p1394a Propos al

BRC,

Following is thebusyA/B retry piotocol clarfications proposed &the Oegon 22Feb® BRC meeting. My
assumptia is that gtion A ard option B will be posteddr review. Based a the last meetig, option A may
beincorporated into p1394g and optiam B text will be saved for incoporation in a 13P4TA white paper.

DVJ

All,

As perour 02Feb® conversatian, here is a dcument to be adled to thepl394a list of documents.We
assume there will be propriate editorial license to inegrak the text. | would prefer to have the state
transition reman a table (ather tha a stickfigure), asl believe its easier taead ad mantain.

FYI, opinions on the secahoption are mked.Farell feels it povides a useful ference degn; | would just
as soon discdrit. However, we bothfeel (I think) that thefirst design sbuld be therecommeded desgn.
I'm assuning Farrell will correct neif | have misintepretedhis statements...

DVJ

*kkk * kkkkkkkkkkhhhkhk * kkkkkkkkkkkkkkkk * *

*Dr . DavidV.Jame s *Tel . (408) 955-629 5 *

* S0 ny Research Labo ratories * Fax . (408) 955-518 0 *
*LS | Systems Labora tory * ema i I: davej@lsi.se | .sony.com *
* 33 00 Zanker Road, MS SJ-3D3 * dvi@ibm.net (home) *
*Sa nJose, CA9513 4 * *
*kkk * kkkkkkkkkkhhhkhk * kkkkkkkkkkkkkkkk * *

All,

Regarding the "secod option'; it is believed to be the bdnavior of an inbound dual-phase nodthat was
intended to be spefied by IEEE 139-1995. As sudy, if there is generalgreemet that it is the right 139
1995 model, it can be used by implementors(and their custoners) to check he adeuacy of pre-1394a
implementations; so it seenitswould be gad to have it publishead in someplace.

(There wa also aversion of it thaincludesthe resewation-counting optimization; Dave discovered a we-
nessin it in that it does not reover as graefully from a spuriously injectel resevation claimed bysome
arbitrary sender as des the reeammenrd "first optian", which bendits from beirg desigred with resevation
counting in mind - instead 6as an #erthought.)

Regards,
Farrell Ostler

Philips Semicoductas | MS55]| 9201 Pan American Fwy NE | Albuqueque NM 87113
Tel: 505-822-7791 | Fax: 505-822-7836
email: Farrell.Ostler@dq.sc.ili ps.com | seri: ostler@sphpl

Praposed A/B retry
This represents arpliminary proposal, subjectatcharge. 11

13948/99-00710 February 22, 1999
p -007r

1. Congestion management

Revisions to the inbound busyA/B retry state machines (page 191, 1394-1995), and clarifications to the
busyA/B outbound state machines, are proposed for the following reasons:

1) No resynchronization. The existing protocols doesn't automatically resync when outbound and
inbound state machines have inconsistent reservation histories. State machines need to remain wait
for a retry-timeout so that any outstanding (but unaccounted for) reservations will be serviced.

2) Retry timeouts. The retry timeout for the outbound queue (once every 4 arbitration intervals) is
inconsistent with that of the inbound queue (once every 3 arbitration intervals) based on some
interpretations.

3) No counts. Its unclear how to extend the current specification to incorporate reservation counts.

To fix these known problems and clarify the definition, new inbound state machines are proposed for
pl394a. Both of these are thought to be correct and complete. Option A is preferred by the authors of these
proposals (Farrell Ostler and David James), but option B is more consistent with past nomenclature and may
therefore be more acceptable to reviewers.

1.1 Receive-queue reservations
1.1.1 Receive-queue reservations

To ensure forward progress, fair arbitration protocols and fair acceptance protocols are necessary. Fair

arbitration protocols allow each nodes to transmit packets; fair acceptance protocols ensures that transmitted
packets will eventually be accepted, rather than busied. Acceptance protocol fairness is based on reserving
future queue space to older sets of requests, where the age of a request is based on the time of its initial retry.

Allocation reservations have timeouts, so that the reservation can be reclaimed in the absence of retries.
Reservation timeouts may occur when an active node is reset, when transmission errors corrupt the packet
header, or if the packet can’t be transmitted before its time-of-death is reached. The minimal interval
between retries is specified, to avoid falsely triggering one of these missing-retry timeouts.

For fairness, each outbound queue shall eventually tag its oldest request and its oldest response, with a
reservation-requested label. A high performance outbound queue may tag multiple requests (or responses)
with reservation-requested labels, if each of these is directed to a different target on the local bus.

The basis of the reservation protocols is as follows:

1) Age labels. The outbound queue initially labels its oldest retries with a reservation-requested retry 1
label; newer requests are labeled with a retry_X label.

2) Assignment. Reservations are assigned to retry 1 packets, by returning an ack busy A or
ack_busy B label.

3) Servicing. The oldest of the retry_A/retry B packet retries are allowed to consume queue space
while others are busied.

Proposed A/B retry
12 This represents a preliminary proposal, subject to change.

February 22, 1999
p1394a/99-007r0

1.2 Outbound reservation request

The outbound queue’s handling of transmission labels is specified by the state machine of table 1. Although
not listed in this table, the outbound queue shall retry a previously busied subaction with no more than AC
intervening arbitration gaps.

Table 1—State transition table for reservation assertion

inputs results
3 .
old state ack-returned condition o tra::rqg'.t:ted new state
— Reset completion 1 — DONE
DONE not necessarily oldest packet available 2 retry_X SENQ
known oldest packet available 3 retry 1
SEND TimeOfDeath()||!AckBusy(); 4 — DONE
oldest&&ack_busy X 5 retry_1 SEND
oldest&&ack_busy A 6 retry_A
oldest&&ack busy B 7 retry B
loldest&&AckBusy(); 8 retry_X

Request and response reservations shall be processed independently, so that two packets (the oldest request
and response) can have reservations. The 4 fairness-interval period limit allows outbound queues to
periodically transmit oldest request, oldest response, newer request, and newer response. Sending of newer
subactions,r particularly ones with different destination_ID addresses, reduces the effects of a congested
inbound queue on unrelated traffic.

Row 1: Reservation assignments are discarded during a bus reset.
Row 2: Before being retried, a not known-to-be oldest packet is sent with a retry_X indication.
Row 3: Before being retried, a known-to-be oldest packet is sent with a retry_1 indication.

Row 4: The packet is no longer retried when its time-of-death timeout has been exceeded or when a busy
acknowledge (ack_busy X, ack_busy_ A, or ack busyB) is not returned.

Row 5: The oldest packet changes from retry X for retry_1 when busied for the first time. The intent is to
request a reservation on the next retry.

Row 6: The oldest packet inherits the ack_busy A acknowledge, accepting this reservation assignment.
Row 7: The oldest packet inherits the ack_busy B acknowledge, accepting this reservation assignment.

Row 8: The newer packets continue to retry with their initial retry_X label.

Proposed A/B retry
This represents a preliminary proposal, subject to change. 13

13948/99-00710 February 22, 1999
p -007r

1.3 Inbound reservation filter, option A

The inbound reservation filter has two states: USE_A and USE_B. The ‘A and ‘B’ reservations have
precedence when in the USE_A and USE_B states respectively, as specified in table 2. Request and response
packets pass through separate independent reservation filters, to avoid queue-dependency livelocks and
starvation conditions. Reservation filters remain in these states for a minimum of four arbitration intervals,

so that any outstanding (but unaccounted for) reservations will be serviced.

Table 2—Inbound reservation filter, design A

s?::ge condition é action ack :tz\;\é
— Reset completion 1 ra=rb=ac=(— USE ;A

USE_A | Queue()!=FULL&&send.rt==retry A 2 Sub(ra,RC AckDone() USE |A
Queue()!=FULL&&ra==0&&send.rt==retry_B 3 Sub(rb,RC)
Queue()!=FULL&&ra==0&&send.rt==retry_1 4 —
Queue()!=FULL&&ra==0&&send.rt==retry_X 5
Queue()==FULL&&ra!=0&&send.rt==retry_A 6 ac=0 ack _busy A
Queue()==FULL&&ra==0&&send.rt==retry_A 7| ac=0,Add(ra)
I(Queue()!=FULL&&ra==0)&&send.rt=retry B 8 — ack_busy B
I(Queue()!=FULL&&ra==0)&&send.rt=retry_1 9 Add(rb,RC)
I(Queue()!=FULL&&ra==0)&&send.rt==retry_X 10 — ack_busy
ArbResetGap&&ac!=AC 11 ac+=1; —
ArbResetGap&&ac==AC 12 ac=1,ra=0; — USE B

USE_B | Queue()!=FULL&&send.rt==retry B 18 Sub(rb,RC AckDone() USE| B
Queue()!=FULL&&rb==0&&send.rt==retry_A 14 Sub(ra,RC)
Queue()!=FULL&&rb==0&&send.rt==retry_1 15 —
Queue()!=FULL&&rb==0&&send.rt==retry_X 16
Queue()==FULL&&rb!=0&&send.rt=retry_B 17 ac=0 ack_busy B
Queue()==FULL&&rb==0&&send.rt=retry_B 18 ac=0,Add(rh)
I(Queue()!=FULL&&rb==0)&&send.rt=retry_A 19 — ack_busy A
I(Queue()!=FULL&&rb==0)&&send.rt=retry_1 20 Add(ra,RC)
I(Queue()!=FULL&&rb==0)&&send.rt==retry_X 21 — ack _busy
ArbResetGap&&ac!=AC 22 ac+=1; —
ArbResetGap&&ac==AC 23 ac=1,rb=0; — USE_A

Notes:
#define AC 4 // Reservation timeout interval
#define Add(a,b) (a+= (a!=h))
#define Sub(a,b) (a-= (al=b&&a!=0))
/I RC is implementation dependent

Proposed A/B retry
14 This represents a preliminary proposal, subject to change.

February 22, 1999
p1394a/99-007r0

The ac counter counts the number of consecutive arbitration gaps, and is limited BZ thelue that
specifies the outbound queue’s worst-case retry delay.

The ra counter counts the number Afreservation assignments; the counter counts the number Bf
reservation assignments. TH®C value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave aRGheeghequal to 1.

NOTE—An 8-hit counter is expected to be sufficient to handle the largest number of reservation requests envisioned by
the currently active 1394 related standards.

Row 1: Reservation assignments are discarded during a bus reset.

Row 2, row 13:Current reservation-assigned packets are always accepted.

Row 3, row 14:Later reservation-assigned packets are accepted, if current reservations have been serviced.
Row 4, row 15:Later reservation-requested packets are accepted, if current reservations have been serviced.
Row 5, row 16:Reservationless packets are accepted, if current reservations have been serviced.

Row 6, row 17:A busied current reservation-assigned packet clears the retry timeout counter.

Row 7, row 18:Unexpected current reservation assignments are honored.

Row 8, row 19:Later reservations are busied, while current reservations are outstanding.

Row 9, row 20:When full or reserved, a reservation-requested packets obtains a later reservation.

Row 10, row 21:When full or reserved, a reservationless packets is busied without reservations.

Row 11, row 22:Reservation timeout interval is measured in units of arbitration reset gaps.

Row 12, row 23:Later reservations become current when the reservation timeout is reached.

Proposed A/B retry
This represents a preliminary proposal, subject to change. 15

p1394a/99-007r0

1.4 Inbound reservation filter, option B

February 22, 1999

This reservation filter has four states, corresponding to the four states in the 1394-1995 specification, as
documented in table 3. Acceptance filters remain in the IRD1 and IRD3 states for a minimum of four
arbitration intervals, so that any outstanding (but unaccounted for) reservations will be serviced.

Table 3—Consumer reservation filter, design B

old state condition § action ack new state
— Reset completion 1 — — IRDO
IRDO Queue()!=FULL&&send.rt==retry_X 2 — AckDone() IRDO
(ag)fggé?” Queue()!=FULL&&send.rt==retry_1 3
retry_B) | Queue()!=FULL&&send.rt==retry_A 4
Queue()==FULL&&send.rt==retry_X 5 — ack_busy X
send.rt==retry_B 6 — ack_busy A IRD1
Queue()==FULL&&send.rt==retry_1 7
Queue()==FULL&&send.rt==retry_A 8 ac=0;
IRD1 send.rt==retry_X 9 — ack_busy IRD1
r(:tc;;:/eg\t send.rt==retry_1 10 — ack_busy B
only) send.rt==retry_B 11
Queue()!=FULL&&send.rt==retry A 12 — AckDone()
Queue()==FULL&&send.rt==retry_A 13 ac=0; ack_busy |A
ArbResetGap&&ac!=AC 14 ac+=1; —
(ArbResetGap&&ac==AC) 15 — — IRD2
IRD2 Queue()!=FULL&&send.rt==retry_X 16 — AckDone() IRD2
(ag)ffgéf‘” Queue()'=FULL&&send.rt==retry 1 17
retry_A) | Queue()!=FULL&&send.rt==retry_B 18
Queue()==FULL&&send.rt==retry_X 19 — ack_busy X
send.rt==retry_A 20 — ack_busy B IRD3
Queue()==FULL&&send.rt==retry_1 21
Queue()==FULL&&send.rt==retry B 22 ac=0;
IRD3 send.rt==retry_X 23 — ack_busy IRD3
r(gtc;():/egt send.rt==retry_1 24 — ack_busy A
only) send.rt==retry_A 25
Queue()!=FULL&&send.rt==retry B 26 — AckDone(|
Queue()==FULL&&send.rt==retry_B 27 ac=0; ack_busy |B
ArbResetGap&&ac!=AC 28 ac+=1; —
(ArbResetGap&&ac==AC) 29 — — IRDO
Notes:

#define AC 4 // Reservation timeout interval

The ac counter counts the number of consecutive arbitration gaps, and is limited BZ thelue that

specifies the producer’s worst-case retry delay.

16

Proposed A/B retry
This represents a preliminary proposal, subject to change.

February 22, 1999
p1394a/99-007r0

The ra counter counts the number Afreservation assignments; the counter counts the number Bf
reservation assignments. THRC value, that specifies the size of these counters, is implementation
dependent; in the absence of a counter, the state machines shall behave aRGheeghequal to 1.

Row 1: Reservation assignments are discarded during a bus reset.

Row 2, row 16:Reservationless packets are accepted.

Row 3, row 17:Reservation-requested packets are accepted.

Row 4, row 18:Reservation-assigned packets are accepted; reservation count is adjusted.
Row 5, row 19:Reservationless packet is busied, while space is unavailable.

Row 6, row 20:Reservation-missed packets gets current reservation assignment, servicing begins.
Row 7, row 21:Reservation-requested packet gets reservation assignment, servicing begins.
Row 8, row 22:Reservation-assigned packet keep their reservation, servicing begins.

Row 9, row 23:Reservationless packets are busied.

Row 10, row 24:Reservation-requested packet gets reservation assignment, but is busied.
Row 11, row 25:Reservation-assigned packet keeps it later reservation.

Row 12, row 26:Reservation-assigned packets are accepted.

Row 13, row 27:Reservation-assigned packet is busied, when space is unavailable.

Row 14, row 28:Arbitration interval timeout is measured in units of arbitration gaps.

Row 15, row 29:Later reservations become current when the reservation timeout is reached.

Proposed A/B retry
This represents a preliminary proposal, subject to change. 17

