
P1394a/98-009r0

CONGRUENT SOFTWARE, INC.
98 Colorado Avenue
Berkeley, CA 94707
(510) 527-3926
(510) 527-3856 FAX

FROM: Peter Johansson

TO: IEEE P1394a Ballot Response Committee

DATE: March 30, 1999

RE: Subaction dual-phase retry protocol

This proposal is an editorial rework of the contributions made by David James and Farrell Ostler in 99-007r0
after the February BRC meeting. The essential content of their proposal has been placed in a format similar
to that used by IEEE Std 1394-1995. In addition, I discovered that the number of actions in either a state
diagram (this document) or a state transition table (James and Ostler) could be significantly reduced if the
chosen point of view is the retry code received instead of the current preferred retry phase.

Also, I think the earlier IEEE Std 1394-1995 attempt to characterize the outbound behavior as a transaction
layer state machine is misleading: the transaction layer (viewed as a whole) does not participate in the states
previously described. What is really happening, on a packet by packet basis, is the selection of the retry
code, rt, dependent upon the packet’s “age” and the most recently received ack_code.

My editorial efforts in this document do not attempt to capture Farrell’s suggestion that a corrected version
of the 1995 state machine be published in addition to the enhanced state machine contained herein. I
would appreciate feedback from the BRC before undertaking the editorial work. In my opinion, it is prefer-
rable to recommend the newer, cleaner algorithm. Does this impose an unreasonable burden on link design-
ers to validate whether or not their designs meet the requirements of the new state machine?

Last, there is essentially no difference between the outbound retry decision table for single- and dual-phase
retry protocol. I suggest to the BRC that it might be a useful clarification if all of IEEE Std 1394-1995 clause
7.3.5, “Retry protocols”, were replaced and not solely the dual-phase retry protocols described in this docu-
ment. The information in figure 7-3 in the 1995 standard is so minimal that I think it is unnecessary (perhaps
even confusing) to dress it up in the formalism of a state machine; I would recommend replacing it with a
paragraph of text.

High Performance Serial Bus (Supplement) P1394a Draft 2.1x
March 30, 1999

2 This is an unapproved standards draft, subject to change © 1999 IEEE

9.x Subaction dual-phase retry protocol

This clause replaces IEEE Std 1394-1995 clause 7.3.5.2, “Dual-phase retry protocol”, in its entirety. Revision of both the
outbound and inbound state machines are necessary for the following reasons:

— Reservation time limit ambiguities. IEEE Std 1394-1995 specifies that retry reservations shall be held by the in-
tended recipient for four arbitration fairness intervals before cancellation. Unfortunately, the point from which
fairness intervals is measured is not clearly specified. Contemporary link implementations are known to have dif-
ferent (although reasonable) interpretations which are not interoperable.

— No resynchronization. The inbound dual-phase retry state machines in IEEE Std 1394-1995 do not resynchronize
reservation histories (phase and count of outstanding reservations) when discrepancies exist between the outbound
and inbound nodes.

In order to correct these problems and to add an enhancement (the ability to count the number of outstanding reservations
for each phase), this supplement redefines dual-phase retry behavior for both outbound and inbound nodes. The mainte-
nance of reservation counters permits an inbound node to immediately accept subactions that lack a resource reservation
if there are no reservations held for pending subactions.

9.x.1 Outbound subaction retry protocol

The specification in IEEE Std 1394-1995 of outbound retry behavior is somewhat confusing since it implies a transaction
layer state machine when in fact no such state machine exists in the context of the entire transaction layer. More accu-
rately, the transaction layer shall implement a decision table that selects a retry code, rt, each time an asynchronous pri-
mary packet is transmitted. The choice of retry code, specified by table 9-x, depends upon the packet’s history, i.e., both
its “age” and the last acknowledge code received for the subaction.

Request and response retries and their associated reservations shall be processed independently of each other. At any
point in time there may be both an oldest request and an oldest response.

The description of a subaction’s age is not meant to imply the necessity for timers in a link design. When an asynchro-
nous primary packet is available for transmission and there are no subactions awaiting retry, the packet is by definition
the oldest packet and may be transmitted with a retry code of retry_1. When that subaction completes with a terminal
acknowledge code (any acknowledgment, including ack_pending, other than ack_busy_X, ack_busy_A or ack_busy_B),
another subaction awaiting transmission (or retransmission) may be designated oldest. The details as to which other sub-
action is elected oldest are implementation-dependent and are not important to the proper behavior of the retry protocols
so long as the following requirement is observed:

An asynchronous primary packet shall not be transmitted with a retry code of retry_1 so long as a different
subaction of the same type (request or response) once transmitted with a retry code of retry_1 has not yet been
completed with a terminal acknowledge code or been abandoned.

Table 9-x — Outbound subaction retry code decision table

Subaction age
Prior

acknowledge code

Retry code

Single-phase Dual-phase

Oldest

—
retry_X retry_1

ack_busy_X

ack_busy_A — retry_A

ack_busy_B — retry_B

Not oldest

—

retry_Xack_busy_X
ack_busy_A
ack_busy_B

P1394a Draft 2.1x High Performance Serial Bus (Supplement)
March 30, 1999

© 1999 IEEE This is an unapproved standards draft, subject to change 3

Subactions that do not yet have a history, i.e., this is the first time transmission has been initiated, are indicated by the
absence of a prior acknowledge code.

It is not necessary for the node transmitting a subaction to have a priori knowledge as to whether or not the intended
recipient (inbound node) has implemented the single- or dual-phase retry protocol. Designs capable of dual-phase retry
should select the initial retry code, retry_X or retry_1, from the right-hand column in table 9-x while designs that restrict
themselves to single-phase retry use a retry code of retry_X in all cases.

In order for the dual-phase retry protocol to be able to guarantee forward progress, an outbound node should be capable
of retransmission of a subaction within four fairness intervals; this is the period of time for which an inbound node guar-
antees a retry reservation. Although the inbound dual-phase retry protocol state machine resets itself properly if a reserva-
tion is not utilized within this time limit (see X for details), the outbound node may fail to make forward progress if it
loses retry reservations because of delayed retransmission. Fairness intervals are counted from the receipt of the
ack_busy_A or ack_busy_B that granted the reservation; if an outbound node is unable to retransmit the subaction before
four arbitration reset gaps have been observed it may assume that the reservation has been cancelled.

9.x.2 Inbound subaction dual-phase retry protocol

The intended recipient of an asynchronous subaction, request or response, may be unable to accept the packet because of
transient resource limitations: the node is busy. In a simple (single-phase) retry protocol, senders retransmit the subaction
until resources are available or they abandon the transaction. Single-phase retry does not guarantee forward progress
because it makes no attempt to reserve resources for the oldest subactions. The dual-phase protocol described in this
clause reserves resources when congestion is encountered and keeps them reserved for particular subactions identified by
a retry code. As subactions complete, the inbound node resources are once again made available to all subactions, with or
without reservations.

The transaction layer shall allocate resources independently for request and response queues; this is necessary to prevent
interdependent live-locks or starvation conditions. The dual-phase retry protocol specified by this clause shall be sepa-
rately implemented for request and response subactions.

In the description that follows, the size of the reservation counter is implementation-dependent. These counters are
unsigned numbers and shall not be decremented to a value smaller than zero nor incremented to a a value larger than
2n - 1,where n is the size of the counter, in bits. Consequently, C code notation employed in X for the sake of brevity is
not strictly accurate. The expression reservations[i]++ is correctly rendered by reservations[i] +=
(reservations[i] < MAX_RESERVATIONS); in the same vein, reservations[i] -= (reservations[i] > 0) is
the true expression of reservations[i]--.

The dual-phase retry protocol state machine concerns itself solely with nonbroadcast request or response packets received
with both valid format and CRC, i.e., the value of packet status in the LK_DATA.indication shall be GOOD. Transaction
layer responses to packets with different packet status values are not part of the subaction retry protocol and are specified
by IEEE Std 1394-1995.

The name ack_subaction_done refers collectively to any acknowledge code defined by IEEE Std 1394-1995 or this sup-
plement except ack_busy_X, ack_busy_A or ack_busy_B.

High Performance Serial Bus (Supplement) P1394a Draft 2.1x
March 30, 1999

4 This is an unapproved standards draft, subject to change © 1999 IEEE

The state machine transitions are briefly described below.

Figure 9-x — Inbound subaction dual-phase retry state machine

LK_BUS.indication(ARB_RESET_GAP) && reset_gaps < 4
IDR:IDRa

reset_gaps++;

IDRX: Retry X received
LK_DATA.indication(retryX)

IDR:IDRX

IDRX:IDRa
resources available && reservations[preference] == 0

LK_DATA.response(ack_subaction_done)

IDRX:IDRb
resources unavailable || reservations[preference] != 0

LK_DATA.response(ack_busy_X)

TR_CONTROL.request(Reset) ||
TR_CONTROL.request(Initialize)

All:IDR
preference = retry_A;

reservations[retry_A] = 0;
reservations[retry_B] = 0;

reset_gaps = 0

IDRA:IDRc
(resources unavailable || reservations[retry_B] != 0) && preference == B

LK_DATA.response(ack_busy_A)

IDR1: Retry 1 received
LK_DATA.indication(retry_1)

IDR:IDR1

IDR1:IDRa
resources available && reservations[preference] == 0

LK_DATA.response(ack_subaction_done)

IDR1:IDRb
resources unavailable || reservations[preference] != 0

reservations[(preference == retry_A) ? retry_B : retry_A]++;
LK_DATA.response((preference == retry_A) ? ack_busy_B : ack_busy_A)

IDRA: Retry A received
LK_DATA.indication(retry_A)

IDR:IDRA

IDRA:IDRa
resources available && (preference == retry_A || reservations[retry_B] == 0)

reservations[retry_A]--; LK_DATA.response(ack_subaction_done)

IDRA:IDRb
resources unavailable && preference == retry_A

reservations[retry_A] += (reservations[retry_A] == 0);
reset_gaps = 0; LK_DATA.response(ack_busy_A)

IDR: Idle

IDRA:IDRc
(resources unavailable || reservations[retry_A] != 0) && preference == retry_A

LK_DATA.response(ack_busy_B)

IDRB: Retry B received
LK_DATA.indication(retry_B)

IDR:IDRB

IDRB:IDRa
resources available && (preference == retry_B || reservations[retry_A] == 0)

reservations[retry_B]--; LK_DATA.response(ack_subaction_done)

IDRB:IDRb
resources unavailable && preference == retry_B

reservations[retry_B] += (reservations[retry_B] == 0);
reset_gaps = 0; LK_DATA.response(ack_busy_B)

LK_BUS.indication(ARB_RESET_GAP) && reset_gaps == 4
IDR:IDRb

reset_gaps = 1; reservations[preference] = 0;
preference = (preference == retry_A) ? retry_B : retry_A;

P1394a Draft 2.1x High Performance Serial Bus (Supplement)
March 30, 1999

© 1999 IEEE This is an unapproved standards draft, subject to change 5

Transition All:IDR. The receipt of a TR_CONTROL.request with an action of either Reset or Initialize shall cause the
inbound dual-phase retry state machine to set its reservation preference to retry_A and zero all retry counters.

State IDR: Idle. The transaction layer is potentially ready to accept a request or response subaction from the link.
Whether or not the subaction is serviced by the transaction layer will be determined by the availability of resources (such
as FIFO space), outstanding reservation counts and the retry history of the subaction itself.

Transition IDR:IDRa. The end of a fairness interval has been detected, indicated by an arbitration reset gap. If the accu-
mulated count of reset gaps is less than four, the transaction layer shall increment the count..

Transition IDR:IDRb. The end of the last fairness interval available to the outbound node for the retry of a subaction for
which the inbound node granted a reservation. The inbound node abandons all reservations for the currently preferred
retry phase, switches its preference to the opposite retry phase and counts this fairness interval as the first of the four
available to holders of reservations in the now preferred phase.

Transition IDR:IDRX. A LK_DATA.indication has been received from the link with a packet status of GOOD and a
retry code of retry_X.

Transition IDR:IDR1. A LK_DATA.indication has been received from the link with a packet status of GOOD and a
retry code of retry_1.

Transition IDR:IDRA. A LK_DATA.indication has been received from the link with a packet status of GOOD and a
retry code of retry_A.

Transition IDR:IDRB. A LK_DATA.indication has been received from the link with a packet status of GOOD and a
retry code of retry_B.

State IDRX: Retry_X received. The outbound node (originator of the request or response subaction) has not requested a
reservation if resources are unavailable to service the subaction. Attempt to process the subaction so long as resources are
free and not allocated to a different subaction that holds a reservation.

Transition IDRX:IDRa. Resources are available and there are no reservations outstanding for the currently preferred
phase. The transaction layer shall accept the subaction and return an appropriate terminal acknowledge code.

Transition IDRX:IDRb. Resources are unavailable or there are reservations outstanding for the currently preferred
phase. The transaction layer shall refuse the subaction without creating a reservation.

State IDR1: Retry_1 received. The outbound node (originator of the request or response subaction) has requested a res-
ervation if resources are unavailable to service the subaction. Attempt to process the subaction so long as resources are
free and not allocated to a different subaction that holds a reservation. Otherwise, create a reservation in the opposite
phase and indicate the phase of the reservation by means of the acknowledge code returned to the outbound node.

Transition IDR1:IDRa. Resources are available and there are no reservations outstanding for the currently preferred
phase. The transaction layer shall accept the subaction and return an appropriate terminal acknowledge code.

Transition IDR1:IDRb. Resources are unavailable or there are reservations outstanding for the currently preferred phase.
The transaction layer shall refuse the subaction but create a reservation for the opposite phase. The acknowledge code
returned to the outbound node, either ack_busy_A or ack_busy_B, shall indicate the phase of the newly created reserva-
tion.

State IDRA: Retry_A received. The outbound node is attempting retransmission of an earlier request or response subac-
tion for which the inbound node created a reservation. So long as resources are available, the inbound node grants prefer-
ence to reservations earlier created for the current phase. Otherwise, if there are no outstanding reservations for the
current phase, opposite phase retry attempts are serviced as resources permit.

High Performance Serial Bus (Supplement) P1394a Draft 2.1x
March 30, 1999

6 This is an unapproved standards draft, subject to change © 1999 IEEE

Transition IDRA:IDRa. Resources are available and either retry_A is the currently preferred phase or else there are no
reservations outstanding for the opposite phase. The transaction layer shall accept the subaction and return an appropriate
terminal acknowledge code.

Transition IDRA:IDRb. Resources are unavailable and retry_A is the currently preferred phase. If the reservation count
for retry_A is nonzero, there are reservations outstanding for the currently preferred phase. The transaction layer shall
refuse the subaction; the ack_busy_A acknowledge code returned indicates that the outbound node should continue retry
attempts in the same phase. If the retry_A reservation count is zero, the outbound and inbound state machines are out of
synchronization with respect to each other; the inbound dual-phase state machine corrects this by incrementing the reser-
vation count.

Transition IDRA:IDRc. Although a retry code of retry_A was received from the outbound node, the currently preferred
retry phase is for retry_B. If either resources are unavailable or there are retry_B reservations outstanding, the transaction
layer shall refuse the subaction but continue to hold a retry_A reservation for the outbound node.

State IDRB: Retry_B received. The outbound node is attempting retransmission of an earlier request or response subac-
tion for which the inbound node created a reservation. So long as resources are available, the inbound node grants prefer-
ence to reservations earlier created for the current phase. Otherwise, if there are no outstanding reservations for the
current phase, opposite phase retry attempts are serviced as resources permit.

Transition IDRB:IDRa. Resources are available and either retry_B is the currently preferred phase or else there are no
reservations outstanding for the opposite phase. The transaction layer shall accept the subaction and return an appropriate
terminal acknowledge code.

Transition IDRB:IDRb. Resources are unavailable and retry_B is the currently preferred phase. If the reservation count
for retry_B is nonzero, there are reservations outstanding for the currently preferred phase. The transaction layer shall
refuse the subaction; the ack_busy_B acknowledge code returned indicates that the outbound node should continue retry
attempts in the same phase. If the retry_B reservation count is zero, the outbound and inbound state machines are out of
synchronization with respect to each other; the inbound dual-phase state machine corrects this by incrementing the reser-
vation count.

Transition IDRB:IDRc. Although a retry code of retry_B was received from the outbound node, the currently preferred
retry phase is for retry_A. If either resources are unavailable or there are retry_A reservations outstanding, the transaction
layer shall refuse the subaction but continue to hold a retry_B reservation for the outbound node.

