be serviced.

Table 2—Consumer reservation filter, design A

old
state condition

R
ow action ack new

state

— Reset completion 1 ra=rb=ac=0 — USE_A

USE_A Queue()!=FULL&&send.rt==retry_A 2 Sub(ra,RC) AckDone() USE_A

Queue()!=FULL&&ra==0&&send.rt==retry_B 3 Sub(rb,RC)

Queue()!=FULL&&ra==0&&send.rt==retry_1 4 —

Queue()!=FULL&&ra==0&&send.rt==retry_X 5

Queue()==FULL&&ra!=0&&send.rt==retry_A 6 ac=0 ack_busy_A

Queue()==FULL&&ra==0&&send.rt==retry_A 7 ac=0,Add(ra)

!(Queue()!=FULL&&ra==0)&&send.rt=retry_B 8 — ack_busy_B

!(Queue()!=FULL&&ra==0)&&send.rt=retry_1 9 Add(rb,RC)

!(Queue()!=FULL&&ra==0)&&send.rt==retry_X 10 — ack_busy_X

ArbResetGap&&ac!=AC 11 ac+= 1; —

ArbResetGap&&ac==AC 12 ac=1,ra=0; — USE_B

USE_B Queue()!=FULL&&send.rt==retry_B 13 Sub(rb,RC) AckDone() USE_B

Queue()!=FULL&&rb==0&&send.rt==retry_A 14 Sub(ra,RC)

Queue()!=FULL&&rb==0&&send.rt==retry_1 15 —

Queue()!=FULL&&rb==0&&send.rt==retry_X 16

Queue()==FULL&&rb!=0&&send.rt=retry_B 17 ac=0 ack_busy_B

Queue()==FULL&&rb==0&&send.rt=retry_B 18 ac=0,Add(rb)

!(Queue()!=FULL&&rb==0)&&send.rt=retry_A 19 — ack_busy_A

!(Queue()!=FULL&&rb==0)&&send.rt=retry_1 20 Add(ra,RC)

!(Queue()!=FULL&&rb==0)&&send.rt==retry_X 21 — ack_busy_X

ArbResetGap&&ac!=AC 22 ac+= 1; —

ArbResetGap&&ac==AC 23 ac=1,rb=0; — USE_A

Notes:
#define AC 4 // Reservation timeout interval
#define Add(a,b) (a+= (a!=b))
#define Sub(a,b) (a-= (a!=b&&a!=0))
// RC is implementation dependent

February 2, 1999
P1394a/D99-002r0 A/B RETRY PROTOCOL

IEEE p1394a ballot review submission.
16 Dr. David V. James

The ac counter counts the number of consecutive arbitration gaps, and is limited by the AC value that
specifies the producer’s worst-case retry delay.

The ra counter counts the number of A reservation assignments; the rb counter counts the number of B
reservation assignments. The RC value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave as though RC were equal to 1.

Row 1: Reservation assignments are discarded during a bus reset.
Row 2, row 13: Current reservation-assigned packets are always accepted.
Row 3, row 14: Later reservation-assigned packets are accepted, if current reservations have been serviced.
Row 4, row 15: Later reservation-requested packets are accepted, if current reservations have been serviced.
Row 5, row 16: Reservationless packets are accepted, if current reservations have been serviced.
Row 6, row 17: A busied current reservation-assigned packet clears the retry timeout counter.
Row 7, row 18: Unexpected current reservation assignments are honored.
Row 8, row 19: Later reservations are busied, while current reservations are outstanding.
Row 9, row 20: When full or reserved, a reservation-requested packets obtains a later reservation.
Row 10, row 21: When full or reserved, a reservationless packets is busied without reservations.
Row 11, row 22: Reservation timeout interval is measured in units of arbitration reset gaps.
Row 12, row 23: Later reservations become current when the reservation timeout is reached.

February 2, 1999
PROPOSED REVISION P1394a/D99-002r0

IEEE p1394a ballot review submission.
Dr. David V. James 17

1.3.2 Inbound reservation filter, design B

This reservation filter has four states, corresponding to the four states in the 1394-1995 specification, as
documented in table 3. Acceptance filters remain in the IRD1 and IRD3 states for a minimum of four
arbitration intervals, so that any outstanding (but unaccounted for) reservations will be serviced.

The ac counter counts the number of consecutive arbitration gaps, and is limited by the AC value that
specifies the producer’s worst-case retry delay.

Table 3—Consumer reservation filter, design B

old state condition

R
ow action ack new state

— Reset completion 1 — — IRD0

IRD0
(accept all

except
retry_B)

Queue()!=FULL&&send.rt==retry_X 2 — AckDone() IRD0

Queue()!=FULL&&send.rt==retry_1 3

Queue()!=FULL&&send.rt==retry_A 4

Queue()==FULL&&send.rt==retry_X 5 — ack_busy_X

send.rt==retry_B 6 — ack_busy_A IRD1

Queue()==FULL&&send.rt==retry_1 7

Queue()==FULL&&send.rt==retry_A 8 ac=0;

IRD1
(accept
retry_A
only)

send.rt==retry_X 9 — ack_busy_X IRD1

send.rt==retry_1 10 — ack_busy_B

send.rt==retry_B 11

Queue()!=FULL&&send.rt==retry_A 12 — AckDone()

Queue()==FULL&&send.rt==retry_A 13 ac=0; ack_busy_A

ArbResetGap&&ac!=AC 14 ac+=1; —

(ArbResetGap&&ac==AC) 15 — — IRD2

IRD2
(accept all

except
retry_A)

Queue()!=FULL&&send.rt==retry_X 16 — AckDone() IRD2

Queue()!=FULL&&send.rt==retry_1 17

Queue()!=FULL&&send.rt==retry_B 18

Queue()==FULL&&send.rt==retry_X 19 — ack_busy_X

send.rt==retry_A 20 — ack_busy_B IRD3

Queue()==FULL&&send.rt==retry_1 21

Queue()==FULL&&send.rt==retry_B 22 ac=0;

IRD3
(accept
retry_B
only)

send.rt==retry_X 23 — ack_busy_X IRD3

send.rt==retry_1 24 — ack_busy_A

send.rt==retry_A 25

Queue()!=FULL&&send.rt==retry_B 26 — AckDone()

Queue()==FULL&&send.rt==retry_B 27 ac=0; ack_busy_B

ArbResetGap&&ac!=AC 28 ac+=1; —

(ArbResetGap&&ac==AC) 29 — — IRD0

Notes:
#define AC 4 // Reservation timeout interval

February 2, 1999
P1394a/D99-002r0 A/B RETRY PROTOCOL

IEEE p1394a ballot review submission.
18 Dr. David V. James

The ra counter counts the number of A reservation assignments; the rb counter counts the number of B
reservation assignments. The RC value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave as though RC were equal to 1.

Row 1: Reservation assignments are discarded during a bus reset.
Row 2, row 16: Reservationless packets are accepted.
Row 3, row 17: Reservation-requested packets are accepted.
Row 4, row 18: Reservation-assigned packets are accepted; reservation count is adjusted.
Row 5, row 19: Reservationless packet is busied, while space is unavailable.
Row 6, row 20: Reservation-missed packets gets current reservation assignment, servicing begins.
Row 7, row 21: Reservation-requested packet gets reservation assignment, servicing begins.
Row 8, row 22: Reservation-assigned packet keep their reservation, servicing begins.
Row 9, row 23: Reservationless packets are busied.
Row 10, row 24: Reservation-requested packet gets reservation assignment, but is busied.
Row 11, row 25: Reservation-assigned packet keeps it later reservation.
Row 12, row 26: Reservation-assigned packets are accepted.
Row 13, row 27: Reservation-assigned packet is busied, when space is unavailable.
Row 14, row 28: Arbitration interval timeout is measured in units of arbitration gaps.
Row 15, row 29: Later reservations become current when the reservation timeout is reached.

