
Proposed A/B retry
This represents a preliminary proposal, subject to change. 11

p1394a Propos al

BRC,

Following is the busyA/B retry protocol clarifications proposed at the Oregon 22Feb98 BRC meeting. My
assumption is that option A and option B will be posted for review. Based on the last meeting, option A may
be incorporated into p1394a, and option B text will be saved for incorporation in a 1394TA white paper.

DVJ
--
All,

As per our 02Feb99 conversation, here is a document to be added to the p1394a list of documents. We
assume there will be appropriate editorial license to integrate the text. I would prefer to have the state
transition remain a table (rather than a stick figure), as I believe its easier to read and maintain.

FYI, opinions on the second option are mixed. Farrell feels it provides a useful reference design; I would just
as soon discard it. However, we both feel (I think) that the first design should be the recommended design.
I'm assuming Farrell will correct me if I have misinterpreted his statements...

DVJ
**** * *************** * **************** * *************** * ************

* Dr . David V. Jame s * Tel : (408) 955-629 5 *

* So ny Research Labo r atories * Fax : (408) 955-518 0 *

* LS I Systems Labora t ory * ema i l: davej@lsi.se l .sony.com *

* 33 00 Zanker Road, M/S SJ-3D3 * dvj@ibm.net (home) *

* Sa n Jose, CA 9513 4 * *

**** * *************** * **************** * *************** * ************

All,

Regarding the "second option", it is believed to be the behavior of an inbound dual-phase node that was
intended to be specified by IEEE 1394-1995. As such, if there is general agreement that it is the right 1394-
1995 model, it can be used by implementors (and their customers) to check the adequacy of pre-1394a
implementations; so it seems it would be good to have it published in some place.

(There was also a version of it that includes the reservation-counting optimization; Dave discovered a weak-
ness in it in that it does not recover as gracefully from a spuriously injected reservation claimed by some
arbitrary sender as does the recommend "first option", which benefits from being designed with reservation
counting in mind -- instead of as an afterthought.)

Regards,
Farrell Ostler

Philips Semiconductors | MS55 | 9201 Pan American Fwy NE | Albuquerque NM 87113
Tel: 505-822-7791 | Fax: 505-822-7836
email: Farrell.Ostler@abq.sc.phili ps.com | seri: ostler@sphp01
--

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
12 This represents a preliminary proposal, subject to change.

1. Congestion management

Revisions to the inbound busyA/B retry state machines (page 191, 1394-1995), and clarifications to the
busyA/B outbound state machines, are proposed for the following reasons:

1) No resynchronization. The existing protocols doesn’t automatically resync when outbound and
inbound state machines have inconsistent reservation histories. State machines need to remain wait
for a retry-timeout so that any outstanding (but unaccounted for) reservations will be serviced.

2) Retry timeouts. The retry timeout for the outbound queue (once every 4 arbitration intervals) is
inconsistent with that of the inbound queue (once every 3 arbitration intervals) based on some
interpretations.

3) No counts. Its unclear how to extend the current specification to incorporate reservation counts.

To fix these known problems and clarify the definition, new inbound state machines are proposed for
p1394a. Both of these are thought to be correct and complete. Option A is preferred by the authors of these
proposals (Farrell Ostler and David James), but option B is more consistent with past nomenclature and may
therefore be more acceptable to reviewers.

1.1 Receive-queue reservations

1.1.1 Receive-queue reservations

To ensure forward progress, fair arbitration protocols and fair acceptance protocols are necessary. Fair
arbitration protocols allow each nodes to transmit packets; fair acceptance protocols ensures that transmitted
packets will eventually be accepted, rather than busied. Acceptance protocol fairness is based on reserving
future queue space to older sets of requests, where the age of a request is based on the time of its initial retry.

Allocation reservations have timeouts, so that the reservation can be reclaimed in the absence of retries.
Reservation timeouts may occur when an active node is reset, when transmission errors corrupt the packet
header, or if the packet can’t be transmitted before its time-of-death is reached. The minimal interval
between retries is specified, to avoid falsely triggering one of these missing-retry timeouts.

For fairness, each outbound queue shall eventually tag its oldest request and its oldest response, with a
reservation-requested label. A high performance outbound queue may tag multiple requests (or responses)
with reservation-requested labels, if each of these is directed to a different target on the local bus.

The basis of the reservation protocols is as follows:

1) Age labels. The outbound queue initially labels its oldest retries with a reservation-requested retry_1
label; newer requests are labeled with a retry_X label.

2) Assignment. Reservations are assigned to retry_1 packets, by returning an ack_busy_A or
ack_busy_B label.

3) Servicing. The oldest of the retry_A/retry_B packet retries are allowed to consume queue space
while others are busied.

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
This represents a preliminary proposal, subject to change. 13

1.2 Outbound reservation request

The outbound queue’s handling of transmission labels is specified by the state machine of table 1. Although
not listed in this table, the outbound queue shall retry a previously busied subaction with no more than AC
intervening arbitration gaps.

Request and response reservations shall be processed independently, so that two packets (the oldest request
and response) can have reservations. The 4 fairness-interval period limit allows outbound queues to
periodically transmit oldest request, oldest response, newer request, and newer response. Sending of newer
subactions,r particularly ones with different destination_ID addresses, reduces the effects of a congested
inbound queue on unrelated traffic.

Row 1: Reservation assignments are discarded during a bus reset.

Row 2: Before being retried, a not known-to-be oldest packet is sent with a retry_X indication.

Row 3: Before being retried, a known-to-be oldest packet is sent with a retry_1 indication.

Row 4: The packet is no longer retried when its time-of-death timeout has been exceeded or when a busy
acknowledge (ack_busy_X, ack_busy_A, or ack_busyB) is not returned.

Row 5: The oldest packet changes from retry_X for retry_1 when busied for the first time. The intent is to
request a reservation on the next retry.

Row 6: The oldest packet inherits the ack_busy_A acknowledge, accepting this reservation assignment.

Row 7: The oldest packet inherits the ack_busy_B acknowledge, accepting this reservation assignment.

Row 8: The newer packets continue to retry with their initial retry_X label.

Table 1—State transition table for reservation assertion

inputs

R
ow

results

old state ack-returned condition transmitted
send.rt new state

— Reset completion 1 — DONE

DONE not necessarily oldest packet available 2 retry_X SEND

known oldest packet available 3 retry_1

SEND TimeOfDeath()||!AckBusy(); 4 — DONE

oldest&&ack_busy_X 5 retry_1 SEND

oldest&&ack_busy_A 6 retry_A

oldest&&ack_busy_B 7 retry_B

!oldest&&AckBusy(); 8 retry_X

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
14 This represents a preliminary proposal, subject to change.

1.3 Inbound reservation filter, option A

The inbound reservation filter has two states: USE_A and USE_B. The ‘A’ and ‘B’ reservations have
precedence when in the USE_A and USE_B states respectively, as specified in table 2. Request and response
packets pass through separate independent reservation filters, to avoid queue-dependency livelocks and
starvation conditions. Reservation filters remain in these states for a minimum of four arbitration intervals,
so that any outstanding (but unaccounted for) reservations will be serviced.

Table 2—Inbound reservation filter, design A

old
state condition

R
ow action ack new

state

— Reset completion 1 ra=rb=ac=0 — USE_A

USE_A Queue()!=FULL&&send.rt==retry_A 2 Sub(ra,RC) AckDone() USE_A

Queue()!=FULL&&ra==0&&send.rt==retry_B 3 Sub(rb,RC)

Queue()!=FULL&&ra==0&&send.rt==retry_1 4 —

Queue()!=FULL&&ra==0&&send.rt==retry_X 5

Queue()==FULL&&ra!=0&&send.rt==retry_A 6 ac=0 ack_busy_A

Queue()==FULL&&ra==0&&send.rt==retry_A 7 ac=0,Add(ra)

!(Queue()!=FULL&&ra==0)&&send.rt=retry_B 8 — ack_busy_B

!(Queue()!=FULL&&ra==0)&&send.rt=retry_1 9 Add(rb,RC)

!(Queue()!=FULL&&ra==0)&&send.rt==retry_X 10 — ack_busy_X

ArbResetGap&&ac!=AC 11 ac+= 1; —

ArbResetGap&&ac==AC 12 ac=1,ra=0; — USE_B

USE_B Queue()!=FULL&&send.rt==retry_B 13 Sub(rb,RC) AckDone() USE_B

Queue()!=FULL&&rb==0&&send.rt==retry_A 14 Sub(ra,RC)

Queue()!=FULL&&rb==0&&send.rt==retry_1 15 —

Queue()!=FULL&&rb==0&&send.rt==retry_X 16

Queue()==FULL&&rb!=0&&send.rt=retry_B 17 ac=0 ack_busy_B

Queue()==FULL&&rb==0&&send.rt=retry_B 18 ac=0,Add(rb)

!(Queue()!=FULL&&rb==0)&&send.rt=retry_A 19 — ack_busy_A

!(Queue()!=FULL&&rb==0)&&send.rt=retry_1 20 Add(ra,RC)

!(Queue()!=FULL&&rb==0)&&send.rt==retry_X 21 — ack_busy_X

ArbResetGap&&ac!=AC 22 ac+= 1; —

ArbResetGap&&ac==AC 23 ac=1,rb=0; — USE_A

Notes:
#define AC 4 // Reservation timeout interval
#define Add(a,b) (a+= (a!=b))
#define Sub(a,b) (a-= (a!=b&&a!=0))
// RC is implementation dependent

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
This represents a preliminary proposal, subject to change. 15

The ac counter counts the number of consecutive arbitration gaps, and is limited by the AC value that
specifies the outbound queue’s worst-case retry delay.

The ra counter counts the number of A reservation assignments; the rb counter counts the number of B
reservation assignments. The RC value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave as though RC were equal to 1.

NOTE—An 8-bit counter is expected to be sufficient to handle the largest number of reservation requests envisioned by
the currently active 1394 related standards.

Row 1: Reservation assignments are discarded during a bus reset.
Row 2, row 13: Current reservation-assigned packets are always accepted.
Row 3, row 14: Later reservation-assigned packets are accepted, if current reservations have been serviced.
Row 4, row 15: Later reservation-requested packets are accepted, if current reservations have been serviced.
Row 5, row 16: Reservationless packets are accepted, if current reservations have been serviced.
Row 6, row 17: A busied current reservation-assigned packet clears the retry timeout counter.
Row 7, row 18: Unexpected current reservation assignments are honored.
Row 8, row 19: Later reservations are busied, while current reservations are outstanding.
Row 9, row 20: When full or reserved, a reservation-requested packets obtains a later reservation.
Row 10, row 21: When full or reserved, a reservationless packets is busied without reservations.
Row 11, row 22: Reservation timeout interval is measured in units of arbitration reset gaps.
Row 12, row 23: Later reservations become current when the reservation timeout is reached.

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
16 This represents a preliminary proposal, subject to change.

1.4 Inbound reservation filter, option B

This reservation filter has four states, corresponding to the four states in the 1394-1995 specification, as
documented in table 3. Acceptance filters remain in the IRD1 and IRD3 states for a minimum of four
arbitration intervals, so that any outstanding (but unaccounted for) reservations will be serviced.

The ac counter counts the number of consecutive arbitration gaps, and is limited by the AC value that
specifies the producer’s worst-case retry delay.

Table 3—Consumer reservation filter, design B

old state condition

R
ow action ack new state

— Reset completion 1 — — IRD0

IRD0
(accept all

except
retry_B)

Queue()!=FULL&&send.rt==retry_X 2 — AckDone() IRD0

Queue()!=FULL&&send.rt==retry_1 3

Queue()!=FULL&&send.rt==retry_A 4

Queue()==FULL&&send.rt==retry_X 5 — ack_busy_X

send.rt==retry_B 6 — ack_busy_A IRD1

Queue()==FULL&&send.rt==retry_1 7

Queue()==FULL&&send.rt==retry_A 8 ac=0;

IRD1
(accept
retry_A
only)

send.rt==retry_X 9 — ack_busy_X IRD1

send.rt==retry_1 10 — ack_busy_B

send.rt==retry_B 11

Queue()!=FULL&&send.rt==retry_A 12 — AckDone()

Queue()==FULL&&send.rt==retry_A 13 ac=0; ack_busy_A

ArbResetGap&&ac!=AC 14 ac+=1; —

(ArbResetGap&&ac==AC) 15 — — IRD2

IRD2
(accept all

except
retry_A)

Queue()!=FULL&&send.rt==retry_X 16 — AckDone() IRD2

Queue()!=FULL&&send.rt==retry_1 17

Queue()!=FULL&&send.rt==retry_B 18

Queue()==FULL&&send.rt==retry_X 19 — ack_busy_X

send.rt==retry_A 20 — ack_busy_B IRD3

Queue()==FULL&&send.rt==retry_1 21

Queue()==FULL&&send.rt==retry_B 22 ac=0;

IRD3
(accept
retry_B
only)

send.rt==retry_X 23 — ack_busy_X IRD3

send.rt==retry_1 24 — ack_busy_A

send.rt==retry_A 25

Queue()!=FULL&&send.rt==retry_B 26 — AckDone()

Queue()==FULL&&send.rt==retry_B 27 ac=0; ack_busy_B

ArbResetGap&&ac!=AC 28 ac+=1; —

(ArbResetGap&&ac==AC) 29 — — IRD0

Notes:
#define AC 4 // Reservation timeout interval

February 22, 1999
p1394a/99-007r0

Proposed A/B retry
This represents a preliminary proposal, subject to change. 17

The ra counter counts the number of A reservation assignments; the rb counter counts the number of B
reservation assignments. The RC value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave as though RC were equal to 1.

Row 1: Reservation assignments are discarded during a bus reset.
Row 2, row 16: Reservationless packets are accepted.
Row 3, row 17: Reservation-requested packets are accepted.
Row 4, row 18: Reservation-assigned packets are accepted; reservation count is adjusted.
Row 5, row 19: Reservationless packet is busied, while space is unavailable.
Row 6, row 20: Reservation-missed packets gets current reservation assignment, servicing begins.
Row 7, row 21: Reservation-requested packet gets reservation assignment, servicing begins.
Row 8, row 22: Reservation-assigned packet keep their reservation, servicing begins.
Row 9, row 23: Reservationless packets are busied.
Row 10, row 24: Reservation-requested packet gets reservation assignment, but is busied.
Row 11, row 25: Reservation-assigned packet keeps it later reservation.
Row 12, row 26: Reservation-assigned packets are accepted.
Row 13, row 27: Reservation-assigned packet is busied, when space is unavailable.
Row 14, row 28: Arbitration interval timeout is measured in units of arbitration gaps.
Row 15, row 29: Later reservations become current when the reservation timeout is reached.

