
P1394a Draft 1.2
November 21, 1997

P1394a
Draft Standard for a
High Performance Serial Bus (Supplement)

Sponsor

Microprocessor and Microcomputer Standards Committee
of the
IEEE Computer Society

Not yet Approved by

IEEE Standards Board

Not yet Approved by

American National Standards Institute

Abstract: Supplemental information for a high-speed serial bus that integrates well with most IEEE standard
32-bit and 64-bit parallel buses is specified. It is intended to extend the usefulness of a low-cost interconnect
between external peripherals, IEEE Std 1394-1995. This standard follows the ISO/IEC 13213:1994 Command
and Status Register (CSR) architecture.
Keywords: bus, computers, high-speed serial bus, interconnect

The Institute of Electrical And Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1997 by the Institute of Electrical And Electronics Engineers, Inc.
All rights reserved. Published 1997. Printed in the United States of America.

ISBN x-xxxxx-xxx-x

This is an unapproved IEEE Standards Draft, subject to change. Permission is hereby granted for IEEE Standards Committee participants
to reproduce this document for purposes of IEEE standardization activities, including balloting and coordination. If this document is to be
submitted to ISO or IEC, notification shall be given to the IEEE Copyright Administrator. Permission is also granted for member bodies and
technical committees of ISO and IEC to reproduce this document for purposes of developing a national position. Other entities seeking
permission to reproduce this document for these or other uses must contact the IEEE Standards Department for the appropriate license.
Use of the information contained in this unapproved draft is at your own risk.

ii This is an unapproved standards draft, subject to change © 1997 IEEE

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily
members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject
within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the develop-
ment of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways
to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to
review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with
IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare
appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societ-
ies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in
those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Elec-
trical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for
payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA
01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can
also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying all patents
for which a license may be required by an IEEE standard or for conducting inquiries
into the legal validity or scope of those patents that are brought to its attention.

© 1997 IEEE This is an unapproved standards draft, subject to change iii

Introduction

(This introduction is not a part of IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus (Supplement).)

This standards effort started in 1996 at the request of...

iv This is an unapproved standards draft, subject to change © 1997 IEEE

Patent notice

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered
by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent
rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be
required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought
to its attention.

The patent holder has, however, filed a statement of assurance that it will grant a license under these rights without
compensation or under reasonable rates and nondiscriminatory, reasonable terms and conditions to all applicants desiring
to obtain such a license. The IEEE makes no representation as to the reasonableness of rates and/or terms and conditions
of the license agreement offered by the patent holder. Contact information may be obtained from the IEEE Standards
Department.

Committee membership

The following is a list of voting members of the IEEE P1394a working group at the time of publication.

Peter Johansson, Chair and Editor
Prashant Kanhere, Secretary

The following is a list of other major participants in the IEEE P1394a working group (those that attended at least X work-
ing group meetings since its inception).

Kazuyuki Abe
Richard Baker
Steven Bard
Max Bassler
Joe Bennett
Vilas Bhade
Mike Brown
Jim Busse
Carissa Cheung
Richard Churchill
Claude Cruz
David Doman
Firooz Farhoomand
Lou Fasano
Takahiro Fujimori

John Fuller
Nobuo Furuya
James Gay
John Grant
Eric Hannah
Yasumasa Hasegawa
Jerry Hauck
Joe Herbst
Jack Hollins
Al Kelley
Mark Knecht
David LaFollette
Thang Le
Paul Levy
Hirokazu Mamezaki

Takashi Matsui
Cyrus Momeni
Ganesh Murthy
Karl Nakamura
Bill Northey
Takayuki Nyu
Farrell Ostler
Kugao Ouchi
Bill Prouty
Bradley Saunders
David Scott
James Skidmore
Peter Teng
Colin Whitby-Strevens
David Wooten

Roy Yasoshima
Takao Yasuda
Phil Young

© 1997 IEEE This is an unapproved standards draft, subject to change v

The following persons served on the ballot response committee:

The following persons were members of the balloting group:

If the IEEE Standards Board approves this draft standard, it might have the following membership:

E. G. “Al” Kiener, Chair Donald C. Loughry, Vice Chair
Andrew G. Salem, Secretary

Gilles A. Baril
Clyde R. Camp
Joseph A. Cannatelli
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Donald N. Heirman
Richard J. Holleman

Jim Isaak
Ben C. Johnson
Sonny Kasturi
Lorraine C. Kevra
Ivor N. Knight
Joseph L. Koepfinger*
D. N. “Jim” Logothetis
L. Bruce McClung

Marco W. Migliaro
Mary Lou Padgett
John W. Pope
Arthur K. Reilly
Gary S. Robinson
Ingo Rüsch
Chee Kiow Tan
Leonard L. Tripp
Howard L. Wolfman

*Member Emeritus

vi This is an unapproved standards draft, subject to change © 1997 IEEE

Other candiates for inclusion might be the following nonvoting IEEE Standards Board liaisons:

Rochelle Stern
IEEE Standards Project Editor

Satish K. Aggarwal
Steve Sharkey
Robert E. Hebner
Chester C. Taylor

© 1997 IEEE This is an unapproved standards draft, subject to change vii

1. Overview..1

1.1 Scope ..1
1.2 Purpose ...1
1.3 References ..1
1.4 Document organization...2
1.5 Service model ...2
1.6 Document notation..3

2. Definitions and abbreviations... 11

2.1 Conformance glossary .. 11
2.2 Technical glossary .. 11

3. Overview..15

4. Alternative cable media attachment specification ..17

4.1 Connectors ..17
4.2 Cables ...23
4.3 Connector and cable assembly performance criteria...24
4.4 Signal propagation performance criteria ...32

5. PHY/Link interface specification ...35

5.1 Operation ..37
5.2 Link requests ..38
5.3 Status ..45
5.4 Transmit..46
5.5 Receive ...48
5.6 Electrical characteristics ...48

6. PHY register map ...55

6.1 PHY register map (cable environment)...55
6.2 PHY register map (backplane environment) ...60
6.3 Integrated link and PHY ...61

7. Cable physical layer performance enhancement specifications ..63

7.1 Cable topology..63
7.2 Cable power and ground ...64
7.3 Data signal rise and fall times...65
7.4 Cable PHY packets ...66
7.5 Cable PHY line states ...69
7.6 Cable PHY timing constants ...70
7.7 Node variables ..71
7.8 Port variables ..72
7.9 Cable physical layer operation..72
7.10 Port disable ...94

8. Asynchronous streams..97

8.1 Asynchronous stream packet format ...98
8.2 Loose vs. strict isochronous..99

viii This is an unapproved standards draft, subject to change © 1997 IEEE

9. Clarifications and corrigenda ...101

9.1 Cycle start...101
9.2 Read response for data block ..101
9.3 Maximum isochronous data payload ..102
9.4 Transaction codes (tcode) ...102
9.5 Response codes (rcode) ..103
9.6 Tag ..104
9.7 Acknowledge codes (ack_code) ...105
9.8 Priority arbitration for response packets ...106
9.9 Transaction layer services...106
9.10 Serial Bus control request (SB_CONTROL.request)..108
9.11 Serial Bus event indication (SB_EVENT.indication)..108
9.12 NODE_IDS register..108
9.13 SPLIT_TIMEOUT register ...109
9.14 Command reset effects.. 110
9.15 PRIORITY_BUDGET register ... 110
9.16 Unit registers .. 112
9.17 Configuration ROM Bus_Info_Block... 112
9.18 Node_Unique_ID.. 114
9.19 Determination of the bus manager .. 114
9.20 Gap count optimization... 114
9.21 Automatic activation of the cycle master.. 115
9.22 Isochronous period too long ... 115
9.23 Abdication by the bus manager... 115
9.24 Internal device physical interface ... 117
9.25 Transaction integrity safeguards ... 117

© 1997 IEEE This is an unapproved standards draft, subject to change ix

Figure 1-1— Service model ..3
Figure 1-2— Bit and byte ordering ...4
Figure 1-3— Example packet format ..5
Figure 1-4— State machine example ..6
Figure 1-5— CSR format specification (example) ..7
Figure 1-6— Reserved CSR field behavior ...9
Figure 4-1 — Plug body ..18
Figure 4-2 — Plug section details ...18
Figure 4-3 — Connector socket interface ..19
Figure 4-4 — Socket cross-section A–A ...20
Figure 4-5 — Cross-section of plug and socket contacts ..20
Figure 4-6 — Socket position when mounted on a printed circuit board ..21
Figure 4-7 — Flat surface mount printed circuit board connector footprint ..22
Figure 4-8 — Flat through-hole mount printed circuit board connector footprint ...22
Figure 4-9 — Cable material construction example (for reference only) ..23
Figure 4-10 — Cable assembly and schematic (standard to alternate connector) ..24
Figure 4-11— Cable assembly and schematic (alternate connectors) ..24
Figure 4-12 — Shield and contact resistance measuring points ..29
Figure 4-13 — Fixture for cable flex test ..32
Figure 5-1 — Discrete PHY/link interface ..35
Figure 5-2 — LPS timing (isolated interface) ...36
Figure 5-3 — PHY/link interface reset via LPS ..37
Figure 5-4 — LReq and Ctl timings ..38
Figure 5-5 — Status timing ...45
Figure 5-6 — Transmit timing ..47
Figure 5-7 — Receive timing ..48
Figure 5-8 — Signal levels for rise and fall times ...49
Figure 5-9 — PHY to link transfer waveform at the PHY ..50
Figure 5-10 — Link to PHY transfer waveform at the PHY ...50
Figure 5-11 — PHY to link transfer waveform at the link ..51
Figure 5-12 — Link to PHY transfer waveform at the link ...51
Figure 5-13 — Link to PHY delay timing ...52
Figure 6-1 — Extended PHY register map for the cable environment ..55
Figure 6-2 — PHY register page 0: Port Status page ..57
Figure 6-3 — PHY register page 1: Vendor Identification page ..59
Figure 6-4 — PHY register map for the backplane environment ..60
Figure 7-1 — Node power interface for POWER_CLASS one, two or three ..64
Figure 7-2 — Self-ID packet formats ..66
Figure 7-3 — Link-on packet format ..68
Figure 7-4 — PHY configuration packet format ...68
Figure 7-5 — Ping packet format ..69
Figure 7-6 — Cable physical layer architecture ..73
Figure 7-7 — Bus reset state machine ...79
Figure 7-8 — Self-ID state machine ...83
Figure 7-9 — Cable arbitration state machine ...88
Figure 7-10 — Port disable logic ..95
Figure 8-1 — Asynchronous stream packet format ...98
Figure 9-1— Cycle start packet format ...101
Figure 9-2— NODE_IDS format ..109
Figure 9-3— SPLIT_TIMEOUT format ... 110
Figure 9-4— PRIORITY_BUDGET format .. 111
Figure 9-5— Bus_Info_Block format ...113
Figure 9-6— STATE_CLEAR.bus_depend field ... 116
Figure A-1 — AC power supply with ground ...119

x This is an unapproved standards draft, subject to change © 1997 IEEE

Table 1-1— Size notation examples ...3
Table 1-2— C code operators summary ...5
Table 1-3— Additional C data types ...6
Table 1-4— Register definition fields ...8
Table 1-5— Read value fields ...8
Table 1-6— Write value fields ..8
Table 1-7— Summary of lock functions ..9
Table 4-1 — Connector socket signal assignment ...19
Table 4-2 — Performance group A ...25
Table 4-3 — Performance group B ...26
Table 4-4 — Performance group C ..27
Table 4-5 — Performance group D ..28
Table 4-6 — Performance group E ...30
Table 4-7 — Performance group F ...31
Table 4-8 — Performance group G ..31
Table 5-1 — PHY/link signal description ..35
Table 5-2 — LPS timing parameters ..36
Table 5-3 — Ctl[0:1] when PHY is driving ...38
Table 5-4 — Ctl[0:1] when the link is driving (upon a grant from the PHY) ..38
Table 5-5 — Bus request format for cable environment ..38
Table 5-6 — Bus request format for backplane environment ...39
Table 5-7 — Register read request format ...39
Table 5-8 — Register write request format ...39
Table 5-9 — Acceleration control request format ...39
Table 5-10 — Request type field ..40
Table 5-11 — Request speed field ..40
Table 5-12 — Link request effects on PHY variables ..40
Table 5-13 — Link rules to initiate a request on LReq ..42
Table 5-14 — PHY disposition of link request ..43
Table 5-15 — Status bits ..45
Table 5-16 — Speed code signaling ..48
Table 5-17 — TTL DC specifications for direct PHY/link interface ..49
Table 5-18 — AC timing parameters ...50
Table 5-19 — AC timing parameters at the PHY ...50
Table 5-20 — AC timing parameters at the link ...51
Table 5-21 — Link to PHY delay timing parameters ..53
Table 6-1 — PHY register fields for the cable environment ..55
Table 6-2 — PHY register Port Status page fields ...58
Table 6-3 — PHY register Vendor Identification page fields ...59
Table 6-4 — PHY register fields for the backplane environment ..60
Table 7-1 — Cable power source requirements ...64
Table 7-2 — Output rise and fall times ...65
Table 7-3 — Self-ID packet fields ...67
Table 7-4 — Link-on packet fields ...68
Table 7-5 — PHY configuration packet fields ...69
Table 7-6 — Ping packet fields ..69
Table 7-7 — Cable PHY received arbitration line states ..69
Table 7-8 — Cable PHY timing constants ...70
Table 7-9 — Node variables ...71
Table 7-10 — Port variables ...72
Table 7-11 — Cable PHY code definitions ...74
Table 7-12 — Cable PHY packet definitions ...75
Table 7-13 — Data transmit actions ...76
Table 7-14 — Start data transmit actions ..76
Table 7-15 — Stop data transmit actions ..77

© 1997 IEEE This is an unapproved standards draft, subject to change xi

Table 7-16 — Data reception and repeat actions (Sheet 1 of 2) ..77
Table 7-17 — Start data reception and repeat actions (Sheet 1 of 2) ...78
Table 7-18 — Bus reset actions and conditions (Sheet 1 of 3) ..80
Table 7-19 — Self ID actions and conditions (Sheet 1 of 3) ..85
Table 7-20 — Normal arbitration actions and conditions (Sheet 1 of 3) ...90
Table 7-21 — Receive actions and conditions (Sheet 1 of 2) ..92
Table 7-22 — Transmit actions and conditions (Sheet 1 of 2) ..93
Table 8-1— Maximum data block payload for asynchronous primary packets ..98
Table 9-1— Maximum payload for isochronous stream packets ..102
Table 9-2— Transaction code encoding ...102
Table 9-3— Response code encoding ..103
Table 9-4— Tag field encoding ...104
Table 9-5— Acknowledge codes ..105
Table 9-6— Request subactions eligible for priority asynchronous arbitration .. 111
Table 9-7— Serial Bus-dependent registers in initial units space ..112
Table 9-8— Encoding of max_rec field ... 113

xii This is an unapproved standards draft, subject to change © 1997 IEEE

© 1997 IEEE This is an unapproved standards draft, subject to change 1

P1394a
Draft Standard for a
High Performance Serial Bus (Supplement)

1. Overview

1.1 Scope

This is a full-use standard whose scope is to provide a supplement to IEEE Std 1394-1995 that defines or clarifies features
and mechanisms that facilitate management of Serial Bus resources, at reconfiguration or during normal operation, and
that defines alternate cables and connectors that may be needed for specialized applications.

The following are included in this supplement:

a) Cables and connectors for a 4-pin variant (from the 6-pin already standardized);

b) Standardization of the PHY/LINK interface, which at present is an informative annex to the existing standard;

c) Performance enhancements to the PHY layer that are interoperable with the existing standard, e.g., a method to
shorten the arbitration delay when the last observed Serial Bus activity is an acknowledge packet;

d) A redefinition of the isochronous data packet, transaction code A16, to permit its use in either the asynchronous or
isochronous periods;

e) More stringent requirements on the power to be supplied by a cable power source and a clarification of electrical
isolation requirements;

f) Miscellaneous corrigenda to the existing standard.

The preceding are arranged in no particular order.

1.2 Purpose

Experience with Serial Bus has revealed some areas in which additional features or improvements may result in better
performance or usability. This supplement to IEEE Std 1394-1995 reflects their consideration by a variety of users and
their refinement into generally useful facilities or features.

1.3 References

This standard shall be used in conjunction with the following publications. When the following publications are super-
seded by an approved revision, the revision shall apply.

ANSI/EIA-364-B-90, Electrical Connector Test Procedures Including Environmental Classifications.1

2 This is an unapproved standards draft, subject to change © 1997 IEEE

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 9899: 1990, Programming languages—C.2

ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Edition], Information technology—Microprocessor systems—Control and
Status Registers (CSR) Architecture for microcomputer buses.

This standard shall also be used in conjunction with the following publications under development. When approved as a
standard, the approved version shall apply.

IEEE P1394b, Draft Standard for a High Performance Serial Bus (Supplement)

IEC 61883/FDIS, Digital Interface for Consumer Electronic AV Equipment

1.4 Document organization

This standard contains this overview, a list of definitions, an informative summary description, sections of technical spec-
ification and application annexes. The new reader should read the informative summary and the sections that precede it
before the remainder of the document.

1.5 Service model

IEEE Std 1394-1995 and this supplement both use a protocol model with multiple layers. Each layer provides services to
the next higher layer and to Serial Bus management. These services are abstractions of a possible implementation; an
actual implementation may be significantly different and still meet all the requirements. The method by which these
services are communicated between the layers is not defined by this standard. Four types of service are defined by this
standard:

a) Request service. A request service is a communication from a layer to an adjacent layer to request some action. A
request may also communicate parameters that may or may not be associated with an action. A request may or
may not be confirmed. A data transfer request usually triggers a corresponding indication on peer node(s). (Since
broadcast addressing is supported on the Serial Bus, it is possible for the request to trigger a corresponding
indication on multiple nodes.)

b) Indication service. An indication service is a communication from a layer to an adjacent layer to indicate a change
of state or other event detected by the originating layer. An indication may also communicate parameters that are
associated with the change of state or event. Indications are not necessarily triggered by requests; an indication
may or may not be responded to by a response. A data transfer indication is originally caused by a corresponding
request on a peer node.

c) Response service. A response service is a communication from a layer to an adjacent layer in response to an
indication; a response is always associated with an indication. A response may communicate parameters that
indicate its type. A data transfer response usually triggers a corresponding confirmation on a peer node.

d) Confirmation service. A confirmation service is a communication from a layer to an adjacent layer to confirm a
request service; a confirmation is always associated with a request. A confirmation may communicate parameters
that indicate the completion status of the request or that indicate other status. For data transfer requests, the
confirmation may be caused by a corresponding response on a peer node.

1 EIA publications are available from Global Engineering, 1990 M Street NW, Suite 400, Washington, DC, 20036, USA.
2 ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,

Switzerland/Suisse. ISO publications are also available in the United States from the Sales Department, American National Standards
Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.

© 1997 IEEE This is an unapproved standards draft, subject to change 3

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

If all four service types exist, they are related as shown by the following figure:

1.6 Document notation

1.6.1 Mechanical notation

All mechanical drawings in this document use millimeters as the standard unit and follow ANSI Y14.2 and ANSI Y14.5-
1982 formats.

1.6.2 Signal naming

All electrical signals are shown in all uppercase characters and active-low signals have the suffix “*”. For example: TPA
and TPA* are the normal and inverted signals in a differential pair.

1.6.3 Size notation

The Serial Bus description avoids the terms word, half-word and double-word, which have widely different definitions
depending on the word size of the processor. In their place, the Serial Bus description uses terms established in previous
IEEE bus standards, which are independent of the processor. These terms are illustrated in table 1-1.

Figure 1-1—Service model

Table 1-1—Size notation examples

Size (in bits) 16-bit word notation 32-bit word notation IEEE standard notation
(used in this standard)

4 nibble nibble nibble

8 byte byte byte

16 word half-word doublet

32 long-word word quadlet

64 quad-word double octlet

Requester
Service Layer

Responder

Request

Confirmation

Indication

Response

Service Layer

4 This is an unapproved standards draft, subject to change © 1997 IEEE

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

The Serial Bus uses big-endian ordering for byte addresses within a quadlet and quadlet addresses within an octlet. For
32-bit quadlet registers, byte 0 is always the most significant byte of the register. For a 64-bit quadlet-register pair, the
first quadlet is always the most significant. The field on the left (most significant) is transmitted first; within a field the
most significant (leftmost) bit is also transmitted first. This ordering convention is illustrated in figure 1-2.

Although Serial Bus addresses are defined to be big-endian, their data values may also be processed by little-endian pro-
cessors. To minimize the confusion between conflicting notations, the location and size of bit fields are usually specified
by width, rather than their absolute positions, as is also illustrated in figure 1-2.

When specific bit fields must be used, the CSR Architecture convention of consistent big-endian numbering is used.
Hence, the most significant bit of a quadlet (“msb” in figure 1-2) will be labeled “quad_bit_example[0],” the most signif-
icant byte of a quadlet (“byte_0”) will be labeled “quad_byte_example[0:7],” and the most significant quadlet in an octlet
(“quadlet_high”) will be labeled “dual_quadlet_example[0:31].”

The most significant bit shall be transmitted first for all fields and values defined by this standard, including the data
values read or written to control and status registers (CSRs).

1.6.4 Numerical values

Decimal, hexadecimal and binary numbers are used within this document. For clarity, the decimal numbers are generally
used to represent counts, hexadecimal numbers are used to represent addresses and binary numbers are used to describe
bit patterns within binary fields.

Decimal numbers are represented in their standard 0, 1, 2,... format. Hexadecimal numbers are represented by a string of
one or more hexadecimal (0-9, A-F) digits followed by the subscript 16. Binary numbers are represented by a string of
one or more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented as
“1A 16” or “110102”. In C code examples, hexadecimal numbers have a “0x” prefix and binary numbers have a “0b” pre-
fix, so the decimal number “26” would be represented by “0x1A” or “0b11010.”

Figure 1-2—Bit and byte ordering

bits in a quadlet:

lsbmsb

bytes in a quadlet:

byte_0

quadlet_high quadlet_low

quadlets in an octlet:

Note that specifications use field widths

MSB LSB

byte_1 byte_2 byte_3

quad_bit_example

quad_byte_example

dual_quadlet_example

middle_bits

MSB LSB

1 30 1

8 8 8 8

32 32

© 1997 IEEE This is an unapproved standards draft, subject to change 5

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

1.6.5 Packet formats

Most Serial Bus packets consist of a sequence of quadlets. Packet formats are shown using the style given in figure 1-3.

Fields appear in packet formats with their correct position and widths. Field widths are also stated explicitly in field
descriptions. Bits in a packet are transmitted starting with the upper leftmost bit and finishing with the bottom rightmost
bit. Given the rules in 1.6.3, this means that all fields defined in this standard are sent most significant bit first.

1.6.6 Register formats

All Serial Bus registers are documented in the style used by the CSR Architecture.

1.6.7 C code notation

The conditions and actions of the state machines are formally defined by C code. Although familiar to software engineers,
C code operators are not necessarily obvious to all readers. The meanings of C code operators, arithmetic, relational log-
ical and bitwise, both unary and binary, are summarized in table 1-2.

Figure 1-3—Example packet format

Table 1-2—C code operators summary

Operator Description

+, -, * and / Arithmetic operators for addition, subtraction, multiplication and integer division

% Modulus; x % y produces the remainder when x is divided by y

>, >=, < and <= Relational operators for greater than, greater than or equal, less than and less than or equal

== and != Relational operators for equal and not equal; the assignment operator, =, should not be con-
fused with ==

++ Increment; i++ increments the value of the operand after it is used in the expression while ++i
increments it before it is used in the expression

-- Decrement; post-decrement, i--, and pre-decrement, --i, are permitted.

&& Logical AND

|| Logical OR

! Unary negation; converts a nonzero operand into 0 and a zero operand into 1

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

quadlet 1

quadlet 2

transmitted first

transmitted last

other quadlets

6 This is an unapproved standards draft, subject to change © 1997 IEEE

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

A common construction in C is conditional evaluation, in the form (expr) ? expr1 : expr2. This indicates that if the
logical expression expr evaluates to nonzero value then expr1 is evaluated, otherwise expr2 is evaluated. For example,
x = (q > 5) ? x++ : 14; first evaluates q > 5. If TRUE, x is incremented otherwise x is assigned the value 14.

The descriptions above are casual; if in doubt, the reader is encouraged to consult ISO/IEC 9899:1990.

The C code examples assume the data types listed in table 1-3 are defined.

All C code is to be interpreted as if it could be executed instantaneously. Time elapses only when the following function
is called:

void wait_time(float time);// Wait for time, in seconds, to elapse

1.6.8 State machine notation

All state machines in this standard use the style shown in figure 1-4.

<< Left shift; x << 2 shifts the value of x left by two bit positions and fills the vacated positions
with zero

>> Right shift; vacated bit positions are filled with zero or one according to the data type of the
operand but in this supplement are always filled with zero

~ One’s complement (unary)

Table 1-3—Additional C data types

Data type Description

timer A real number, in units of seconds, that autonomously increments at a defined rate

Boolean A single bit, where 0 encodes FALSE and 1 encodes TRUE

Figure 1-4—State machine example

Table 1-2—C code operators summary (Continued)

Operator Description

condition for transition from S0 to S1

S1: State One
actions started on entry to S1

condition for transition from S1 to S0

S0: State Zero
actions started on entry to S0

S1:S0

S0:S1

transition label

state label

action taken on this transition

note that the S0 actions are
restarted following this transition

action taken on this transition

action taken on this transition

S0:S0
condition for transition from S0 back to itself

© 1997 IEEE This is an unapproved standards draft, subject to change 7

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

These state machines make three assumptions:

a) Time elapses only within discrete states.

b) State transitions are logically instantaneous, so the only actions taken during a transition are setting flags and
variables and sending signals. These actions complete before the next state is entered.

c) Every time a state is entered, the actions of that state are started. Note that this means that a transition that points
back to the same state will repeat the actions from the beginning. All the actions started upon entry complete
before any tests are made to exit the state.

1.6.9 CSR, ROM and field notation

This standard describes CSRs and fields within them. To distinguish register and field names from node states or descrip-
tive text, the register name is always capitalized. For example, the notation STATE_CLEAR.lost is used to describe the
lost bit within the STATE_CLEAR register.

All CSRs are quadlets and are quadlet aligned. The address of a register is specified as the byte offset from the beginning
of the initial register space and is always a multiple of 4. When a range of register addresses is described, the ending
address is the address of the last register.

This document describes a number of configuration ROM entries and fields within these entries. To distinguish ROM
entry and field names from node states or descriptive text, the first character of the entry name is always capitalized.
Thus, the notation Bus_Info_Block.cmc is used to describe the cmc bit within the Bus_Info_Block entry.

Entries within temporary data structures, such as packets, timers and counters, are shown in lowercase (following normal
C language conventions) and are formatted in a fixed-space typeface. Examples are arb_timer and connected[i].

NOTE—Within the C code, the character formatting is not used, but the capitalization rules are followed.

1.6.10 Register specification format

This document defines the format and function of Serial Bus-specific CSRs. Registers may be read only, write only or
both readable and writable. The same distinctions may apply to any field within a register. A CSR specification includes
the format (the sizes and names of bit field locations), the initial value of the register, the value returned when the register
is read and the effect(s) when the register is written. An example register is illustrated in figure 1-5.

Figure 1-5—CSR format specification (example)

unit_depend vendor dependent resvsig why not

unit_depend zeros 01 0 0

last write last update 0w u u

stored ignored is i e

definition

initial value

read value

write effect

12 16 1 1 1 1

8 This is an unapproved standards draft, subject to change © 1997 IEEE

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

The register definition lists the names of register fields. These names are descriptive, but the fields are defined in the text;
their function should not be inferred solely from their names. However, the register definition fields in figure 1-5 have the
following meanings.

A node’s CSRs shall be initialized when power is restored (power_reset) or when a quadlet is written to the node’s
RESET_START register (command_reset). If a CSR’s power_reset or command_reset values differ from its initial values,
all values are explicitly specified.

The read value fields in figure 1-5 have the following meanings.

The write-effect fields in figure 1-5 have the following meanings.

Table 1-4—Register definition fields

Name Abbreviation Definition

unit dependent unit_depend The meaning of this field shall be defined by the unit architecture(s) of the node.

vendor dependent vendor_depend The meaning of this field shall be defined by the vendor of the node.

Within a unit architecture, the unit_dependent fields may be defined to be vendor
dependent.

Table 1-5—Read value fields

Name Abbreviation Definition

last write w The value of the data field shall be the value that was previously written to the same
register address.

last update u The value of the data field shall be the last value that was updated by node hardware.

Table 1-6—Write value fields

Name Abbreviation Definition

stored s The value of the written data field shall be immediately visible to reads of the same
register.

ignored i The value of the written data field shall be ignored; it shall have no effect on the state of
the node.

effect e The value of the written data field shall have an effect on the state of the node, but is not
immediately visible to reads of the same register.

© 1997 IEEE This is an unapproved standards draft, subject to change 9

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

1.6.11 Reserved CSR fields

Reserved fields within a CSR conform to the requirements of the conformance glossary in this standard (see clause 2.1).
Within a CSR, such a field that is labeled reserved (sometimes abbreviated as lowercase r or resv). Reserved fields
behave as specified by figure 1-6: they shall be zero and any attempt to write to them shall be ignored.

This is straight-forward as it applies to read and write requests. The same rules apply to lock requests, but the behaviors
are less obvious. Table 1-7 summarizes the different lock functions specified by IEEE Std 1394-1995.

In the preceding, arg_value and data_value are the fields of the same name from the lock request packet. The old_value
field is the current value of the addressed CSR obtained as if from a read request; this is also the value returned in the
lock response packet. The new_value field is the updated value of the CSR as if a write request were used to store the cal-
culated value.

The behavior of a particular lock function is determined by applying rules for reserved fields in order, as follows:

a) The CSR’s old_value is obtained as if via a read request and returned in the lock response; reserved fields are read
as zeros;

b) An intermediate value is calculated according to the C code above (this is not explicitly shown but is the right-
hand part of each of the assignment statements in the table); and

c) The intermediate value is stored in the CSR as if via a write request; reserved fields are ignored and remain zero
in the CSR. The contents of the CSR after this operation are the new_value.

Figure 1-6—Reserved CSR field behavior

Table 1-7—Summary of lock functions

Lock function Action

mask_swap new_value = data_value | (old_value & ~arg_value);

compare_swap if (old_value == arg_value) new_value = data_value;

fetch_add new_value = old_value + data value;

little_add (little) new_value = (little) old_value + (little) data_value;

bounded_add if (old_value != arg_value) new_value = old_value + data_value;

wrap_add new_value = (old_value != arg_value) ? old_value + data_value : data_value;

reserved

zeros

zeros

ignored

definition

initial values

read values

write effects

32

10 This is an unapproved standards draft, subject to change © 1997 IEEE

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

1.6.12 Operation description priorities

The description of operations in this standard are done in three ways: state machines, C code segments and English lan-
guage. If more than one description is present, then priority shall be given first to the state machines, then the C code and
finally to the English text (including the state machine notes).

© 1997 IEEE This is an unapproved standards draft, subject to change 11

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

2. Definitions and abbreviations

2.1 Conformance glossary

Several keywords are used to differentiate between different levels of requirements and optionality, as defined below. This
clause replaces existing clause 2.1 of IEEE Std 1394-1995, “Conformance glossary,” in its entirety; the following definitions
shall apply to both IEEE Std 1394-1995 and this supplement.

2.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

2.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

2.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

2.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the code values assigned to
these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation
may be specified by future extensions to this or other IEEE standards. A reserved object shall be zeroed or, upon development
of a future IEEE standard, set to a value specified by such a standard. The recipient of a reserved object shall not check its
value. The recipient of a defined object shall check its value and reject reserved code values.

2.1.5 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory require-
ments to ensure interoperability with other products conforming to this standard.

2.1.6 should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is rec-
ommended.”

2.2 Technical glossary

The following are terms that are used within this standard:

2.2.1 acknowledge: An acknowledge packet.

2.2.2 acknowledge packet: An 8-bit packet that may be transmitted in response to the receipt of a primary packet. The most
and least significant nibbles are the one’s complement of each other.

2.2.3 acronym: A contrived reduction of nomenclature yielding mnemonics (ACRONYM).

2.2.4 arbitration: The process by which nodes compete for control of the bus. Upon completion of arbitration, the winning
node is able to transmit a packet or initiate a short bus reset.

2.2.5 arbitration reset gap: The minimum period of idle bus (longer than a normal subaction gap) that separates fairness
intervals.

2.2.6 arbitration signalling: A protocol for the exchange of bidirectional, unclocked signals between nodes during arbitra-
tion.

2.2.7 asynchronous packet: A primary packet transmitted in accordance with asynchronous arbitration rules (outside of the
isochronous period).

2.2.8 base rate: The lowest data rate used by Serial Bus in a backplane or cable environment. In multiple speed environments,
all nodes are able to receive and transmit at the base rate. The base rate for the cable environment is 98.304 MHz ± 100 ppm.

2.2.9 bus ID: A 10-bit number that uniquely identifies a particular bus within a group of interconnected buses.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

12 This is an unapproved standards draft, subject to change © 1997 IEEE

2.2.10 bus manager: The node that provides power management, sets the gap count in the cable environment and publishes
the topology of the bus and the maximum speed for data transmission between any two nodes on the bus. The bus manager
node may also be the isochronous resource manager node.

2.2.11 byte: Eight bits of data.

2.2.12 cable PHY: Abbreviation for the cable physical layer.

2.2.13 channel: A relationship between a group of nodes, talkers and listeners. The group is identified by a number between
zero and 63. Channel numbers are allocated cooperatively through isochronous resource management facilities.

2.2.14 connected PHY: A peer cable PHY at the other end of a particular physical connection from the local PHY.

2.2.15 CSR Architecture: ISO/IEC 13213:1994 [ANSI/IEEE Std 1212, 1994 Edition], Information technology—Micro-
processor systems—Control and Status Registers (CSR) Architecture for microcomputer buses.

2.2.16 cycle master: The node that generates the periodic cycle start packet 8000 times a second.

2.2.17 cycle start packet: A primary packet sent by the cycle master that indicates the start of an isochronous period.

2.2.18 doublet: Two bytes, or 16 bits, of data.

2.2.19 fairness interval: A time period delimited by arbitration reset gaps. Within a fairness interval, the total number of
asynchronous packets that may be transmitted by a node is limited. Each node’s limit may be explicitly established by the bus
manager or it may be implicit.

2.2.20 gap: A period of idle bus.

2.2.21 initial node space: The 256 terabytes of Serial Bus address space that is available to each node. Addresses within ini-
tial node space are 48 bits and are based at zero. The initial node space includes initial memory space, private space, initial reg-
ister space and initial units space. See either ISO/IEC 13213:1994 or IEEE Std 1394-1995 for more information on address
spaces.

2.2.22 initial register space: A two kilobyte portion of initial node space with a base address of FFFF F000 000016. This
address space is reserved for resources accessible immediately after a bus reset. Core registers defined by ISO/IEC
13213:1994 are located within initial register space as are Serial Bus-dependent registers defined by IEEE Std 1394-1995.

2.2.23 initial units space: A portion of initial node space with a base address of FFFF F000 040016. This places initial units
space adjacent to and above initial register space. The CSR’s and other facilities defined by unit architectures are expected to
lie within this space.

2.2.24 isochronous: Uniform in time (i.e., having equal duration) and recurring at regular intervals.

2.2.25 isochronous period: A period that begins after a cycle start packet is sent and ends when a subaction gap is detected.
During an isochronous period, only isochronous subactions may occur. An isochronous period begins, on average, every
125 µs.

2.2.26 isochronous gap: For an isochronous subaction, the period of idle bus that precedes arbitration.

2.2.27 isochronous resource manager: The node that contains CSRs (BUS_MANAGER_ID,
BANDWIDTH_AVAILABLE and CHANNELS_AVAILABLE) that permit the cooperative allocation of isochronous
resources.

2.2.28 isochronous subaction: Within the isochronous period, either a concatenated packet or a packet and the gap that pre-
ceded it.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 13

2.2.29 kilobyte: A quantity of data equal to 210 bytes.

2.2.30 link layer (LINK): The Serial Bus protocol layer that provides confirmed and unconfirmed transmission or reception
of primary packets.

2.2.31 listener: An application at a node that receives a stream packet.

2.2.32 nibble: Four bits of data.

2.2.33 node: A Serial Bus device that may be addressed independently of other nodes. A minimal node consists of only a PHY
without an enabled link. If the link and other layers are present and enabled they are considered part of the node.

2.2.34 node ID: A 16-bit number that uniquely differentiates a node from all other nodes within a group of interconnected
buses. The 10 most significant bits of node ID are the same for all nodes on the same bus; this is the bus ID. The six least-sig-
nificant bits of node ID are unique for each node on the same bus; this is called the physical ID. The physical ID is assigned as
a consequence of bus initialization.

2.2.35 octlet: Eight bytes, or 64 bits, of data.

2.2.36 originating port:

2.2.37 packet: A sequence of bits transmitted on Serial Bus and delimited by DATA_PREFIX and DATA_END.

2.2.38 payload: The portion of a primary packet that contains data defined by an application.

2.2.39 PHY packet: A 64-bit packet where the most significant 32 bits are the one’s complement of the least significant 32
bits.

2.2.40 physical ID: The least-significant 6 bits of the node ID. On a particular bus, each node’s physical ID is unique.

2.2.41 physical layer (PHY): The Serial Bus protocol layer that translates the logical symbols used by the link layer into
electrical signals on Serial Bus media. The physical layer is self-initializing. Physical layer arbitration guarantees that only one
node at a time is sending data. The mechanical interface is defined as part of the physical layer. There are different physical
layers for the backplane and for the cable environment.

2.2.42 port: The part of the PHY that allows connection to one other node.

2.2.43 primary packet: Any packet that is not an acknowledge or a PHY packet. A primary packet is an integral number of
quadlets and contains a transaction code in the first quadlet.

2.2.44 quadlet: Four bytes, or 32 bits, of data.

2.2.45 request: A primary packet (with optional data) sent by one node’s link (the requester) to another node’s link (the
responder).

2.2.46 response: A primary packet (with optional data) sent in response to a request subaction.

2.2.47 self-ID packet: A PHY packet transmitted by a cable PHY during the self-ID phase or in response to a PHY ping
packet.

2.2.48 speed code: The code used to indicate bit rates for Serial Bus.

2.2.49 split transaction: A transaction where unrelated subactions may take place on the bus between its request and response
subactions.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

14 This is an unapproved standards draft, subject to change © 1997 IEEE

2.2.50 subaction gap: For an asynchronous subaction, the period of idle bus that precedes arbitration.

2.2.51 subaction: A complete link layer operation: optional arbitration, packet transmission and optional acknowledgment.

2.2.52 talker: An application at a node that transmits a stream packet.

2.2.53 terabyte: A quantity of data equal to 240 bytes.

2.2.54 transaction layer: The Serial Bus protocol layer that defines a request-response protocol for read, write and lock oper-
ations.

2.2.55 transaction: A request and the optional, corresponding response.

2.2.56 transmitting port:

2.2.57 unified transaction: A transaction completed in a single subaction.

2.2.58 unit: A component of a Serial Bus node that provides processing, memory, I/O or some other functionality. Once the
node is initialized, the unit provides a CSR interface. A node may have multiple units, which normally operate independently
of each other.

2.2.59 unit architecture: The specification document that describes the interface to and the behaviors of a unit implemented
within a node.

© 1997 IEEE This is an unapproved standards draft, subject to change 15

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

3. Overview

Proposed for inclusion by the editorial review session participants:

— Overview of arbitration enhancements (rationale, etc.)

— Asynchronous streams

— Performance optimization (PHY pinging and how we use it)

— Connection management protocol

— Fairness modifications (budget for requests, exemptions for one or more responses)

— Power and electrical

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

16 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 17

4. Alternative cable media attachment specification

The facilities of Serial Bus, IEEE Std 1394-1995, have found wide applicability in the consumer electronics industry for
a new generation of digital products. For some of these product applications, the standard cable and connectors specified
by the existing standard are less than ideal:

— Battery operated devices. Because these devices draw no power from the cable, their design could be simplified
and their cost reduced if electrical isolation were not required for the connector assembly. In addition, the power
conductors of the standard cable represent a potential source of analog noise—a significant concern for audio
equipment.

— Hand-held devices. In contrast to the compactness of some consumer products, such as video camcorders, the
standard cable and connectors are relatively bulky. A more compact design would be better suited to these prod-
ucts.

The alternative cables and conductors specified by this supplement enable backwards compatibility with the standard
cables specified by IEEE Std 1394-1995. The remarks below apply to external (inter-crate) cabling, where extra care must
be exercised for safety and EMC compliance. (Intra-crate connections are not standardized in this clause.)

With respect to these alternative cables and connectors, only, this section entirely replaces clause 4.2.1 of IEEE Std
1394-1995. Except as superseded by other sections in this supplement, all other clauses in section 4 of the existing stan-
dard, “Cable physical layer specification,” continue to apply to alternative cables and connectors.

4.1 Connectors

In typical applications computer, consumer electronic or peripheral equipment boxes shall present one or more connector
sockets, for attachment to other boxes via cables. The detachable ends of the cable shall be terminated with connector
plugs. IEEE Std 1394-1995 specifies standard connectors that have six contacts; this supplement specifies alternative con-
nectors that have four contacts.

All dimensions, tolerances and descriptions of features which affect the intermateability of the alternative shielded con-
nector plugs and sockets are specified within this clause. Features of connector plugs and sockets which do not affect
intermateability are not specified and may vary at the option of the manufacturer. Connector features which are not
directly controlled within this clause shall be indirectly controlled by performance requirements in clauses 4.3 and 4.4.

The holes and patterns (footprint) for the mounting of some of the possible versions of connectors to the printed circuit
board are recommended in clause 4.1.8

4.1.1 Connector plug

The mating features of the connector plug are specified in figures 4-1 and 4-2. They will assure the intermateability of the
plug with the alternative sockets specified by this supplement.

It is recommended that the plug contacts have a cylindrical section in the contact area which makes contact at a right
angle to the cylindrical section of the socket contacts, thus creating a “crossed cylinders” configuration. The contacts
should be designed to create a Hertzian stress, (combination of cylindrical radius, normal force and base and surface
material hardnesses) of 225,000-275,000 psi in the mating area. This is to assure that the low-energy signals used in this
physical layer are transmitted through the non conductive films which are typically adsorbed on connector contacts.

NOTE—When a cable assembly plug is mated with a socket connector, there shall be 1.0 mm clearance, minimum, between the
overmold on the assembly plug and the shield flange on the socket. This clearance is designed into the system to allow proper mating
of both passive and latching cable plug assemblies. Deviation of this clearance may affect the performance of the connector interface.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

18 This is an unapproved standards draft, subject to change © 1997 IEEE

Figures 4-1 and 4-2 describe a plug intended to be used when only detent retention with the socket is required.

Figure 4-1 — Plug body

Figure 4-2 — Plug section details

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 19

4.1.2 Connector plug terminations

The termination of the stranded wire to the plug contacts may be varied to suit the manufacturing process needs of the
cable assembler.

For reference, the following methods are listed: crimp, insulation displacement (IDC), insulation piercing, welding and
soldering

4.1.3 Connector socket

The mating features of the connector socket are described in figures 4-3 through 4-5. They will assure the intermateability
of the socket with the alternative plugs specified by this supplement.

The contacts are attached to the signals using the guidance in table 4-1.

Figure 4-3 — Connector socket interface

Table 4-1 — Connector socket signal assignment

Contact number Signal name Comment

1 TPB* Strobe on receive, data on transmit (differential pair)

2 TPB

3 TPA* Strobe on receive, data on transmit (differential pair)

4 TPA

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

20 This is an unapproved standards draft, subject to change © 1997 IEEE

Figure 4-4 describes the relationship of the contacts and the shell. This includes the wiping portion of the contact and shell
detent.

Figure 4-5 shows the mated cross section of the plug and socket contacts.

Figure 4-4 — Socket cross-section A–A

Figure 4-5 — Cross-section of plug and socket contacts

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 21

When mounted on a printed circuit board, the socket shall be at a fixed height as illustrated by figure 4-6.

4.1.4 Contact finish on plug and socket contacts

It is necessary to standardize the electroplated finish on the contacts to assure the compatibility of plugs and sockets from
different sources. The following standardized electroplatings are compatible and one shall be used on contacts.

a) 0.76 µm (30µin), minimum, gold, over 1.27 µm (50 µin), minimum, nickel.

b) 0.05 µm (2 µin), minimum, gold, over 0.76 µm (30 µin), minimum, palladium-nickel alloy (80% Pd–20% Ni),
over 1.27 µm (50 µin), minimum, nickel.

NOTES:

1—Selective plating on contacts is acceptable. In that case, the above electroplating shall cover the complete area of con-
tact, including the contact wipe area.

2—A copper strike is acceptable, under the nickel electroplate.

4.1.5 Termination finish on plug and contact socket terminals

It is acceptable to use an electroplate of tin-lead with a minimum thickness of 3.04 µm (120 µin) over 1.27 µm (50 µin),
minimum, nickel. A copper strike is acceptable under the nickel.

4.1.6 Shell finish on plugs and sockets

It is necessary to standardize the plated finish on the shells to ensure compatibility of products from different sources.
Both shells shall be electroplated with a minimum of 3.03 µm (120 µin) of tin or tin alloy over a suitable barrier under-
plate.

4.1.7 Connector durability

The requirements of different end-use applications call for connectors which can be mated and unmated a different
number of times, without degrading performance beyond acceptable limits. Accordingly, this supplement specifies mini-
mum performance criteria of 1000 mating cycles.

Figure 4-6 — Socket position when mounted on a printed circuit board

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

22 This is an unapproved standards draft, subject to change © 1997 IEEE

4.1.8 Printed circuit board footprints

The footprint of a surface-mount printed circuit board connector shall conform to the dimensional specifications illus-
trated by figure 4-7 below.

The footprint of a through-hole printed circuit board connector shall conform to the dimensional specifications illustrated
below.

Figure 4-7 — Flat surface mount printed circuit board connector footprint

Figure 4-8 — Flat through-hole mount printed circuit board connector footprint

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 23

4.2 Cables

All cables and cable assemblies shall meet assembly criteria and test performance found in this supplement.

4.2.1 Cable material (reference)

Linear cable material typically consists of two twisted pair conductors. The two twisted pairs carry the balanced differen-
tial data signals. Figure 4-9 illustrates a reference design adequate for a 4.5 m cable. Clause 4.4 describes the performance
requirements for the cable assembly.

NOTE—This construction is illustrated for reference only; other constructions are acceptable as long as the performance criteria are
met.

4.2.2 Cable assemblies

Cable assemblies consist of two plug connectors, either the standard connector specified by IEEE Std 1394-1995 or the
alternative connector defined by this supplement, joined by a length of cable material. The suggested maximum length is
4.5 m. This is to assure that a maximally-configured cable environment does not exceed the length over which the end-to-
end signal propagation delay would exceed the allowed time. Longer cable lengths are possible if special considerations
is given to the actual Serial Bus system topology to be used, as discussed in greater detail in annex A of IEEE Std
1394-1995.

Figure 4-9 — Cable material construction example (for reference only)

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

24 This is an unapproved standards draft, subject to change © 1997 IEEE

Both cable configurations, standard connector to standard connector and alternative connector to standard connector, are
illustrated in the figures below. The connector pins are terminated as shown by figures 4-10 and 4-11. The two signal
pairs “cross” in the cable to effect a transmit-to-receive interconnection.

4.3 Connector and cable assembly performance criteria

To verify the performance requirements, performance testing is specified according to the recommendations, test
sequences and test procedures of ANSI/EIA 364-B-90. Table 1 of ANSI/EIA 364-B-90 shows operating class definitions
for different end-use applications. For Serial Bus, the test specifications follow the recommendations for environmental
class 1.3, which is defined as follows: “No air conditioning or humidity control with normal heating and ventilation.” The
Equipment Operating Environmental Conditions shown, for class 1.3 in table 2 are: Temperature; + l5 degree C to + 85
degrees C, Humidity; 95% maximum., Class 1.3 is further described as operating in a “harsh environmental” state, but
with no marine atmosphere.

Accordingly, the performance groupings, sequences within each group and the test procedures shall follow the recommen-
dations of ANSI/EIA 364, except where the unique requirements of the Serial Bus connector and cable assembly may call
for tests which are not covered in ANSI/EIA 364 or where the requirements deviate substantially from those in that doc-
ument. In those cases, test procedures of other recognized authorities or specific procedures described in the annexes will
be cited.

Figure 4-10 — Cable assembly and schematic (standard to alternate connector)

Figure 4-11—Cable assembly and schematic (alternate connectors)

4 3 2 1

g

4 3 2 1

g

Signal Names
Both ends identical;
for reference
only

Note: Connectors are viewed as looking at the
front plug face.

Pin No. Signal
1 TPB*
2 TPB
3 TPA*
4 TPA

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 25

Sockets, plugs and cable assemblies shall perform to the requirements and pass all the following tests in the groups and
sequences shown.

Testing may be done as follows:

a) Plug and socket only. In this case, for those performance groups that require it, the plugs may be assembled to the
cable, to provide a cable assembly, by the connector manufacturer or by a cable assembly supplier.

b) Cable assembly (with a plug on each end) and socket. In this case, a single supplier may do performance testing
for both elements or a connector supplier may team up with a cable assembly supplier to do performance testing
as a team.

c) Cable assembly only (with a plug on each end). In this case, the cable assembly supplier should use a plug
connector source which has successfully passed performance testing, according to this standard.

d) Plug only or socket only. In this case, the other half shall be procured from a source. which has successfully
passed performance testing, according to this standard. For those performance groups that require it, the plugs
may be assembled to the cable, to provide a cable assembly, by the connector manufacturer or by a cable
assembly supplier.

NOTES:

1—All performance testing is to be done with cable material which conforms to this specification. In order to test to these
performance groups, ANSI/EIA tests require that the cable construction used be specified.

2—All resistance values shown in the following performance groups are for connectors only, including their terminations
to the wire and/or PC board, but excluding the resistance of the wire. Resistance measurements shall be performed in an
environment of temperature, pressure and humidity specified by ANSI/EIA 364.

3—The number of units to be tested is a recommended minimum; the actual sample size is to be determined by require-
ments of users. This is not a qualification program.

4.3.1 Performance group A: Basic mechanical dimensional conformance and electrical
functionality when subjected to mechanical shock and vibration

Number of samples:

[2] Sockets, unassembled to printed circuit board used for Phase 1, A1 and A2 (one each).

[2] Sockets, assembled to printed circuit board

[2] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one each).

[2] Cable assemblies with a plug assembled to one end, 25.4 cm long.

Table 4-2 — Performance group A

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance Level

A1 Visual and
dimensional
inspection

ANSI/EIA
364-18A-84

Unmated con-
nectors

Dimensional
inspection

Per figures
4-1 through
4-5

No defects that would impair
normal operations. No deviation
from dimensional tolerances.

A2 Plating
thickness mea-
surement

Record thickness; see 4.1.4

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

26 This is an unapproved standards draft, subject to change © 1997 IEEE

NOTE—Connectors are to be mounted on a fixture which simulates typical usage. The socket shall be mounted to a panel which is
permanently affixed to the fixture. The mounting means shall include typical accessories such as:

a) An insulating member to prevent grounding of the shell to the panel

b) A printed circuit board in accord with the pattern shown in figure? for the socket being tested. The printed circuit
board shall also be permanently affixed to the fixture.

The plug shall be mated with the socket and the other end of the cable shall be permanently clamped to the fixture. Refer
to figure 4-10 in IEEE Std 1394-1995 for details.

4.3.2 Performance group B: Low-level contact resistance when subjected to thermal
shock and humidity stress

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable.

[2] Cable assemblies with a plug assembled to one end, 25.4 cm long.

A3 None Low-level
contact
resistance

ANSI/EIA
364-23A-85

50 mΩ maximum initial per
mated pair.

A4 Vibration ANSI/EIA
364-28A-83

Condition I
(See note)

Continuity ANSI/EIA
364-46-84

No discontinuity at 1 µs or
longer. (Each contact)

A5 None Low-level
contact
resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

A6 Mechanical
shock
(specified
pulse)

ANSI/EIA
364-27A-83

Condition A
(See note)

Continuity ANSI/EIA
364-46

No discontinuity at 1 µs or
longer. (Each contact)

A7 None Low-level
contact
resistance

ANSI/EIA
364-23

20 mΩ maximum change from
initial per mated contact.

Table 4-3 — Performance group B

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

B1 None Low-level con-
tact resistance

ANSI/EIA
364-23A-85

50 mΩ maximum initial per
mated contact.

Table 4-2 — Performance group A

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance Level

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 27

4.3.3 Performance group C: Insulator integrity when subjected to thermal shock and
humidity stress

Number of samples:

[2] Sockets, unassembled to printed circuit board

[0] Sockets, assembled to printed circuit board

[2] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[0] Cable assemblies with a plug assembled to one end, 2 m long.

B2 Thermal shock IEC 68-2-14 10 cycles
(mated)

Low-level con-
tact resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

B3 Humidity ANSI/EIA
364-31A-83

Condition A
(96 h.)
Method II
(cycling)
nonenergized
Omit steps 7a
and 7b.
(mated)

Low-level con-
tact resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

Table 4-4 — Performance group C

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

C1 Withstanding
voltage

ANSI/EIA
364-20A-83

Test voltage

100 Vdc ±
10 Vdc
Method C
(unmated and
unmounted)

Withstanding
voltage

ANSI/EIA
364-20A-83

No flashover.
No sparkover.
No excess leakage.
No breakdown.

C2 Thermal shock IEC 68-2-14 10 cycles
(unmated)

Withstanding
voltage (same
conditions as
C1)

ANSI/EIA
364-20A-83

No flashover.
No sparkover.
No excess leakage.
No breakdown.

C3 Insulation resis-
tance

ANSI/EIA
364-21A-83

Test voltage

100 Vdc ±
10 Vdc
(unmated and
unmounted)

Insulation resis-
tance

ANSI/EIA
364-21A-83

1 GΩ, minimum, between adja-
cent contacts and contacts and
shell.

C4 Humidity
(cyclic)

ANSI/EIA
364-31A-83

Condition A
(96 h.) Method
III nonener-
gized
Omit steps 7a
and 7b

Insulation resis-
tance (same con-
ditions as C3)

ANSI/EIA
364-21A-83

1 GΩ, minimum.

Table 4-3 — Performance group B

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

28 This is an unapproved standards draft, subject to change © 1997 IEEE

4.3.4 Performance group D: Contact life and durability when subjected to mechanical
cycling and corrosive gas exposure

Number of samples:

[0] Sockets, unassembled to printed circuit board

[4] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[4] Cable assemblies with a plug assembled to one end, 25.4 cm long.

Table 4-5 — Performance group D

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

D1 None Low-level con-
tact resistance

ANSI/EIA
364-23A-85

50 mΩ maximum initial per
mated contact.

D2 Continuity-
housing (shell)

See figure 4-12
for measurement
points

Contact resis-
tance, braid to
socket shell

ANSI/EIA
364-06A-83

50 mΩ, maximum, initial from
braid to socket shell at 100 mA, 5
Vdc open circuit max.

D3 Durability ANSI/EIA
364-09B-91

(a) 2 mated
pairs, 5 cycles

(b) 2 mated
pairs, automatic
cycling to 500
cycles, rate 500
cycles/h ±50
cycles.

D4 None Low-level
contact
resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

D5 Continuity-
housing (shell)

See figure 4-12
for measurement
points

Contact
resistance

ANSI/EIA
364-06A-83

50 mΩ maximum change from
initial from braid to socket shell.

D6 Mixed
flowing gas

ANSI/EIA
364-65-92

Class II Expo-
sures:

(a) 2 mated pairs
- unmated for 1
day

(b) 2 mated pairs
- Mated 10 days

Low level
contact
resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

D7 Durability ANSI/EIA
364-09B-91

Class II Expo-
sures:
(a) 2 mated
pairs, 5 cycles

(b) 2 mated
pairs, automatic
cycling to 500
cycles, rate 500
cycles/h ±50
cycles

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 29

D8 Mixed
flowing gas

ANSI/EIA
364-65-92

Class II
Exposures:
Expose mated
for 10 day

Low level
contact
resistance at end
of
exposure

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

D9 Continuity-
housing (shell)

See figure 4-12
for measurement
points

Contact
resistance

ANSI/EIA
364-06A-83

50 mΩ maximum change from
initial from braid to socket shell.

Figure 4-12 — Shield and contact resistance measuring points

Table 4-5 — Performance group D (Continued)

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

PWB Socket Plug Cable

a) contact resistance

Wire
I

V

I
V

Wire termination

X
Note: subtract
bulk wire resistance of
length "X" from
measurement

PWB Socket Plug Cable

b) shield resistance

I V

I

V

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

30 This is an unapproved standards draft, subject to change © 1997 IEEE

4.3.5 Performance group E: Contact resistance and unmating force when subjected to
temperature life stress

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[2] Cable assemblies with a plug assembled to one end, 2 m long.

4.3.6 Performance group F: Mechanical retention and durability

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable.

[2] Plugs, assembled to cable, one end only, 25 cm long.

Table 4-6 — Performance group E

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

E1 Mating and
unmating
forces

ANSI/EIA
364-13A-83

Mount socket
rigidly. Insert
receptacle by
hand.

Mating only

Auto Rate:
 25 mm/min

Unmating only ANSI/EIA
364-13A-83

Unmating force:
4.9 N minimum
39.0 N maximum

E2 None Low-level
contact
resistance

ANSI/EIA
364-23A-85

50 mΩ maximum initial per
mated contact.

E3 Continuity-
housing (shell)

See figure 4-12 Contact
resistance

ANSI/EIA
364-06A-83

50 mΩ maximum initial from
braid to socket shell.

E4 Temperature
life

ANSI/EIA
364-17A-87

Condition 2
(79° C)
96 hours
Method A
(mated)

Low-level
contact
resistance

ANSI/EIA
364-23A-85

20 mΩ maximum change from
initial per mated contact.

E5 Continuity-
housing (shell)

Contact
resistance

ANSI/EIA
364-06A-83

50 mΩ maximum change from
initial from braid to socket shell.

E6 Mating and
unmating
forces

ANSI/EIA
364-13A-83

Mount socket
rigidly. Insert
plug by hand.

Mating only

Auto Rate:
 25 mm/min

Unmating only ANSI/EIA
364-13A-83

Unmating force:
4.9 N minimum
39.0 N maximum

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 31

4.3.7 Performance group G: General tests

Suggested procedures to test miscellaneous but important aspects of the interconnect.

Since the tests listed below may be destructive, separate samples must be used for each test. The number of samples to be
used is listed under the test title.

Table 4-7 — Performance group F

Phase
Test Measurements to be

performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

F1 Mating and
unmating
forces

ANSI/EIA
364-13A-83

Mount socket
rigidly. Insert
plug by hand.

Mating only

F2 Mating and
unmating
forces

ANSI/EIA
364-13A-83

Auto rate:
 25 mm/min

Unmating only ANSI/EIA
364-13A-83

Unmating force:
4.9 N minimum
39.0 N maximum

F3 Durability ANSI/EIA
364-09B-91

Automatic
cycling to 1000
cycles.
500 cycles/h ±50
cycles

Unmating only ANSI/EIA
364-13A-83

Unmating force at end of durability
cycles:
4.9 N minimum
39.0 N maximum

Table 4-8 — Performance group G

Phase
Test Measurements to be performed Requirements

Title ID No. Severity or
conditions Title ID No. Performance level

G1 Electrostatic
Discharge

[1 plug]

[1 socket]

IEC 801-2 1 to 8 kV in 1 kV
steps. Use 8 mm
ball probe. Test
unmated.

Evidence of dis-
charge

No evidence of discharge to any of
the 4 contacts; discharge to shield is
acceptable.

G2 Cable axial pull
test.

[2 plugs]

Fix plug housing
and apply a
49.0 N load for
one minute on
cable axis.

Continuity, visual ANSI/EIA
364-46

No discontinuity on contacts or
shield greater than 1 µs under load.
No jacket tears or visual exposure of
shield. No jacket movement greater
than 1.5 mm at point of exit.

G3 Cable flexing

[2 plugs]

ANSI/EIA
364-41B-89

Condition I,
dimension
X=5.5 x cable
diameter; 100
cycles in each of
two planes

(a) Withstanding
voltage

Per C1 Per C1

(b) Insulation
resistance

Per C3 Per C3

(c) Continuity ANSI/EIA
364-46-84

No discontinuity on contacts or
shield greater than 1 µs during flex-
ing.

(d) Visual - No jacket tears or visual exposure of
shield. No jacket movement greater
than 1.5 mm at point of exit.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

32 This is an unapproved standards draft, subject to change © 1997 IEEE

4.4 Signal propagation performance criteria

The test procedures for all parameters listed in this clause are described in Annex K of IEEE Std 1394-1995.

4.4.1 Signal impedance

The differential mode characteristic impedance of the signal pairs shall be measured by time domain reflectometry at <
100 ps rise time using the procedure described in annex K.3 of IEEE Std 1394-1995:

ZTPA = (110 ± 6) Ω (differential)

ZTPB = (110 ± 6) Ω (differential)

The common mode characteristic impedance of the signal pairs shall be measured by time domain reflectometry at < 100
ps rise time using the procedure described in annex K.3 of IEEE Std 1394-1995:

ZTPACM = (33 ± 6) Ω (common mode)

ZTPBCM = (33 ± 6) Ω (common mode)

4.4.2 Signal pairs attenuation

A signal pairs attenuation requirement applies only to the two signal pairs, for any given cable assembly. Attenuation is
measured using the procedure described in annex K.4 of IEEE Std 1394-1995.

Figure 4-13 — Fixture for cable flex test

Frequency Attenuation

100 MHz Less than 2.3 dB

200 MHz Less than 3.2 dB

400 Mhz Less than 5.8 dB

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 33

4.4.3 Signal pairs propagation delay

The differential propagation delay of the signal pairs through the cable shall be measured in the frequency domain using
the procedure described in annex K.5 of IEEE Std 1394-1995:

VTPA ≤ 5.05 ns/meter

VTPB ≤ 5.05 ns/meter

NOTE—The common mode propagation delay of the signal pairs should be the same or less than the differential propagation delay. No
test procedure is described for this in annex K.5 since this will be the case for all but the most exotic cable constructions:

VTPACM ≤ 5.05 ns/meter

VTPBCM ≤ 5.05 ns/meter

4.4.4 Signal pairs relative propagation skew

The difference between the differential mode propagation delay of the two signal twisted pairs shall be measured in the
frequency domain using the procedure described in annex K.6.1 of IEEE Std 1394-1995:

S ≤ 400 ps

4.4.5 Crosstalk

The TPA-TPB and signal-power crosstalk shall be measured in the frequency domain using a network analyzer in the fre-
quency range of 1 MHz to 500 MHz using the procedure described in annex K.8 of IEEE Std 1394-1995:

X ≤ -26 dB

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

34 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 35

5. PHY/Link interface specification

This section standardizes the PHY/link interface previously described in an informative annex of IEEE Std 1394-1995. It
specifies the protocol and signal timing. It does not describe specific operation of the PHY except for behavior with
respect to this interface.

The interface specified in this section is a scalable method to connect one Serial Bus link chip to one Serial Bus PHY
chip. It supports data rates of S25 and S50 in the backplane environment and S100, S200 and S400 in the cable environ-
ment. The width of the data bus scales with Serial Bus speed: two signals support speeds up to 100 Mbps while at faster
speeds a total of two signals per 100 Mbps are necessary. The clock rate of the signals at this interface remains constant,
independent of Serial Bus speed. The interface permits isolation for implementations where it is desirable.

The interface may be used by the link to transmit data, receive data or status, or issue requests. The link makes requests
of the PHY via the dedicated LReq signal. In response, the PHY may transfer control of the bidirectional signals to the
link. At all other times the PHY controls the bidirectional signals.

With the exception of D[0:7], Discrete PHY implementations shall support all of the PHY signals shown in figure 5-1.
The number of data bits implemented depends upon the maximum speed supported by the PHY. Discrete link implemen-
tations shall support D[0:n], Ctl[0:1], LReq and SClk; link support for the other signals is optional. For both PHY and
link, the number of data bits implemented, n, depends upon the maximum speed supported: D[0:1] for S100 and slower,
D[0:3] for S200 and D[0:7] for S400. The PHY/link interface signals are described in table 5-1.

Figure 5-1 — Discrete PHY/link interface

Table 5-1 — PHY/link signal description

Name Driven by Description

D[0:n] Link or PHY Data

Ctl[0:1] Link or PHY Control

LReq Link Link request port

SClk PHY 12.288, 24.576 or 49.152 MHz clock (synchronized to the
PHY transmit clock)

LPS Link Link power status. Indicates that the link is powered and
functional

LinkOn PHY Receipt of a link-on packet. Once asserted it shall remain
asserted until LPS is asserted and Link_active is TRUE.

D[0:n]

Ctl[0:1]

LReq

SClkLink PHY

Direct Direct

Backplane

Clk25

LPS

LinkOn

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

36 This is an unapproved standards draft, subject to change © 1997 IEEE

NOTE—The Clk25 signal is meaningful only if the link is configured for backplane operations.

The LPS signal disables and enables the PHY/link interface. The PHY shall enable the interface if LPS either is continu-
ously asserted or, in the presence of an optional isolation barrier, is a nominal 300 KHz pulsed output that conforms to
figure 5-2 and table 5-2. Otherwise, if LPS is not observed for TLPS_RESET the PHY disables the interface by driving
Ctl[0:1], D[0:n] and SClk to zero.

The interface may be reset by deasserting LPS for a minimum of 2.75 µs. When LPS is reasserted, the PHY shall resume
SClk as soon as possible. The PHY shall assert zeros on Ctl[0:1] and D[0:n] for the first cycle of the resumed SClk and
on the third and subsequent SClk cycles shall drive control and data in accordance with the arbitration state machines.

Direct Neither Set high to indicate a direct connection or low to indicate
an isolation barrier between the link and PHY

Backplane Neither Set high if backplane PHY

Clk25 Neither Meaningful only if Backplane is high. Set high to indicate
a 24.576 MHz SClk; otherwise 12.288 MHz.
Set high to notify the link that SClk is 24.576 MHz

Figure 5-2 — LPS timing (isolated interface)

Table 5-2 — LPS timing parameters

Parameter Description Unit Minimum Maximum

TLPSL LPS low time (isolated interface) µs 0.09 2.00

TLPSH LPS high time (isolated interface) µs 0.09 2.00

TLPS_RESET Time for PHY to recognize absence of LPS µs 2.25 2.75

TLPS_WAIT Time after PHY removes SClk until link
may reassert LPS (isolated interface)

µs 10

Table 5-1 — PHY/link signal description (Continued)

Name Driven by Description

TLPSH TLPSL

LPS

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 37

When an isolated interface is present, the link shall assert zeros on Ctl[0:1], D[0:n] and LReq for the SClk cycle that
immediately follows the resumption of SClk. The link shall ignore Ctl[0:1] prior to the third SClk cycle and thereafter
shall ignore Ctl[0:1] until at least one Idle is observed. These timings are illustrated by figure 5-3.

When either LPS is not asserted or link_active is FALSE, a PH_EVENT.indication of LINK_ON shall cause the assertion
of LinkOn. This signal shall persist so long as the logical AND of the LPS signal and link_active is zero.

The interface described in this section supports data rates of S100, S200 and S400 in the cable environment and S25 and
S50 in the backplane environment. In the timing diagrams in this section, each bit cell represents one clock sample time.
The specific clock-to-data timing relationships are described in clauses 5.6.2 and 5.6.3.

The Ctl bus carries control information and is two bits wide. The LReq signal is used by the link to request access to
Serial Bus, to read or write PHY registers or to control arbitration acceleration. The Direct signal indicates whether the
two chips are connected directly or through an isolation barrier. When the Direct signal is asserted it shall disable the dif-
ferentiator on the D, Ctl, SClk, LPS, LinkOn and LReq signals.

NOTE—The nominal DC signal LinkOn shall be pulsed in order that it may cross an optional isolation barrier.

Data is transferred between the PHY and link on D[0:n]. The implemented width of D[0:n] depends on the maximum
speed of the connected PHY device: 2 bits for S100 or slower, 4 bits for S200 and 8 bits for S400. At S100 or slower,
packet data is transferred on D[0:1], at S200 on D[0:3] and at S400 on D[0:7]. Implemented but unused D[0:n] signals
shall be driven low.

NOTE—In the backplane environment, transfers use D[0:1] and SClk is used to clock the transfers at either 24.756 MHz (for BTL and
ECL applications) or 12.288 MHz (for TTL applications).

Whenever control is transferred between the PHY and the link, the side relinquishing control always drives the control
and data buses to logic zero levels for one clock before placing those signals in a high-impedance state. An additional
clock with zero on the control and data signals is necessary for the link when it is transferring control to the PHY without
a hold request. This is necessary to ensure that an optional differentiator circuit can operate properly.

5.1 Operation

There are four operations that occur on the interface: link request, status transfer, data transmit and data receive. The link
issues a link request to read or write a PHY register, to ask the PHY to initiate a transmit operation or to control arbitra-
tion acceleration. The PHY may initiate a status transfer either autonomously or in response to a register read request and
shall initiate a receive operation whenever a packet is received from Serial Bus.

Figure 5-3 — PHY/link interface reset via LPS

TLPS_WAIT

SClk

LPS

LPS
(isolated)

TLPS_RESET

Ctl
D

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

38 This is an unapproved standards draft, subject to change © 1997 IEEE

The Ctl bus is 2 bits wide. The encoding of these signals is shown in tables 5-3 and 5-4.

5.2 Link requests

To request the bus, access a PHY register or control arbitration acceleration, the link sends a bit sequence (request) to the
PHY on the LReq signal. The link always signals all bits of the request. The information sent includes the type of request
and parameters which depend upon the type of request. Examples of parameters are packet transmission speed, priority,
PHY register address or data. With the exception of the bus request, each request is terminated by a stop bit of zero. The
size of the request, inclusive of the stop bit, varies between 6 and 17 bits. When the link transmits zeros on LReq the
request interface is idle.

The timing for this signal and the definition of the bits in the transfer are shown in figure 5-4.

If the LReq transfer is a bus request in the cable environment, it is 7 or 8 bits long and has the format given in table 5-5.
Links compliant with this supplement shall send all 8 bits.

NOTE—PHYs shall accept bus requests in both the format specified by IEEE Std 1394-1995 and the format shown below.

Table 5-3 — Ctl[0:1] when PHY is driving

Ctl[0:1] Name Meaning

002 Idle No activity.

012 Status The PHY is sending status information to the link.

102 Receive An incoming packet is being transferred from the PHY to the link.

112 Grant The link is granted the bus to send a packet.

Table 5-4 — Ctl[0:1] when the link is driving (upon a grant from the PHY)

Ctl[0:1] Name Meaning

002 Idle Transmission complete, release bus.

012 Hold The link is holding the bus while preparing data or indicating that it wishes to
reacquire the bus without arbitrating to send another packet.

102 Transmit The link is sending a packet to the PHY.

112 — Unused.

Figure 5-4 — LReq and Ctl timings

Table 5-5 — Bus request format for cable environment

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates type of bus request—immediate, isochronous, priority or fair. See table 5-10
for the encoding of this field.

CB

LR(n-1)LR(n-2)LR1 LR2 LR3LR0LReq

Ctl[0:1] CA

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 39

If the LReq transfer is a bus request in the backplane environment, it is 11 bits long and has the format given in table 5-6.

If the transfer is a register read request, it is 9 bits long and has the format given in table 5-7.

If the transfer is a register write request, it is 17 bits long and has the format given in table 5-8.

If the transfer is a acceleration control request, it is 6 bits long and has the format given in table 5-9.

4-6 Request Speed The speed at which the PHY will transmit the packet on Serial Bus. This field has the
same encoding as the speed code from the first symbol of the receive packet. See
table 5-11 for the encoding of this field.

7 Stop Bit Indicates end of transfer. Always 0. If bit 6 is zero, this bit may be omitted.

Table 5-6 — Bus request format for backplane environment

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates type of bus request—immediate, isochronous, priority or fair. See table 5-10
for the encoding of this field.

4-5 Reserved.

6-9 Request Priority Indicates priority of urgent requests. (Only used with FairReq request type.)

All zeros indicates fair request.

All ones is reserved (this priority is implied by a PriReq).

Other values are used to indicate the priority of an urgent request.

10 Stop Bit Indicates end of transfer. Always 0.

Table 5-7 — Register read request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is a register read. See table 5-10 for the encoding of this field.

4-7 Address The internal PHY address to be read.

8 Stop Bit Indicates end of transfer. Always 0.

Table 5-8 — Register write request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is a register write. See table 5-10 for the encoding of this field.

4-7 Address The internal PHY address to be written.

8-15 Data For a write transfer, the data to be written to the specified address.

16 Stop Bit Indicates end of transfer. Always 0.

Table 5-9 — Acceleration control request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is an acceleration control request. See table 5-10 for the encoding of
this field.

Table 5-5 — Bus request format for cable environment

Bit(s) Name Description

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

40 This is an unapproved standards draft, subject to change © 1997 IEEE

The request type field is encoded as shown in table 5-10.

The request speed field is encoded as shown in table 5-11. Although encoding for speeds up to S3200 is specified below,
the PHY/link interface defined by this supplement does not support speeds in excess of S400.

The PHY continuously monitors LReq for link requests and sets internal variables in response to the parameters of the
request. These actions occur independently of the state of the PHY arbitration control; the effects upon PHY arbitration,
if any, are a consequence of the values of the internal variables, as specified in clause 7.9. Table 5-12 summarizes the
effects of the various link requests.

4 Accelerate When zero, instructs the PHY to disable arbitration accelerations. A value of one
requests the PHY to enable arbitration accelerations.

5 Stop Bit Indicates end of transfer. Always 0.

Table 5-10 — Request type field

Request Type Name Meaning

0002 ImmReq Take control of the bus immediately upon detecting idle; do not arbitrate. Used for acknowledge
packets.

0012 IsoReq Arbitrate for the bus after an isochronous gap. Used for isochronous stream packets.

0102 PriReq Ignore the PHY’s fairness protocol and, unless accelerating, arbitrate after a subaction gap. Used
for cycle master or other packets for which the link need not wait for a fairness interval.

0112 FairReq Arbitrate within the current fairness interval if permitted by the PHY’s fairness interval, other-
wise arbitrate after an arbitration reset gap.

1002 RdReg Return specified register contents through status transfer.

1012 WrReg Write to specified register.

1102 AccCtrl Disable or enable PHY arbitration accelerations.

1112 — Reserved for future standardization

Table 5-11 — Request speed field

LR[4:6] Data rate

0002 S100

0012 S1600

0102 S200

0112 S3200

1002 S400

1102 S800

All other values Reserved

Table 5-12 — Link request effects on PHY variables

Request PHY variables affected Note

ImmReq,
IsoReq,
PriReq,
FairReq

breq,
speed

accelerating
(see note)

The breq variable is set to IMMED_REQ, ISOCH_REQ,
PRIORITY_REQ or FAIR_REQ according to the type of request.

The speed variable is set to S100, S200, etc. according to the encod-
ings specified by table 5-11.

The accelerating variable is affected only by an IsoReq, which
sets it to TRUE.

Table 5-9 — Acceleration control request format

Bit(s) Name Description

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 41

To request the bus for fair or priority access, the link sends a FairReq or PriReq after the interface has been idle for at
least one clock. The expected response to a bus request is grant on Ctl[0:1] which the PHY asserts after it has won arbi-
tration. Under other circumstances the PHY may cancel the bus request or retain it, pending the completion of other PHY
activity (see table 5-14). The link may reissue a cancelled request when the interface is subsequently idle.

The cycle master link uses a priority request (PriReq) to send the cycle start packet. To request the bus to send isochro-
nous data, the link issues an IsoReq while sending or receiving a cycle start or, during the same isochronous period, while
sending or receiving an isochronous packet. The PHY cancels an isochronous request when a subaction gap or bus reset
is observed

NOTE—In order to meet timing requirements, a link may issue an isochronous request after observing tcode 8 in a putative cycle start
packet but before verifying the CRC. If the CRC fails, the link should not transmit isochronous packet(s) but drop the isochronous
request as soon as possible.

To send an acknowledge, the link issues an ImmReq during or immediately after packet reception. This ensures that the
ACK_RESPONSE_TIME requirement is met and that other nodes do not detect a subaction gap. After the packet ends,
the PHY immediately takes control of Serial Bus and asserts grant on Ctl[0:1]. If the packet header CRC passed, the link
transmits an acknowledge. Otherwise, the link asserts idle on Ctl[0:1] for two SClk cycles after observing grant on
Ctl[0:1].

NOTE—Although unlikely, more than one node may perceive (one correctly, the others mistakenly) that an incoming packet is intended
for it and issue an immediate request before checking the CRC. The PHYs of all nodes would grab control of the bus immediately after
the packet is complete. This condition would cause a temporary, localized collision of DATA_PREFIX somewhere between the PHYs
intending to acknowledge while all the other PHYs on the bus would see DATA_PREFIX. This collision would appear as “ZZ” line
state and would not be interpreted as a bus reset. The mistaken node(s) should drop their request(s) as soon as they check the CRC; the
spurious “ZZ” line state would vanish. The only side-effect of such a collision might be the loss of the intended acknowledge packet,
which would be handled by the higher layer protocol.

A bus reset causes the PHY to cancel any pending bus request.

In response to register write requests, the PHY takes the value from the data field of the transfer and updates the
addressed register. For register read requests, the PHY returns the contents of the addressed register at the next oppor-
tunity through a status transfer. If the status transfer is interrupted by an incoming packet, the PHY restarts the status
transfer at the next opportunity.

Once the link issues a request for access to the bus, it shall not issue another bus request until the packet transmission is
complete or the request is cancelled. The PHY shall ignore bus requests issued while a previous request is pending.

RdReg — The values returned by a register read are unspecified after the PHY
gives indication of a bus reset until the PHY successfully transfers reg-
ister zero to the link.

WrReg See table 6-1 The PHY updates the addressed register with the data field
value from the request and sets the value of any PHY variables
that correspond to register bits or fields.

AccCtrl accelerating If the Accelerate bit in the request is zero accelerating is cleared
to FALSE; otherwise it is set TRUE.

Table 5-12 — Link request effects on PHY variables (Continued)

Request PHY variables affected Note

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

42 This is an unapproved standards draft, subject to change © 1997 IEEE

5.2.1 LReq rules

In general, the link issues requests asynchronously with respect to activities on Serial Bus. However, certain requests are
allowed only at specific times. Even when a request is issued at a valid time, Serial Bus activity may cause the PHY to
cancel the request or to defer the request until the other activity has been completed. This clause specifies when a link
may issue a request and the corresponding PHY behavior; these rules permit the link to unambiguously determine the
state—satisfied, cancelled or deferred—of a request.

For the purpose of these rules, two specific cycles are defined, labelled CA and CB in figure 5-4. The rules are specified
in terms of the values of the Ctl[0:1] lines during these cycles. CA is one or more SClk cycles before the link sends the
request’s start bit and CB is the cycle in which the link sends the request’s start bit. The disposition of the request is deter-
mined by the value of Ctl[0:1] from CB onwards.

General rules that govern link and PHY use of the request interface are as follows:

— the link shall not initiate a bus request (fair, priority, immediate or isochronous) until any outstanding bus request
has been granted or the link has been able to determine that it has been cancelled;

— the link should not issue a register read or write request when a previous register read or write request is outstand-
ing. PHY behavior in this case is undefined; and

— all pending bus requests (but not register read requests) are cancelled on a bus reset.

Additional rules for issuing a request are given in table 5-13.

Table 5-13 — Link rules to initiate a request on LReq

Request
Permitted when PHY has control of
the interface and Ctl[0:1] at CA is

Permitted when link
controls the interface Additional requirements

Fair,
Priority Idle, Status No

No fair or priority request shall be issued until
any outstanding bus request completes.

Immediate Receive, Idle No Sent after destination_ID decode during packet
reception when the link is ready to transmit an
acknowledge packet.

The start bit of an immediate request shall be
transmitted no later than the cycle subsequent to
that in which Ctl[0:1]went Idle following
packet reception.

Isochronous Any Yes Sent during an isochronous period when the
link is ready to transmit an isochronous packet.

The start bit of an isochronous request shall be
transmitted no later than a) the eighth cycle sub-
sequent to that in which Ctl[0:1] went from
Transmit to Idle or b) the fourth cycle subse-
quent to that in which Ctl[0:1] went from
Receive to Idle.

The link shall not issue an isochronous request
if it intends to concatenate a packet after the
current transmission.

Register read Any Yes Shall not be issued while there are pending reg-
ister read requests.

Register write Any Yes

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 43

In general, the PHY behavior varies dependent on whether another Serial Bus packet is detected before it has successfully
completed processing the LReq.

The link may determine the PHY treatment of the LReq by monitoring the value of Ctl[0:1] from CB onwards, as shown
in the following table:

Decelerate Any Yes Decelerate is issued by cycle slaves if
enab_accel is TRUE and shall be issued
once every isochronous period, as soon as pos-
sible after the local clock indicates the start of a
new isochronous period.

Accelerate Any Yes Accelerate may only be issued by cycle slaves
once every isochronous period, after an incom-
ing cycle start packet has been recognized and
after all of the link’s isochronous requests (if
any).

Table 5-14 — PHY disposition of link request

Request
Ctl[0:1]

(at CB or later) PHY behavior Link action

Fair, Priority Receive If arbitration acceleration is enabled, and the
incoming packet is null or has no more than 8
bits, then request retained, otherwise request
discarded as soon as the PHY determines that
the incoming packet has more than 8 bits.
Request always discarded if arbitration acceler-
ation is not enabled.

Continue to monitor for the next change on
Ctl[0:1] if request retained

Once the LINK starts shifting out the fair or pri-
ority LReq, both the LINK and the PHY moni-
tor the Ctl[0:1] lines to determine if the LReq is
to be cancelled. On every rising edge of SCLK
from CB onwards, if Receive is asserted on
Ctl[0:1] and enhanced arbitration is not enabled
in the PHY, the request is cancelled. If enhanced
arbitration is enabled in the PHY, then the
request is cancelled only if the received packet
is greater than 8 bits in length.

Grant Arbitration won Transmit packet

Idle, Status Retain the request unless a bus reset was
reported in the status.

Unless there was a bus reset, monitor Ctl[0:1] in
anticipation of Grant.

Immediate Grant Transmit the acknowledge packet

Receive PHY is still transferring a packet; the request is
retained

Continue to receive packet, then monitor
Ctl[0:1] in anticipation of Grant.

Idle, Status Retain the request unless a bus reset was
reported in the status.

Unless there was a bus reset, monitor Ctl[0:1] in
anticipation of Grant.

Isochronous Transmit, Idle
(driven by link)

Request retained by PHY Monitor Ctl[0:1] after releasing the interface.

Grant Arbitration won Transmit packet

Receive Request retained by PHY Monitor Ctl[0:1]

Status Request discarded if status indicates subaction
gap (this is an error condition and should not
occur), otherwise request retained unless status
reports a bus reset

Continue to monitor for the next change on
Ctl[0:1] if request retained

Idle Continue to monitor for the next change on
Ctl[0:1]

Table 5-13 — Link rules to initiate a request on LReq (Continued)

Request
Permitted when PHY has control of
the interface and Ctl[0:1] at CA is

Permitted when link
controls the interface Additional requirements

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

44 This is an unapproved standards draft, subject to change © 1997 IEEE

The PHY shall guarantee that neither subaction nor arbitration reset gap status information is lost because of a response
to a register read request. During some period prior to the anticipated detection of a gap, it may be necessary for the PHY
to defer completion of a register read request in order to avoid the loss of status information.

5.2.2 Acceleration control

The ack-accelerated and fly-by arbitration enhancements specified in clause 7.9 can have adverse effects on the isochro-
nous period if continuously enabled. Serial Bus relies upon the natural priority of the cycle master (root) to win arbitra-
tion and transmit the cycle start packet as soon as possible after cycle synchronization. Ack-accelerated or fly-by
acceleration by node(s) other than the root can prolong asynchronous traffic on the bus indefinitely and disrupt isochro-
nous operations.

The link avoids this problem by selectively disabling and enabling these arbitration enhancements. The acceleration con-
trol request permits the link to disable and enable ack-accelerated and fly-by arbitration enhancements while leaving the
other arbitration enhancements unaffected. The cycle master does not issue the acceleration control request.

The time period in which neither ack-accelerated nor fly-by accelerations may be used extends from the time of the local
cycle synchronization event until a cycle start packet is observed. During this period, the link at any node that is not the
cycle master shall use the acceleration control request as follows:

a) The time period in which neither ack-accelerated nor fly-by accelerations may be used extends from the time of
the local cycle synchronization event until one of an arbitration reset gap, cycle start packet or two subaction gaps
are observed;

b) The link shall not make a fair or priority request unless an acceleration control request with a zero Accelerate bit
has been transmitted since the most recent local cycle synchronization event;

c) Upon conclusion of this time period, the link may reenable ack-accelerated and fly-by acceleration by transmitting
an acceleration control request whose Accelerate bit is set to one.

NOTE—Link pattern-matching to detect a cycle start packet should examine the entire first quadlet of received primary packets for the
value FFFF 008F16 and not rely solely upon an observed transaction code of 8. The values of the cycle start packet fields are specified
by clause 6.2.2.2.3 of IEEE Std 1394-1995.

A link that makes one or more bus requests to transmit an isochronous packet need not use the acceleration control
request to reenable fly-by accelerations, since the isochronous request sets the accelerating variable to TRUE.

Register read Any
(driven by link)

Wait until link releases the interface then moni-
tor for the next change on Ctl[0:1]

Grant Request retained. Bus request LReq was previ-
ously issued, and now takes priority.

Service previous bus request, then monitor for
next change on Ctl[0:1]

Receive Request retained. Receive packet, then monitor for next change
on Ctl [0:1]

Status Request is retained by the PHY until corre-
sponding register data is returned.

If unrelated status is received or the desired
status is interrupted, monitor Ctl[0:1] for
desired status.

Idle Monitor Ctl[0:1]

Register write,
Acceleration

control

Any Request completed

Table 5-14 — PHY disposition of link request (Continued)

Request
Ctl[0:1]

(at CB or later) PHY behavior Link action

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 45

For a bus that does not have an active cycle master it is not necessary to use the acceleration control request. So long as
arbitration enhancements are enabled by Enab_accel in the PHY registers, the fly-by accelerations are also enabled by the
default value of accelerating after a power reset.

5.3 Status

When the PHY has status information to transfer to the link, it initiates a status transfer. The PHY waits until the interface
is idle to perform the transfer. The PHY initiates the transfer by asserting status (012) on Ctl[0:1], along with the first two
bits of status information on D[0:1]. The PHY asserts status on Ctl[0:1] for the duration of the status transfer. The PHY
may prematurely end a status transfer by asserting something other than status on Ctl[0:1]. This may be done in the event
that a packet arrives before the status transfer completes. There shall be at least one idle cycle in between consecutive
status transfers.

The PHY sends 16 bits of status in two cases: a) in response to a register read request or b) after a bus reset, to indicate
the node’s new physical ID. The latter is the only condition for which the PHY sends a register to the link without a cor-
responding register read request. In the case of event indications initiated by the PHY, four bits of status are sent to the
link. The timing for a status transfer is shown in figure 5-5.

The structure of the status data is specified by table 5-15 below.

Upon successful completion of status transfer to the link, status bits S[0:3] shall be zeroed.

NOTE—The PHY clears ARB_RESET_GAP and SUBACTION_GAP upon any transition out of state A0: Idle (see figure 7-9)—
whether or not this status information has been successfully transferred to the link.

The PHY may truncate a status transfer by removing the status indication on Ctl[0:1]. In this event, the PHY shall zero
whichever of the four status bits have been successfully transferred to the link. That is, if only S[0:1] have been trans-
ferred only S[0:1] shall be zeroed while if S[0:3] have been transferred all of S[0:3] shall be zeroed. The PHY shall rein-
itiate the status transfer at the earliest opportunity if either a) at least one of the four status bits S[0:3] is nonzero or b) the
truncated status transfer was intended to include PHY register data.

Figure 5-5 — Status timing

Table 5-15 — Status bits

Bit(s) Name Description

0 ARB_RESET_GAP The PHY has detected that Serial Bus has been idle for an arbitration reset gap time.

1 SUBACTION_GAP The PHY has detected that Serial Bus has been idle for a subaction gap time.

2 BUS_RESET_START The PHY has entered bus reset state.

3 PHY_interrupt This indicates one or more of the following interrupt conditions:

- Loop detect interrupt

- Cable power fail interrupt

- Arbitration state machine time-out

- Bias change detect (only on a disabled port) interrupt

4-7 Address Register number

8-15 Data Register contents

00 01 01 01 00 00

00 S[0,1] S[2,3] S[14,15] 00 00

PHY Ctl[0:1]

PHY D[0:1]

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

46 This is an unapproved standards draft, subject to change © 1997 IEEE

5.4 Transmit

When the link requests access to Serial Bus through the LReq signal, the PHY arbitrates for access to Serial Bus. If the
PHY wins the arbitration, it grants the bus to the link by asserting grant on Ctl[0:1] for one SClk cycle, followed by idle
for one cycle. After observing grant on Ctl[0:1], the link takes control of the interface by asserting idle, hold or transmit
on Ctl[0:1]. The link should assert idle for one cycle before changing the state of Ctl[0:1] to either hold or transmit but
shall not assert idle for more than one cycle. PHY implementations shall tolerate idle for one cycle prior to hold or trans-
mit. The link asserts hold to keep ownership of the bus while preparing data. The PHY asserts DATA_PREFIX on Serial
Bus during this time. When it is ready to begin transmitting a packet, the link asserts transmit on Ctl[0:1] along with the
first bits of the packet. After sending the last bits of the packet, the link asserts either idle or hold on Ctl[0:1] for one
cycle and then it asserts idle for one additional cycle before placing those signals in a high-impedance state.

An assertion of hold after the last bits of a packet indicates to the PHY that the link needs to send another packet without
releasing the bus. This function is used by the link to concatenate a packet after an acknowledge or to concatenate isoch-
ronous packets. With this assertion of hold the link simultaneously signals the speed of the next packet on the data lines,
as encoded by table 5-16. Once hold is asserted, the PHY waits a MIN_PACKET_SEPARATION time and then asserts
grant as before. After observing grant on Ctl[0:1], the link resumes control of the interface by asserting idle, hold or
transmit on Ctl[0:1]. The link should assert idle for one SClk cycle, but shall not assert idle for more than one cycle,
before changing Ctl[0:1] to hold or transmit. The link shall ensure that the time from when it asserts hold on Ctl[0:1] (at
the end of a packet) to when it asserts transmit on Ctl[0:1] (and starts to provide data for the concatenated packet on
D[0:n]) does not exceed MAX_BUS_HOLD less the delay between the PHY’s transmission of TX_DATA_PREFIX and
its assertion of grant on Ctl[0:1].

The link may transmit concatenated packets at a different speeds, with one exception: the link shall not concatenate an
S100 packet after any packet of a higher speed. When the link wishes to send an S100 packet after any packet of a higher
speed, it shall make a separate isochronous request.

NOTE—If the multi-speed capabilities of the PHY have not been enabled (see clause 6.1), all concatenated packets shall be transmitted
at the speed originally specified as part of the bus request. This requirement provides for backward compatibility when a PHY
compliant with this specification is interfaced to a link that is not aware of the necessity to signal speed for each packet.

As noted above, when the link has finished sending the last packet, it releases the bus by asserting idle on Ctl[0:1] for two
SClk cycles. The PHY begins asserting idle on Ctl[0:1] one cycle after sampling idle from the link.

NOTE—Whenever the link and PHY exchange ownership of D[0:n] and Ctl[0:1], the entity relinquishing control shall refrain from
sampling the interface for one cycle. This permits both link and PHY to act upon registered versions of the interface signals and also
permits the new owner one cycle in which to sample and respond.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 47

The timings for both a single and a concatenated packet transmit operation are illustrated in figure 5-6. In the diagram, D0
through Dn are the data symbols of the packet, SP represents the speed code for the packet (encoded according to the
values specified in table 5-16) and ZZ represents high impedance state. The link should assert the signals indicated by the
shaded SClk cycles (this may be necessary in the presence of an isolation barrier).

NOTE—It is not required that the link assert hold on Ctl[0:1] before sending a packet if the implementation permits the link to be ready
to transmit as soon as bus ownership is granted.

Figure 5-6 — Transmit timing

00

00

ZZ

ZZ

ZZ

00

00

ZZ00 11

ZZ ZZ

00 00

ZZ ZZ

00

ZZ

00

ZZ

ZZ

ZZ

00

00

11 00 ZZ ZZ ZZ ZZ ZZ ZZ ZZ 00

ZZ ZZ 01 01 10 10 10 10 00 ZZ

PHY Ctl[0:1]

Link Ctl[0:1]

00 00 ZZ ZZ ZZ ZZ ZZ ZZ ZZ 00PHY D[0:n]

ZZ ZZ 00 00 D0 D1 Dn 00 ZZLink D[0:n] D2

ZZ ZZ ZZ ZZ ZZ ZZ ZZ

10 01 00 01 01 10 10

PHY Ctl[0:1]

Link Ctl[0:1]

ZZ ZZ ZZ ZZ ZZ ZZ ZZPHY D[0:n]

Dn SP 00 00 D0 D1Link D[0:n] 00

Single Packet

Concatenated Packet

ZZ

ZZ

00

00

00

00

ZZ

ZZ

ZZ

ZZ

10

Dn-1

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

48 This is an unapproved standards draft, subject to change © 1997 IEEE

5.5 Receive

Whenever the PHY sees data prefix on Serial Bus, it initiates a receive operation by asserting receive on Ctl[0:1] and 1’s
on D[0:n]. The PHY indicates the start of a packet by placing the speed code (encoding shown in table 5-16) on D[0:n],
followed by the contents of the packet. The PHY holds Ctl[0:1] in receive until the last symbol of the packet has been
transferred. The PHY indicates the end of the packet by asserting idle on Ctl[0:1]. Note that signaling the speed code is a
PHY/link protocol and not a data symbol to be included in the calculation of the CRC.

It is possible that a PHY can see data prefix appear and then disappear on Serial Bus without seeing a packet. This is the
case when a packet of a higher speed than the PHY can receive is being transmitted. In this case, the PHY will end the
packet by asserting idle when data prefix goes away.

If the PHY is capable of a higher data rate than the link, the link detects the speed code as such and ignores the packet
until it sees the idle state again.

The timing for the receive operation is shown in figure 5-7. In the diagram, SP refers to the speed code and D0 through
Dn are the data symbols of the packet.

The speed code for the receive operation is defined as shown in table 5-16. This is also the same speed encoding used by
the link to signal speed to the PHY during concatenated packet transmission.

NOTE—The speed code is only applicable for cable applications. For backplane applications, the speed code is set to 00xxxxxx.

5.6 Electrical characteristics

This clause specifies the signal and timing characteristics of the interface between a discrete PHY and link.

Figure 5-7 — Receive timing

Table 5-16 — Speed code signaling

D[0:n]
Data rate

Transmitted Observed

000000002 00xxxxxx2
a

a. An “x” indicates ignored on receive.

S100

010000002 0100xxxx2 S200

010100002 010100002 S400

010100012 010100012 S800

010100102 010100102 S1600

010100112 010100112 S3200

111111112 11xxxxxx2 Data prefix indication

Phy Ctl[0:1] (binary)

Phy D[0:7](hex)

00 10 10 00 00

00 FF D0 D1 Dn 00 00

10 1010

SP

10

FF

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 49

5.6.1 DC signal levels and waveforms

DC parametric attributes of the PHY/link interface signals, in the case of direct connection, are specified by table 5-17.
Input levels may be greater than the power supply level (e.g., a 5 V output driving VOH into a 3.3 V input); tolerance of
mismatched input levels is optional. Devices not tolerant of mismatched input levels but which otherwise meet the
requirements below are compliant with this standard. VCC is obtained from the vendor’s specifications.

5.6.2 AC timing

The rise and fall time measurement definitions, tR and tF, for SClk, Ctl[0:1], D[0:n] and LReq are shown in figure 5-8.

Table 5-17 — TTL DC specifications for direct PHY/link interface

Name Description Conditions Unit Minimum Nominal Maximum

VOH Output high voltage IOH = max
VCC = min

V VCC - 0.55 3.0 VCC

VOL Output low voltage IOL = max
VCC = min

V GND 0.25 0.55

VIH Input high voltage V 2.35 VCC
a+10%

a. Refers to driving device’s power supply

VIL Input low voltage V GND 0.8

IIH Input high current VIN = VCC
VCC = max

µA 40

IIL Input low current VIN = GND
VCC = max

µA 600

CIN Input capacitance pF 4.0

tR Rise time 0.8 V to 2.0 V ns 0.7 2.4

tF Fall time 2.0 V to 0.8 V ns 0.7 2.4

tR Ctl[0:1], D[0:n] and
LReq rise times

0.8 V to 2.0 V ns 0.7

tF Ctl[0:1], D[0:n] and
LReq fall times

2.0 V to 0.8 V ns 0.7

Figure 5-8 — Signal levels for rise and fall times

2.35V2.35V

0.8V0.8V

tR tF

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

50 This is an unapproved standards draft, subject to change © 1997 IEEE

Other signal characteristics of the PHY/link interface are specified by table 5-18. If an isolation barrier is implemented it
shall cause neither delay nor skew in excess of the values specified. AC measurements shall be taken from the 1.575 V
level of SClk to the input or output Ctl[0:1], D[0:n] or LReq levels and shall assume an output load of 10 pF.

Figures 5-9 and 5-10 below illustrate the transfer waveforms as observed at the PHY. A PHY shall implement values for
tpd1, tpd2 and tpd3 within the limits specified in table 5-19 and shall not depend upon values for tpsu and tph less than
the minimums specified; the measurements shall be taken at the PHY.

The values for the timing parameters illustrated above are specified below.

Table 5-18 — AC timing parameters

Name Description Unit Minimum Maximum

SClk frequency MHz 49.152 ± 100 ppm

SClk duty cycle % 40 60

tR Rise time from 0.8 V to 2.35 V ns 0.7 2.4

tF Fall time from 2.35 V to 0.8 V ns 0.7 2.4

idel Delay through isolation barrier ns 0 2

Skew through isolation barrier ns 0 0.5

Hysteresis input rising threshold V Vcc/2 + 0.2 Vcc/2 + 1.3

Hysteresis input falling threshold V Vcc/2 - 1.3 Vcc/2 - 0.2

Isolation barrier recovery time µs 0 10

Figure 5-9 — PHY to link transfer waveform at the PHY

Figure 5-10 — Link to PHY transfer waveform at the PHY

Table 5-19 — AC timing parameters at the PHY

Name Description Unit Minimum Maximum

tlsu Setup time,
D[0:7] and Ctl[0:1] outputs before SClk

ns 6.5

tlh Hold time
D[0:7] and Ctl[0:1] outputs after SClk

ns 0.5

tpd1 Delay time,
SClk input high to initial instance of D[0:n]
and Ctl[0:1] outputs valid

ns 0.5 13.5

tpd2 Delay time,
SClk input high to subsequent instance(s) of
D[0:n] and Ctl[0:1] outputs valid

ns 0.5 13.5

SClk

D[0:n]
Ctl[0:1]

tpd1 tpd2 tpd3

SClk

D[0:n]
tpsu tph

Ctl[0:1]
LReq

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 51

Figures 5-11 and 5-12 below illustrate the transfer waveforms as observed at the link. A link shall implement values for
tld1, tld2 and tld3 within the limits specified in table 5-20 and shall not depend upon values for tlsu and tlh less than the
minimums specified; the measurements shall be taken at the link.

The values for the timing parameters illustrated above are specified below.

.

tpd3 Delay time,
SClk input high to D[0:n]] and Ctl[0:1] invalid
(high-impedance)

ns 0.5 13.5

tpsu Setup time
D[0:n], Ctl[0:1] and LReq inputs before SClk

ns 6

tph Hold time
D[0:n], Ctl[0:1] and LReq inputs after SClk

ns 0

Figure 5-11 — PHY to link transfer waveform at the link

Figure 5-12 — Link to PHY transfer waveform at the link

Table 5-20 — AC timing parameters at the link

Name Description Unit Minimum Maximum

tld1 Delay time,
SClk input high to initial instance of D[0:n],
Ctl[0:1] and LReq outputs valid

ns 1 10

tld2 Delay time,
SClk input high to subsequent instance(s) of
D[0:n], Ctl[0:1] and LReq outputs valid

ns 1 10

tld3 Delay time,
SClk input high to D[0:n], Ctl[0:1] and LReq
invalid (high-impedance)

ns 1 10

tlsu Setup time,
D[0:n] and Ctl[0:1] inputs before SClk

ns 6

tlh Hold time,
D[0:n] and Ctl[0:1] inputs after SClk

ns 0

Table 5-19 — AC timing parameters at the PHY (Continued)

Name Description Unit Minimum Maximum

SClk

D[0:n]
Ctl[0:1]

tlsu tlh

SClk

D[0:n]
Ctl[0:1]
LReq

tld1 tld2 tld3

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

52 This is an unapproved standards draft, subject to change © 1997 IEEE

5.6.3 AC timing (informative)

The protocol of this interface is designed such that all inputs and outputs at this interface can be registered immediately
before or after the I/O pad and buffer. No state transitions need be made that depend directly on the chip inputs; chip out-
puts can come directly from registers without combinational delay or additional loading. This configuration provides gen-
erous margins on setup and hold time.

In the direction from the PHY to the link, timing follows normal source-clocked signal conventions. A 0.5 ns allowance
is made for skew through an (optional) isolation barrier.

In the direction from the link to the PHY, the data is timed at the PHY in reference to SClk, whose frequency allows a
nominal budget of 20 ns for delay, inclusive of the PHY input setup time. Possible sources of delay are an isolation bar-
rier or internal SClk delay at the link caused by a clock tree. Figure 5-13 illustrates the relationship of these delays. Note
that the maximum round-trip delay of 14 ns (calculated as tdrt1max = idelmax + tld1max + idelmax) provides generous
delays for both the link and the PHY. The link, after the receipt of SClk, has 10ns to assert valid data while at the PHY
the minimum input setup for the subsequent SClk cycle is 6 ns (calculated as tpsumin = 20 ns - tdrt1max). Also note that
the minimum round-trip delay until the next change in data of 21 ns (calculated as
tdrt2min = 20 ns + idelmin + tld2min + idelmin) limits the hold time at the PHY to 1 ns (calculated as tlhmin = tdrt2min -
20 ns); the hold time is further reduced to zero to provide a guard band of 1 ns.

Figure 5-13 — Link to PHY delay timing

SClk out
from PHY

SClk in
to link

C, D, LReq
out from link

C, D, LReq
in to PHY

20 ns

idel

tld1

tdrt1

idel

tpsu tph

tld2

idel

tdrt2

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 53

The values for the delays illustrated above are given by table 5-21 below.

Table 5-21 — Link to PHY delay timing parameters

Name Description Unit Minimum Maximum

tdrt1 Round-trip delay from SClk output at the PHY
to valid Ctl[0:1], D:[0:7] and LReq at the PHY

ns 1 14

tdrt2 Round-trip delay from SClk output at the PHY
to changed or invalid Ctl[0:1], D:[0:7] and
LReq at the PHY

ns 21 34

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

54 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 55

6. PHY register map

Although Annex J of IEEE Std 1394-1995, from which this section is derived, originally described an interface to a dis-
crete PHY, the material that follows is normative for both discrete and integrated PHY and link implementations. In addi-
tion, link implementations shall provide a means for software or firmware to access the PHY registers defined in the
clauses that follow.

6.1 PHY register map (cable environment)

In the cable environment, the extended PHY register map illustrated by figure 6-1 shall be implemented by all designs
compliant with this supplement. Reserved fields are shown shaded in grey.

The meaning, encoding and usage of all the fields in the extended PHY register map are summarized by table 6-1. Power
reset values not specified are resolved by the operation of the PHY state machines subsequent to a power reset.

Figure 6-1 — Extended PHY register map for the cable environment

Table 6-1 — PHY register fields for the cable environment

Field Size Type Power reset value Description

Physical_ID 6 r The address of this node determined during self-identification. A value of 63
indicates a malconfigured bus; the link shall not transmit any packets.

R 1 r When set to one, indicates that this node is the root.

PS 1 r Cable power status (see clause 7.2).

RHB 1 rw 0 Root hold-off bit. When set to one, instructs the PHY to attempt to become the
root during the next tree identify process.

Physical_ID PSR

RHB IBR Gap_count

Max_speed

Page_select

Extended (7)

Token

Total_ports

Link_active PwrContender

Port_select

Contents

0 1 2 3 4 5 6 7Address

00002

00012

00102

00112

01002

01012

01102

01112

Sleep ISBR Loop Pwr_fail Enab_accel Enab_multi

Register0Page_select

Register7Page_select

… …

10002

11112

…

Timeout Bias_change

Delay

Jitter

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

56 This is an unapproved standards draft, subject to change © 1997 IEEE

IBR 1 rw 0 Initiate bus reset. When set to one, instructs the PHY to set ibr TRUE and
reset_time to RESET_TIME. These values in turn cause the PHY to ini-
tiate a bus reset immediately without arbitration; the reset signal is asserted for
166 µs. This bit is self-clearing.

Gap_count 6 rw 3F16 Used to configure the arbitration timer setting in order to optimize gap times
according to the topology of the bus. See 4.3.6 of IEEE Std 1394-1995 for the
encoding of this field.

Extended 3 r 7 This field shall have a constant value of seven, which indicates the extended
PHY register map.

Total_ports 5 r vendor-dependent The number of ports implemented by this PHY.

Max_speed 3 r vendor-dependentIndicates the speed(s) this PHY supports:
0002 98.304 Mbit/s
0012 98.304 and 196.608 Mbit/s
0102 98.304, 196.608 and 393.216 Mbit/s
0112 98.304, 196.608, 393.216 and 786.43 Mbit/s
1002 98.304, 196.608, 393.216, 786.432 and 1,572.864 Mbit/s
1012 98.304, 196.608, 393.216, 786.432, 1,572.864 and 3,145.728 Mbit/s

All other values are reserved for future definition

Token 1 r vendor-dependent When set to one, indicates that the PHY is capable of token-style arbitration
(which shall be separately enabled for each port by the enab_token bit).

Delay 4 r vendor-dependent Worst-case repeater delay, expressed as 144 + (delay * 20) ns.

Link_active 1 rw 1 Link active. Cleared or set by software to control the value of the L bit trans-
mitted in the node’s self-ID packet 0, which shall be the logical AND of this bit
and LPS active.

Contender 1 rw See description Contender. Cleared or set by software to control the value of the C bit transmit-
ted in the self-ID packet. If hardware implementation-dependent means are not
available to configure the power reset value of this bit, the power reset value
shall be zero.

Jitter 3 r vendor-dependent The difference between the fastest and slowest repeater data delay, expressed
as (jitter + 1) * 20 ns.

Pwr 3 rw vendor-dependent Power class. Controls the value of the pwr field transmitted in the self-ID
packet. See 4.3.4.1 of IEEE Std 1394-1995 for the encoding of this field.

Sleep 1 rw ? Sleep mode. When set to one, places the PHY in the as-yet-to-be-defined sleep
mode. If sleep mode is not supported a write to this bit has no effect.

ISBR 1 rw 0 Initiate short (arbitrated) bus reset. A write of one to this bit instructs the PHY
to set isbr TRUE and reset_time to SHORT_RESET_TIME. These
values in turn cause the PHY to arbitrate and issue a short bus reset. This bit is
self-clearing.

Loop 1 rw 0 Loop detect. A write of one to this bit clears it to zero.

Pwr_fail 1 rw 0 Cable power failure detect. Set to one when the PS bit changes from one to
zero. A write of one to this bit clears it to zero.

Timeout 1 rw 0 Arbitration state machine timeout. A write of one to this bit clears it to zero.

Bias_change 1 rw 0 Bias change detect. Set to one when TP bias changes on any disabled port. The
state of TP bias for enabled ports does not affect this bit. A write of one to this
bit clears it to zero.

Enab_accel 1 rw 0 Enable arbitration acceleration. When set to one, the PHY shall use the
enhancements specified in clause 7.9.

Enab_multi 1 rw 0 Enable multi-speed packet concatenation. When set to one, the link shall signal
the speed of all packets to the PHY.

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 57

The RHB bit should be zero unless it is necessary to establish a particular node as the cycle master. In particular, bus man-
ager- and isochronous resource manager-capable nodes should not set their RHB bit(s) to one and should not attempt to
become the root unless there is no cycle master. This recommendation is made in anticipation of a requirement for Serial
Bus to Serial Bus bridges to become root to distribute the cycle clock.

When any one of the Loop, Pwr_fail, Timeout or Bias_change bits transitions from zero to one, PHY_interrupt shall be
set to one. PHY_interrupt is reported as S[3] in a PHY status transfer, as specified by clause 5.3. These bits in PHY reg-
ister five are unaffected by writes to the register if the corresponding bit position is zero. When the bit written to the PHY
register is one, the corresponding bit is zeroed.

The upper half of the PHY register space, addresses 10002 through 11112, inclusive, provides a windows through which
additional pages of PHY registers may be accessed. This supplement defines pages zero, one and seven: the Port Status
page, the Vendor Identification page and a vendor-dependent page. Other pages are reserved.

The Port Status page is used to access configuration and status information for each of the PHY’s ports. The port is
selected by writing zero to Page_select and the desired port number to Port_select in the PHY register at address 01112.
The format of the Port Status page is illustrated by figure 6-2 below; reserved fields are shown shaded in grey.

Page_select 3 rw vendor-dependent Selects which of eight possible PHY register pages are accessible through the
window at PHY register addresses 10002 through 11112, inclusive.

Port_select 5 rw vendor-dependent If the page selected by Page_select presents per port information, this field
selects which port’s registers are accessible through the window at PHY regis-
ter addresses 10002 through 11112, inclusive. Ports are numbered monotoni-
cally starting at zero, p0.

Figure 6-2 — PHY register page 0: Port Status page

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description

AStat BStat Ch Con

Contents

0 1 2 3 4 5 6 7Address

10002

10012

10102

10112

11002

11012

11102

11112

Bias Dis

Enab_tokenNegotiated_speed

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

58 This is an unapproved standards draft, subject to change © 1997 IEEE

The meanings of the register fields with the Port Status page are defined by the table below.

The AStat, BStat, Ch and Con fields are present in both the legacy and extended PHY registers and have identical mean-
ings, defined by table 6-2 above, in both cases.

Table 6-2 — PHY register Port Status page fields

Field Size Type Description

AStat 2 r TPA line state for the port:

002 = invalid
012 = 1
102 = 0
112 = Z

BStat 2 r TPB line state for the port (same encoding as AStat)

Ch 1 r If equal to one, the port is a child, else a parent. The meaning of this bit is undefined
from the time a bus reset is detected until the PHY transitions to state T1: Child
Handshake during the tree identify process (see 4.4.2.2 in IEEE Std 1394-1995).

Con 1 r If equal to one, the port is connected, else disconnected. The power reset value is
zero. This bit reports the value of the connected variable for the port (see the
connection_status() function in table 7-18).

Bias 1 r If equal to one, bias voltage is detected (possible connection). The value reported by
this bit is filtered by hysteresis logic, with a time of CONNECT_TIMEOUT, to reduce
multiple status changes caused by contact scrape when a connector is inserted or
removed.

Dis 1 rw When set to one, the port shall be disabled. The value of this bit subsequent to a
power reset is implementation-dependent, but should be a hardware configurable
option.

Negotiated_speed 3 r Indicates the maximum speed negotiated between this PHY port and its immediately
connected port; the encoding is the same as for the Max_speed field in PHY register
3.

Enab_token 1 rw Enable token-style arbitration. When set to one, the enhancements specified in
clause 7.9 shall be enabled for this port. The power reset value is zero.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 59

The Vendor Identification page is used to identify the PHY’s vendor and compliance level. The page is selected by writ-
ing one to Page_select in the PHY register at address 01112. The format of the Vendor Identification page is illustrated
by figure 6-3 below; reserved fields are shown shaded in grey.

The meanings of the register fields within the Vendor Identification page are defined by the table below.

The vendor-dependent page provides registers set aside for use by the PHY’s vendor. The page is selected by writing
seven to Page_select in the PHY register at address 01112. The PHY vendor shall determine the meaning of Port_select
when Page_select equals seven. PHY vendors may implement and specify the format of up to eight vendor-dependent
registers, at addresses 10002 through 11112, inclusive.

Figure 6-3 — PHY register page 1: Vendor Identification page

Table 6-3 — PHY register Vendor Identification page fields

Field Size Type Description

Compliance_level 8 r Standard to which the PHY implementation complies:

0 = not specified
1 = IEEE P1394a
All other values reserved for future standardization

Vendor_ID 24 r The company ID or Organizationally Unique Identifier (OUI) of the manufacturer
of the PHY. This number is obtained from the IEEE Registration Authority Commit-
tee (RAC). The most significant byte of Vendor_ID appears at PHY register location
10102 and the least significant at 11002.

Product_ID 24 r The meaning of this number is determined by the company or organization that has
been granted Vendor_ID. The most significant byte of Product_ID appears at PHY
register location 11012 and the least significant at 11112.

Compliance_level

Contents

0 1 2 3 4 5 6 7Address

10002

10012

10102

10112

11002

11012

11102

11112

Vendor_ID

Product_ID

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

60 This is an unapproved standards draft, subject to change © 1997 IEEE

6.2 PHY register map (backplane environment)

The backplane environment has a PHY register map similar to that of the cable environment, except that certain fields are
not used and that other fields shall always be set to a particular value. In addition, the backplane environment may make
use of the enhanced register map to indicate an enhanced register that contains the transceiver disable (TD) and Priority
fields.

With the exception of the fields specified by the table below, the meaning of the backplane PHY register fields is the
same as for the cable environment (see table 6-1).

Figure 6-4 — PHY register map for the backplane environment

Table 6-4 — PHY register fields for the backplane environment

Field Size Type Description

Physical_ID 6 rw The address of this node; unlike the equivalent field in the cable environment,
the physical ID in the backplane environment is writable.

IBR 1 rw Initiate bus reset. When set to one, instructs the PHY to initiate a bus reset
immediately (without arbitration). This bit causes assertion of the reset signal
for approximately 8 µs and is self-clearing.

E 1 r If equal to zero, no enhanced registers are used.
If equal to one, enhanced registers at address 01002 and 01012 are present.

Total_ports 5 r The number of ports on this PHY. In the backplane environment there is one
port per PHY.

AStat0 2 r Data line state (uses the same encoding as for cable).

BStat0 2 r Strobe line state (uses the same encoding as for cable).

ENV 2 r Present if the E bit is one. ENV shall be equal to zero in the backplane envi-
ronment; other values are reserved.

Reg_count 6 r Present if the E bit is one, in which case it shall be greater than or equal to
one. When Reg_count is greater than one, the format of additional enhanced
registers at addresses 01102 and above are vendor-dependent.

TD 1 rw Transceiver disable. When set to one the PHY shall set all bus outputs to a
high-impedance state and ignore any link layer service actions that would
require a change to this bus output state.

Priority 4 rw This field shall contain the priority used in the urgent arbitration process and
shall be transmitted as the pri field in the packet header.

Physical_ID

IBR

AStat0 BStat0

E Total_ports (1)

ENV (0) Reg_count (1)

Priority

Contents

0 1 2 3 4 5 6 7Address

00002

00012

00102

00112

01002

01012 TD

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 61

6.3 Integrated link and PHY

The register map described in the preceding clauses is specified to assure interoperability between discrete link and PHY
implementations offered by different vendors. Because the PHY registers are the only means available to software to con-
trol or query the state of the PHY, these register definitions are also critical to software.

An integrated link and PHY implementation shall present the appropriate register map standardized in the preceding
clauses. The status that may be read from the registers and the behavior caused by a write to the registers shall be identi-
cal with that of a discrete link and PHY combination.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

62 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 63

7. Cable physical layer performance enhancement specifications

This section of the supplement specifies a set of related enhancements to the physical layer of Serial Bus. When imple-
mented as a group they can significantly increase both the efficiency and robustness of Serial Bus. The enhancements
address the following:

— Connection hysteresis (debounce). When a connector is inserted or removed from a socket, electrical contact is
made and broken countless times in a short interval. The existing standard does not take this into account and as
a consequence a storm of bus resets occurs when a connection is made or broken. These resets are highly disrup-
tive to isochronous traffic on the bus. This supplement specifies a connection time-out to avoid the problem.

— Arbitrated (short) bus reset. The current definition of bus reset assumes that the state of the bus is not known
when a reset is initiated. The minimum reset assertion time must be long enough to complete any packet transmis-
sion that may have been in progress. However, if reset is asserted after first arbitrating for the bus the minimum
reset time can be significantly reduced.

— Multiple-speed packet concatenation. There is a defect in IEEE Std 1394-1995 in that PHYs are required to trans-
mit a speed signal only for the first packet of a multiple packet sequence yet they are expected to receive a sepa-
rate speed signal for each packet. Faced with this contradiction, different vendors have attempted sensible
interpretations; the interpretations have not been uniform and this has already resulted in observed interoperability
problems with PHYs from different vendors. New requirements for PHYs in this supplement correct the defect
and promote interoperability between existing PHYs and those that conform to this supplement.

— Arbitration improvements. There are two circumstances identified in which a node may arbitrate for the bus with-
out first observing a subaction gap. One occurs when a primary packet is observed and then propagated toward the
root: fly-by arbitration. The other occurs subsequent to the observation of an acknowledge packet: ack-accelerated
arbitration.

— Token-style arbitration. A group of cooperating nodes may take advantage of inherent Serial Bus characteristics
by coordinating bus arbitration requests such that the node closest to the root arbitrates before the others within
the group but then yields the arbitration grant to the node furthest from the root. After this furthest node transmits
one or more packets, the nodes successively closer to the root employ ack-accelerated or fly-by arbitration to con-
catenate their transmissions without the necessity for subaction gaps.

— Transmission delay calculation (PHY pinging). The ability for a PHY to transmit a “ping” packet to a another
PHY and time its return permits the inclusion of cables longer than 4.5 meters or PHYs with delays longer than
144 ns into Serial Bus topologies.

— Extended speed encoding. Although speeds in excess of S400 are not specified by this supplement, the coding in-
frastructure in the self-ID packets is established for future use.

These enhancements affect virtually all characteristics of the PHY, from reset detection to the normal arbitration state
machines. As a consequence they are difficult to specify in isolation; the clauses that follow replace existing clauses of
IEEE Std 1394-1995 in their entirety and are so identified.

7.1 Cable topology

Informative sections of IEEE Std 1394-1995 assume that Serial Bus cable topologies are limited by individual cable
lengths less than or equal to 4.5 meters and a maximum hop count (between the two most distant leaf nodes) of 16. There
are no normative statements in IEEE Std 1394-1995 that mandate either of these requirements.

New facilities specified by this supplement, the ping packet and the self-ID packet(s) sent in response, permit the config-
uration of usable Serial Bus topologies with longer cables or greater hop counts. Any topology whose arbitration behavior
can be characterized by a gap count less than or equal to 3F16 is permitted.

NOTE—In the absence of a bus manager to time the worst-case Serial Bus round trip delay, cable lengths less than or equal to 4.5
meters and a maximum hop count of 16 are recommended.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

64 This is an unapproved standards draft, subject to change © 1997 IEEE

7.2 Cable power and ground

This clause replaces 4.2.2.7 of IEEE Std 1394-1995, “Power and ground,” in its entirety.

A node may be a power source, a power sink or neither and may assume different roles at different times. The principal
method by which a node identifies its power class is the self-ID packet transmitted subsequent to a bus reset (see
clause 7.4.1). There may be other facilities, for example in a node’s configuration ROM, that identify the power charac-
teristics of a node in more detail than is possible in the self-ID packet; these are beyond the scope of this standard.

Serial Bus may be unpowered or powered; in the latter case, there may be more than one power source. The possibility of
multiple sources requires that power sources be manufactured such that current from a node providing higher voltage does
not flow into sources of lower output voltage. Power sources that identify themselves with POWER_CLASS of one, two
or three in their self-ID packet(s) shall implement, for each of their ports, the diode and current limiting scheme illustrated
by figure 7-1.

Cable power sources that do not identify themselves as such in their self-ID packets shall not permit the inflow of power
from a higher voltage power source, but the implementation details may differ from figure 7-1. All cable power sources
shall meet the following requirements:

In addition, cable power sources shall provide over-voltage and short-circuit protection.

Figure 7-1 — Node power interface for POWER_CLASS one, two or three

Table 7-1 — Cable power source requirements

Condition Limit Units

Maximum output current per port 1.5 Amp

Minimum output voltage (POWER_CLASS one, two or three) 20 Vdc

Minimum output voltage (all other POWER_CLASS values) 8 Vdc

Maximum output voltage 33 Vdc

Maximum output ripple (1 kHz to 400 MHz) 100 mV
(peak-to-peak)

VP
VG
TPA/B

4

socket for
port 0

socket for
port n

socket for
port 1

power for
cable

fuse or
current limit to

protect
against shorts

diodes to
protect

against higher
cable voltage

VP
VG
TPA/B

4

VP
VG
TPA/B

4

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 65

When cable power is available, it is in the nominal range 7.5 V to 33 V. A PHY that detects cable power of at least 7.5 V
shall set the PS bit (cable power status) in its registers to one. The PS bit shall be cleared to zero when detectable voltage
is below this value. When the PS bit transitions from one to zero the PHY shall generate a PH_EVENT.indication of
CABLE_POWER_FAIL.

NOTE—A cable powered PHY may not be operational if the voltage falls below 7.5 V. If a cable PHY remains operational at the
reduced voltage it shall report the loss of cable power as specified above.

If a node uses cable power, it shall meet the following requirements:

— It shall consume no more than 3 W of power after a power reset or after being initially connected to the bus (tran-
sition from all ports unconnected to any port connected). The receipt of a PHY link-on packet enables the node to
consume additional power up to the limit specified by the node’s self-ID packet(s);

— Inrush energy shall not exceed 18 mJ in 3 ms; and

— The node’s current consumption, expressed as a function of the node’s maximum current requirements, Iload in
A(s), shall meet the following requirements:

1) The peak-to-peak ripple shall be les than or equal to (Iload / 1.5 A) * 100 mA; and

2) The slew rate (change in load current) shall be less than Iload in any 100 µs period.

The sum of the DC currents on VG and VP, for any node that consumes cable power, shall be less than 50µA.

When power is available from electric mains or from batteries, all nodes with two or more ports shall repeat bus signals
on all ports that are both connected and enabled. When power is not available the node shall either:

— power its PHY from cable power, if available, and repeat bus signals on all ports that are both connected and en-
abled; or

— in the case where the PHY is off, prevent cable power from flowing from any port to any other port.

Nodes may be part of a module that implements a “soft” power switch. When the module connected to the electric mains
is powered off, the preferred method to power the PHY is a trickle source from the electric mains. For battery powered
modules that are powered off or for other modules when trickle power is not feasible, the preferred alternative is to power
the PHY from the cable. The last alternative, an inactive PHY and a break in the bus power distribution, is not recom-
mended.

7.3 Data signal rise and fall times

Table 7-2 below replaces table 4-22 in IEEE Std 1394-1995. The output rise and fall times for data signals are measured
from 10% to 90% at the connector and are dependent on the data rate. This supplement adds minimum rise and fall times
to the specification.

NOTE—The differential received signal amplitude specification in table 4-13 of IEEE Std 1394-1995 is not a receiver sensitivity
specification for PHY inputs. Designers should consider factors such as the worst-case received waveform (e.g., slow rise or fall times
near the signal thresholds) and board design characteristics when choosing receiver sensitivity.

Table 7-2 — Output rise and fall times

Speed
Rise or fall time

Minimum Maximum

S100 0.5 ns 3.2 ns

S200 0.5 ns 2.2 ns

S400 0.5 ns 1.2 ns

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

66 This is an unapproved standards draft, subject to change © 1997 IEEE

7.4 Cable PHY packets

This clause extends the definition of PHY packets and completely replaces IEEE Std 1394-1995 clause 4.3.4, “Cable PHY
packets.” For convenience of reference and to correct typographical errors, all of the existing PHY packet definitions are
reproduced followed by the new definitions. With the exception of the expansion of the speed code to four bits in the self-
ID packet, there are no substantive changes to the previously defined packet formats.

The cable physical layer sends and receives a small number of short packets which are used for bus management. These
PHY packets all consist of 64 bits, with the second 32 bits being the logical inverse of the first 32 bits; they are all sent
at the S100 speed. If the first 32 bits of a received PHY packet do not match the complement of the second 32 bits, the
PHY packet shall be ignored.

The cable physical layer packet types are

a) The self-ID packet

b) The link on packet

c) The PHY configuration packet

d) The extended PHY configuration packets (which family includes, at present, only the ping packet)

NOTE—The PHY packets can be distinguished from the null-data isochronous packet (the only link packet with exactly two quadlets)
since the latter uses a 32-bit CRC as the second quadlet, while the PHY packets use the bit inverse of the first quadlet as the second.

Self-ID packets autonomously generated by the PHY shall also be transferred to the attached link. This differs from the
behavior of PHYs compliant with IEEE Std 1394-1995.

PHY packets originated by the attached link shall be processed by the PHY as if they were received from Serial Bus.

7.4.1 Self-ID packets

The cable PHY sends one to three self-ID packets at the base rate during the self-ID phase of arbitration or in response to
a “ping” packet. The number of self-ID packets sent depends on the maximum number of ports implemented. The cable
PHY self-ID packets have the following format:

Self-ID packets with sequence numbers, n, between 2 and 7, inclusive, are reserved for future standardization.

Figure 7-2 — Self-ID packet formats

p14 p15

logical inverse of first quadlet

phy_ID10 pwrsp0 p0 p1 p2L i

self-ID packet #0

gap_cnt c m
transmitted first

transmitted last

phy_ID10 rsv1 p8 p9 p10n (0) r

self-ID packet #1

m
transmitted first

p3 p4 p5 p6 p7

transmitted last

logical inverse of first quadlet

rsv

transmitted last

phy_ID10 rsv1 reservedn (1)

self-ID packet #2

transmitted first
p11 p12 p13

logical inverse of first quadlet

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 67

NOTE—IEEE Std 1394-1995 defines self-ID packet formats that permit a maximum of four self-ID packets to be generated by a PHY.
Although this supplement defines only three self-ID packets, link designers should accommodate the reception of up to 252 self-ID
packets during the self-identify process. Such a link design both supports IEEE Std 1394-1995 and permits future Serial Bus standards
to define an additional self-ID packet without adverse impact on contemporary links.

Some of the information in the self-ID packets changes in accordance with the node’s operating mode. For example a
node that is initially a power consumer but subsequently supplies power would report a different value for the pwr field.
Whenever any part of the node’s configuration described by the self-ID packets changes and there is no expectation that
interested parties would otherwise discover the change(s), the node should initiate a bus reset in order to transmit updated
self-ID packets.

Table 7-3 — Self-ID packet fields

Field Derived from Comment

phy_ID physical_ID Physical node identifier of the sender of this packet

L LPS
Link_active

If set, this node has active link and transaction layers. In discrete PHY implementations,
this shall be the logical AND of Link_active and LPS active.

gap_cnt gap_count Current value for this nodes’ PHY_CONFIGURATION.gap_count field.

sp PHY_SPEED Speed capabilities:
002 98.304 Mbit/s
012 98.304 and 196.608 Mbit/s
102 98.304, 196.608 and 393.216 Mbit/s
112 Extended speed capabilities reported in PHY register 3

c CONTENDER If set and the link_active flag is set, this node is a contender for the bus or isochronous
resource manager as described in clause 8.4.2 of IEEE Std 1394-1995.

pwr POWER_CLASS Power consumption and source characteristics:
0002 Node does not need power and does not repeat power.
0012 Node is self-powered and provides a minimum of 15 W to the bus.
0102 Node is self-powered and provides a minimum of 30 W to the bus.
0112 Node is self-powered and provides a minimum of 45 W to the bus.
1002 Node may be powered from the bus and is using up to 3 W. No additional power

is needed to enable the linka.
1012 Reserved for future standardization.
1102 Node is powered from the bus and is using up to 3 W. An additional 3 W is

needed to enable the linka.
1112 Node is powered from the bus and is using up to 3 W. An additional 7 W is

needed to enable the linka.

a. The link is enabled by the link-on PHY packet described in clause 7.4.2; this packet may also enable
application layers.

p0 … p15 NPORT,
child[n],
connected[n]

Port connection status:
112 Connected to child node
102 Connected to parent node
012 Not connected to any other PHY
002 Not present on this PHY

i initiated_reset If set, this node initiated the current bus reset (i.e., it started sending a bus_reset signal
before it received one)b (Optional. If not implemented, this bit shall be zero)

b. There is no guarantee that exactly one node will have this bit set. More than one node may request a bus
reset at the same time.

m more_packets If set, another self-ID packet for this node will immediately follow (i.e., if this bit is set and
the next self-ID packet received has a different phy_ID, then a self-ID packet was lost)

n Extended self-ID packet sequence number

r, rsv Reserved for future standardization, set to zeros

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

68 This is an unapproved standards draft, subject to change © 1997 IEEE

7.4.2 Link-on packet

For those nodes that do not automatically power-on their link layer circuitry, Reception of the following cable PHY
packet shall cause a PH_EVENT.indication of LINK_ON. (See clause 8.4.4 of IEEE Std 1394-1995, “Power management
(cable environment),” for more information.)

NOTE—A link-on packet is advisory. A PHY that receives a link-on packet shall provide a PH_EVENT.indication of LINK_ON to its
associates link but the link is not required to take any action. If a link does become functional in response to a link-on packet there are
is no maximum time requirement.

The PH_EVENT.indication of LINK_ON shall persist so long as the logical and of the LPS signal and the PHY register
L bit is zero. In the case of a discrete PHY implementation, an externally accessible signal shall be asserted as long as this
indication persists. A typical method for software to respond to (and clear) the indication is to write a value of one to the
L bit.

7.4.3 PHY configuration packet

It is possible to configure Serial Bus performance in the following ways:

a) Optimize the gap_count used by all nodes to a smaller value (appropriate to the actual worst case round-trip delay
between any two nodes); and

b) Force a particular node to be the root after the next bus initialization (for instance, to insure that the root is cycle
master capable).

Both of these actions shall be effected for all nodes (including the originator) by means of the PHY configuration packet
shown below. The PH_CONTROL.request service affects only the local node and is not recommended for changes to
either gap_count or force_root. The procedures for using this PHY packet are described in section 8 of IEEE Std 1394-
1995 and in clause 9.20 of this supplement.

Figure 7-3 — Link-on packet format

Table 7-4 — Link-on packet fields

Field Derived from Comment

phy_ID physical_ID Physical node identifier of the destination of this packet

Figure 7-4 — PHY configuration packet format

transmitted last

phy_ID01
transmitted first

logical inverse of first quadlet

0000 0000 0000 0000 0000 0000

transmitted last

root_ID00
transmitted first

logical inverse of first quadlet

0000 0000 0000 0000gap_cntR T

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 69

A PHY that transmits a configuration packet as the result of a link request shall set its own force_root bit and gap_count
variables as if the configuration packet had been received from the bus.

7.4.4 Extended PHY configuration packets

A PHY configuration packet with R=0 and T=0 is utilized to define extended PHY configuration packets according to the
value in the gap_cnt field (this is renamed the type field in the figures that follow). The extended PHY configuration
packets have no effect upon either the force_root bit or gap_count field of any node.

7.4.5 Ping packet

The reception of the cable PHY packet shown in figure 7-5 shall cause the node identified by phy_ID to transmit self-ID
packet(s) that reflect the current configuration and status of the PHY. Because of other actions, such as the receipt of a
PHY configuration packet, the self-ID packet transmitted may differ from that of the most recent self-identify process.

7.5 Cable PHY line states

This clause defines a new rule by which a PHY decodes the interpreted arbitration signals (Arb_A and Arb_B) into a line
state; it is in addition to IEEE Std 1394-1995 clause 4.3.3, “Cable PHY line states.”

Table 7-5 — PHY configuration packet fields

Field Affects Comment

root_ID Physical_ID of node to have its force_root bit set (only meaningful if R bit set)

R force_root If one, then the node with its physical_ID equal to this packet’s root_ID shall have
its force_root bit set, all other nodes shall clear their force_root bit. If cleared, the
root_ID field shall be ignored.

T gap_count_reset_disable If one, all nodes shall set their gap_count variable to the value in this packet’s
gap_cnt field and set the gap_count_reset_disable variable to TRUE.

gap_cnt gap_count New value for all nodes’ gap_count variable. This value goes into effect immedi-
ately on receipt and remains valid through the next bus reset. A second bus reset
without an intervening PHY configuration packet resets gap_count to 63, as
described in reset_start_actions() in clause 7.9.2.1.2)

Figure 7-5 — Ping packet format

Table 7-6 — Ping packet fields

Field Derived from Comment

phy_ID physical_ID Physical node identifier of the destination of this packet

type Extended PHY configuration packet type (zero indicates ping packet)

Table 7-7 — Cable PHY received arbitration line states

Interpreted arbitration signals

Arb_A Arb_B Line state name Comment

0 Z RX_TOKEN_GRANT The parent PHY is granting the bus (although no
TX_REQUEST was sent by the child)

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (0) 0000 0000 0000 000000

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

70 This is an unapproved standards draft, subject to change © 1997 IEEE

The RX_TOKEN_GRANT line state is recognized when received by a parent port during the normal arbitration phase.

7.6 Cable PHY timing constants

This clause defines new values and changes some existing constants from which the configuration and timing of the phys-
ical layer in the cable environment may be derived; it is in addition to IEEE Std 1394-1995 clause 4.3.5, “Cable PHY
timing constants.”

Table 7-8 — Cable PHY timing constants

Timing constant Minimum Maximum Comment

ACK_RESPONSE_TIME 40 ns 240 ns Idle time measured at the cable connector from the end of
DATA_END that follows a primary packet to the start of
DATA_PREFIX that precedes the acknowledge packet.

ARB_RESPONSE_DELAY 33.3 ns PHY_DELAY Delay between an RX_REQUEST signal arriving at the
receiving port and the TX_REQUEST signal being sent at
the transmit port(s).

BUS_TO_LINK_DELAY PHY_DELAY Data propagation time measured from the Serial Bus con-
nector to the PHY/link interface.

CONCATENATION_PREFIX_TIME 160 ns At a transmitting port, the time between the end of
clocked data and the start of speed signaling (when
present) for the concatenated packet that follows.

CONNECT_TIMEOUT 336.0 ms 341.3 ms Connection debounce time

DATA_PREFIX_HOLD 40 ns At a transmitting port, the time between the end of speed
signalling (when present) and the start of clocked data.

DATA_PREFIX_TIME This timing constant is no longer defined; see
DATA_PREFIX_HOLD and MIN_DATA_PREFIX.

LINK_TO_BUS_DELAY 40 ns 100 ns Data propagation time measured from the PHY/link inter-
face to the Serial Bus connector.

MAX_ARB_STATE_TIME 200 µs 400 µs Maximum time in any state (before a bus reset shall be
initiated) except the idle state or a state that exits after an
explicit time-out.

MAX_BUS_HOLD 1.63 µs Maximum time a node may transmit a
TX_DATA_PREFIX signal between the request acknowl-
edge and data packet of concatenated asynchronous sub-
actions or between data packets of concatenated
isochronous subactions. The link shall ensure that this
time is not exceeded.

MAX_BUS_OCCUPANCY This timing constant is no longer defined; see
MAX_DATA_TIME.

MAX_DATA_TIME 84.31 µs The maximum time that clocked data may be transmitted
continuously. If this limit is exceeded, unpredictable
behavior may result.

MIN_DATA_PREFIX 140 ns The total time an originating port transmits a
TX_DATA_PREFIX signal prior to clocked data.

PHY_DELAY 80 ns See PHY
registers

Best-case repeater data delay has a fixed minimum.

PING_RESPONSE_TIME 50 ns 240 ns Time permitted a PHY to respond to a ping packet (see
clause 7.4.5), measured at the connector from the end of
DATA_END to the start of DATA_PREFIX for the first
self-ID packet.

RESET_DETECT 80.0 ms 85.3 ms Time for a connected node to confirm a reset signal

RESET_WAIT 0.16 µs Reset wait delta time. (~16/BASE_RATE)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 71

Note that the constant RESET_WAIT is redefined by this supplement as a delta to be applied to the reset time in order to
derive a reset time. The reset wait time specified by IEEE Std 1394-1995 is now expressed as RESET_TIME +
RESET_WAIT; the corresponding arbitrated (short) reset wait time is SHORT_RESET_TIME + RESET_WAIT.

7.7 Node variables

Each node’s PHY has a set of variables that are referenced in the C code and state machines in clause 7.9. The values of
these variables may be affected by writes to PHY registers, the transmission or reception of PHY configuration packets or
by arbitration state actions—including bus reset. A reset of the PHY/link interface affects none of these variables. The
definitions in table 7-9 entirely replace clause 4.3.8 of IEEE Std 1394-1995, “Node variables.”

ROOT_CONTEND_FAST 0.76 µs 0.80 µs Time to wait in state T3: Root Contention if the random
bit is zero, as described in clause 4.4.2.2 of IEEE Std
1394-1995. (~80/BASE_RATE)

ROOT_CONTEND_SLOW 1.60 µs 1.64 µs Time to wait in state T3: Root Contention if the random
bit is one, as described in clause 4.4.2.2 of IEEE Std
1394-1995. (~160/BASE_RATE)

SHORT_RESET_TIME 1.30 µs 1.40 µs Short reset hold time. (~128/BASE_RATE)

Table 7-9 — Node variables

Variable name Power reset
value Comment

accelerating TRUE Set TRUE or FALSE by accelerate or decelerate requests issued by the link via LReq
(see clause 5.2) and used by the arbitration state machines. See also enab_accel below.

arb_enable — TRUE if the PHY may arbitrate on behalf of a fair request within the current fairness
interval.

cable_power_active — TRUE if cable power is within normal operating range (see clause 7.2).

enab_accel FALSE Globally enables or disables all PHY accelerations specified by clause 7.9. This vari-
able is visible as the PHY register bit Enab_accel.

force_root FALSE When TRUE, this modifies the PHY’s tree identification behavior and increases the
likelihood that the node becomes root (see clause 4.4.2.2 of IEEE Std 1394-1995).
If only one node on a bus has force_root set TRUE, that node is guaranteed to become
the root.

gap_count 63 This value determines the length of arbitration reset and subaction gaps and may be
used to optimize bus performance. All nodes on the bus should have the same
gap_count value else unpredictable arbitration behavior may occur.

initiated_reset TRUE TRUE if this node initiated the bus reset in progress. Cleared to FALSE upon comple-
tion of the self-identify process.

link_active TRUE TRUE if the node’s link is present and enabled.

more_packets — Flag which indicates whether or not additional self-ID packets are to be sent.

parent_port — The port number that is connected to the parent node; this variable is meaningless if the
node is root.

physical_ID — The node’s 6-bit physical ID established by the self-identify process.

receive_port — The port number that is receiving encoded data (determined by the arbitration states).

root — TRUE if the node is the root, as determined by tree-ID.

Table 7-8 — Cable PHY timing constants (Continued)

Timing constant Minimum Maximum Comment

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

72 This is an unapproved standards draft, subject to change © 1997 IEEE

7.8 Port variables

In addition to the variables described in the preceding clause, each node’s PHY has a set of variables replicated for each
port. A reset of the PHY/link interface affects none of these variables. The definitions in table 7-10 entirely replace clause
4.3.9 of IEEE Std 1394-1995, “Port variables.”

7.9 Cable physical layer operation

With the exception noted below, this clause replaces 4.4 of IEEE Std 1394-1995, “Cable PHY operation,” in its entirety.
The subclause for which no change has been made from the existing standard is as follows:

— 4.4.2.2, “Tree identify”

The changes specified in this supplement affect the bus reset, self-identify and normal arbitration phases of cable PHY
operation and incorporate the following enhancements:

— The duration of the bus reset signal may be reduced to approximately 1.3 µs if the port that initiates the reset first
arbitrates for the bus; and

— The probability of a multitude of bus resets during and subsequent to a physical cable insertion or removal is re-
duced.

Table 7-10 — Port variables

Variable name Power reset
value Comment

child — TRUE if this port is connected to a child node.

connected FALSE TRUE if there is a peer PHY connected to this port.

child_ID_complete — TRUE when the child node connected to this port has finished its self-ID.

max_peer_speed — Maximum speed capability of the peer PHY connected to this port.

port_status — TRUE if TP bias is present. This is not filtered by any hysteresis circuitry.

speed_OK — The connected port can accept a packet at the requested speed.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 73

The operation of the cable physical layer can best be understood with reference to the architectural diagram shown in
figure 7-6:

The main controller of the cable physical layer is the block labeled “arbitration control,” which responds to arbitration
requests from the link layer (PH_ARB.request) and changes in the state of its ports. It provides the management and
timing signals for transmitting, receiving and repeating packets. It also provides the bus reset and configuration functions.
The operation of this block is described in clause 7.9.2

The “data resynch” block decodes the data-strobe signal and retimes the received data to a local fixed frequency clock
provided by the “local clock” block. Since the clocks of receiving and transmitting nodes can be up to 100 ppm different
from the nominal, the data resynch function must be able to compensate for a difference of 200 ppm over the maximum
packet length of 84.31 µs (1024 byte isochronous packet at 98.304 Mbit/s). The operation of this block is described in
clause 4.4.1.2 of IEEE Std 1394-1995.

Figure 7-6 — Cable physical layer architecture

 Strb_Tx, Enable_Strb

 Data_Tx, Enable_Data

 Speed_Tx

 Strb_Rx

 Data_Rx

 Arb_A_Rx

 Arb_B_Rx

 Port_Status

 Speed_Rx

transmit signals

receive signals

data
resynch

xmit
selection &

encode

PH_DATA.indicate
data &
signal

decode

PH_DATA.request

PH_ARB.request

PH_ARB.confirm

 Strb_Tx, Enable_Strb

 Data_Tx, Enable_Data

 Speed_Tx

 Strb_Rx

 Data_Rx

 Arb_A_Rx

 Arb_B_Rx

 Port_Status

 Speed_Rx

transmit signals

receive signals

port
output
control

port 0 arb data

port 0

port
output
control

port 1 arb data

port 1

resynch reset

arb statusend of packet

arbitration
control

resynch
data

rx
 d

at
a

&
 s

tr
ob

e

rx
 s

pe
ed

 c
od

e

tx
 d

at
a

&
 s

tr
ob

e

other ports'
arb data

other ports'
arb control

port 1 arb control

port 0 arb control

rx speed

local clock PH_CLOCK.indicate

op
tio

na
l p

or
ts

 (
1

to
 2

6)

start of packet

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

74 This is an unapproved standards draft, subject to change © 1997 IEEE

The “data & signal decode” block provides a common interface to the link layer for both packet data and arbitration sig-
nals (gaps and bus reset indicators).

The “xmit selection & encode” block is the selector between repeated data and data sent by the link layer. It also gener-
ates the strobe signal for the transmitted data. Its operation is described in clause 4.4.1.1 of IEEE Std 1394-1995.

Each port has an associated “port output control” that selects either the arbitration control signals or the data-strobe pair
for transmission.

All of the procedures in this clause use the syntax specified in clause 1.6.7 and the definitions in tables 7-9, 7-10, 7-11
and 7-12.

NOTE—Although not part of the C language, the type dataBit is used to represent a bit of information, 0 or 1.

The C language code and state machines are not normative descriptions of implementations; they are normative descrip-
tions of externally apparent PHY behaviors. Different implementations are possible. In particular, the C language code
and state machines used to describe PHY behavior do not contain provisions to enforce the LReq rules specified by
clause 5.2.1; if the link issues bus requests that do not follow the rules the PHY behavior is unspecified.

Table 7-11 — Cable PHY code definitions

const int FIFO_DEPTH = 8; // IMPLEMENTATION-DEPENDENT!
enum PHY_state {R0, R1, // Tracks the PHY state (names per state diagrams)
 S0, S1, S2, S3, S4,
 A0, A1, A2, RX, TX};
enum speedCode {S100, S200, S400}; // Speed codes
enum tpSig {L, H, Z}; // Differential signal on twisted pair
struct portData {tpSig TpA; tpSig TpB;}; // Port data structure
enum phyData(portData signals); // Encoded types DATA_ZERO, DATA_ONE, DATA_PREFIX or DATA_END

boolean ack; // Set if last packet observed was exactly 8 bits
boolean arb_enable; // Set if a node may arbitrate upon detection of a subaction gap
timer arb_timer(); // Timer for arbitration state machines
boolean bus_initialize_active; // Set while the PHY is initializing the bus
int child_count; // Number of child ports
int contend_time; // Amount of time to wait during root contention
boolean DS_clock; // FALSE unless encoded DS clock available on the receive port
 // (data or strobe transition observed within the last 20 ns)
boolean end_of_reception; // Set when reception of packet is complete
boolean force_root; // Set to delay start of tree-ID process for this node
dataBit fifo[FIFO_DEPTH]; // Data resynch buffer
unsigned fifo_rd_ptr, fifo_wr_ptr; // Data resynch buffer pointers
boolean gap_count_reset_disable; // If set, a bus reset will not force the gap_count to the maximum
boolean ibr; // Set when a long bus reset is needed
boolean isbr; // Set when an arbitrated (short) bus reset should be attempted
boolean isolated_node; // Set if no ports connected
boolean own_request; // Latch the value of arb_OK() at the time it is evaluated
boolean ping_response; // Set if self-ID packet(s) needed in response to a ping
portData portR(int port_number); // Return current rxData signal from indicated port
speedCode portRspeed(int port_number); // Return current speed from indicated port
void portT(int port_number, portData txData); // Transmit txData on indicated port
void portTspeed (int port_number, speedCode speed); // Set transmit speed on indicated port
boolean random_bool(); // Returns a random TRUE or FALSE value
int reset_time; // Duration to assert bus reset signal
boolean root_test; // Flag that is randomly set during root contention
int rx_dribble_bits; // Keep track of dribble bits in FIFO
speedCode rx_speed, tx_speed; // Current packet speeds
boolean waiting_for_data_start; // First data bit not yet received

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 75

7.9.1 Data transmission and reception

Data transmission and reception are synchronized to a local clock that shall be accurate within 100 ppm. The nominal
data rates are powers of two multiples of 98.304 Mbit/s for the cable environment.

Table 7-12 — Cable PHY packet definitions

typedef union {
 struct {
 union {
 quadlet dataQuadlet;
 dataBit dataBits[32];
 struct { // First self-ID packet
 quadlet type:2;
 quadlet phy_ID:6; // Physical_ID
 quadlet :1; // Always 0 for first self-ID packet
 quadlet L:1; // Link active
 quadlet gap_cnt:6; // Gap count
 quadlet sp:2; // Speed code
 quadlet :2;
 quadlet c:1; // Isochronous resource manager contender
 quadlet pwr:3; // Power class
 quadlet p0:2; // Port 0 connection status
 quadlet p1:2; // Port 1 connection status
 quadlet p2:2; // Port 2 connection status
 quadlet i:1; // Initiated reset
 quadlet m:1; // More self-ID packets...
 };
 struct { // Subsequent self-ID packets
 quadlet :8;
 quadlet ext:1; // Nonzero for second and subsequent self-ID packets
 quadlet n:3; // Sequence number
 quadlet :2;
 quadlet pa:2; // Port connection status...
 quadlet pb:2;
 quadlet pc:2;
 quadlet pd:2;
 quadlet pe:2;
 quadlet pf:2;
 quadlet pg:2;
 quadlet ph:2;
 quadlet :2;
 };
 struct { // PHY configuration packet (includes ping packet)
 quadlet :2;
 quadlet root_ID:6; // Intended root
 quadlet R:1; // If set, root_ID field is valid
 quadlet T:1; // If set, gap_cnt field is valid
 quadlet gap_cnt:6; // Gap count
 quadlet :16;
 };
 };
 union {
 quadlet checkQuadlet;
 dataBit checkBits[32];
 };
 };
} PHY_PKT;

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

76 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.1.1 Cable environment data transmission

Data transmission entails sending the data bits to the connected PHY along with the appropriately encoded strobe signal
using the timing provided by the PHY transmit clock. If the connected port cannot accept data at the requested speed
(indicated by the speed_OK[i] flag being FALSE), then no data is sent, which leaves the drivers in the "01" data prefix
condition.

The edge rates and jitter specifications for the transmitted signal are given in clause 4.2.3 of IEEE Std 1394-1995.

Starting data transmission requires sending a special data prefix signal and a speed code. The speed_OK[i] flag for each
port is TRUE if the connected PHY has the capabilities to receive the data:

Table 7-13 — Data transmit actions

static dataBit tx_data, tx_strobe; // Memory of last signal sent

void tx_bit(dataBit bit) { // Transmit a bit
 int i;

 wait_event(PHY_CLOCK_indication); // Wait for clock
 if (bit == tx_data) // If no change in data
 tx_strobe = ~tx_strobe; // Invert strobe
 tx_data = bit;
 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receivePort)
 if (speed_OK[i]) {
 portData pd = {phyData(tx_strobe), phyData(tx_data)};
 portT(i, pd);
 } else
 portT(i, TX_DATA_PREFIX);
}

Table 7-14 — Start data transmit actions

void start_tx_packet(speed) // Send data prefix and speed code
 int i;

 for (i = 0; i < NPORT; i++) {
 if (!connected[i])
 speed_OK[i] = FALSE;
 else {
 portT(i, TX_DATA_PREFIX); // Send data prefix
 speed_OK[i] = (tx_speed <= max_peer_speed[i]);
 if (speed_OK[i])
 portTspeed(i, tx_speed); // Receiver can accept, send speed intentions
 }
 }
 wait_time(SPEED_SIGNAL_LENGTH);
 for (i = 0; i < NPORT; i++)
 if (connected[i])
 portTspeed(i, S100); // Go back to normal signal levels
 wait_time(DATA_PREFIX_TIME); // Finish data prefix
}

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 77

Ending a data transmission requires sending extra bits (known as “dribble bits”) which flush the last data bit through the
receiving circuit. The number of dribble bits required varies with the transmission speed: one, three or seven extra bits for
S100, S200 and S400, respectively. An extra bit is required to put the two signals TPA and TPB into the correct state; the
value of the bit depends upon whether the bus is being held (PH_DATA.request(DATA_PREFIX) or not
(PH_DATA.request(DATA_END)):

NOTE—This algorithm works to force the ending port state to TX_DATA_PREFIX or TX_DATA_END and relies on two
characteristics of packet transmission: there are an even number of bits between the beginning and the end of a packet and a packet
starts with tx_strobe at 0 and tx_data at 1. Thus, when stop_tx_packet is called the port state is either 01 or 10. If the
desired port state is 01 (TX_DATA_PREFIX) and the current port state is 01, this algorithm sets port state to 11 for one bit time, then
back to 01. If the desired ending state is 10 (TX_DATA_END) and the current port state is 01, the port state sequence is 00 followed
by 10. The process is similar if the current port state is 10.

7.9.1.2 Cable environment data reception and repeat

Data reception for the cable environment physical layer has three major functions: decoding the data-strobe signal to
recover a clock, synchronizing the data to a local clock for use by the link layer, and repeating the synchronized data out
all other connected ports. This process can be described as two routines communicating via a small FIFO:

Table 7-15 — Stop data transmit actions

void stop_tx_packet (phyData ending_status, speedCode tx_speed) {
 switch (tx_speed) {
 case S400: // Pad with six dribble bits
 tx_bit(1);
 tx_bit(1);
 tx_bit(1);
 tx_bit(1);
 case S200: // Pad with two dribble bits
 tx_bit(1);
 tx_bit(1);
 default:
 break;
 }
 tx_bit((ending_status == DATA_PREFIX) ? 1 : 0); // Penultimate bit...
 wait_event(PH_CLOCK.indication()); // Wait for clock
 if (ending_status == DATA_PREFIX) {
 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receive_port)
 portT(i, TX_DATA_PREFIX); // ...and the last dribble bit
 wait_time(CONCATENATION_PREFIX_TIME); // Speed signal after this time
 } else if (ending_status == DATA_END) {
 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receive_port)
 portT(i, TX_DATA_END);
 wait_time(DATA_END_TIME);
 }
}

Table 7-16 — Data reception and repeat actions (Sheet 1 of 2)

static tpSig old_data, old_strobe; // Memory of last signal sent

// Decode data-strobe stream and load FIFO -- this routine is always running
// (speed code recording is also done here)

void decode_bit (void) {
 repeat {
 if (portRspeed(receive_port) > S100) {
 rx_speed = portRspeed(receive_port);
 speed_signalled = TRUE;
 signal(SPEED_SIGNAL_RECEIVED); // Notify start_rx_packet
 }
 new_signal = tpSignals(); // Get signal

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

78 This is an unapproved standards draft, subject to change © 1997 IEEE

Starting data reception requires initializing the data resynchronizer and doing the speed signaling with the sender of the
data. At the same time, the node must start up the transmitting ports by sending a special data prefix signal and repeating
the received speed code. As in the start_tx_packet() function, the node must do the speed signaling exchange for each
transmitting port:

 if (new_signal == IDLE)
 signal(IDLE_DETECTED);
 else {
 new_data = new_signal.TPA; // Received data is on TPA
 new_strobe = new_signal.TPB; // Received strobe is on TPB
 if ((new_signal.TPA != old_strobe) || (new_data != old_data)) {
 // Either data or strobe changed
 FIFO[fifo_wr_ptr] = new_data; // Put data in FIFO
 fifo_wr_ptr = ++fifo_wr_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
 signal(DATA_STARTED); // Signal rx_bit to start
 }
 old_strobe = new_strobe;
 old_data = new_data;
 }
 }
}

// Unload FIFO and repeat data (but suppress dribble bits!)

void rx_bit(dataBit *rx_data, boolean *end_of_data) {
 int i;

 wait_event(PHY_CLOCK_indication); // Wait for clock
 if ((fifo_rd_ptr - fifo_wr_ptr) % FIFO_DEPTH) <= rx_dribble_bits) // FIFO empty?
 *end_of_data = TRUE; // If so, set flag
 else {
 *end_of_data = FALSE; // If not, clear flag...
 *rx_data = FIFO[fifo_rd_ptr]; // ... and get data bit
 fifo_rd_ptr = ++fifo_rd_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
 tx_bit(*rx_data); // Repeat the data bit
 }
}

Table 7-17 — Start data reception and repeat actions (Sheet 1 of 2)

void start_rx_packet () { // Send data prefix and do speed signaling
 int i;

 fifo_rd_ptr = fifo_wr_ptr = 0; // Reset data resynch buffer
 waiting_for_data_start = TRUE; // First data bit not yet received
 portT(receive_port, IDLE); // Turn off grant, get ready to receive
 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receive_port)
 portT(i, TX_DATA_PREFIX); // Send data prefix out repeat ports
 wait_event(SPEED_SIGNAL_RECEIVED | DATA_STARTED | IDLE_DETECTED);
 tx_speed = rx_speed; // Get speed of packet to repeat
 if (rx_speed == S100)
 rx_dribble_bits = 2; // Need for FIFO empty test
 else
 rx_dribble_bits = (rx_speed == S200) ? 4 : 8;
 if (speed_signalled) { // Repeat the speed signal...
 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receive_port) {
 speed_OK[i] = (tx_speed <= max_peer_speed[i]);
 if (speed_OK[i])
 portTspeed(i, tx_speed); // Receiver can accept, send speed intentions
 }
 wait_time(SPEED_SIGNAL_LENGTH);

Table 7-16 — Data reception and repeat actions (Sheet 2 of 2)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 79

7.9.2 Cable environment arbitration

The cable environment supports the immediate, priority, isochronous and fair arbitration classes. Immediate arbitration is
used to transmit an acknowledge immediately after packet reception; the bus is expected to be available. Priority arbitra-
tion is used by the root for cycle start requests or may be used by any node to override fair arbitration. Isochronous arbi-
tration is permitted between the time a cycle start is observed and the subaction gap that concludes an isochronous period;
isochronous arbitration commences immediately after packet reception. Fair arbitration is a mechanism whereby a PHY
succeeds in winning arbitration only once in the interval between arbitration reset gaps.

Some of these arbitration classes may be enhanced as defined by this supplement. Ack-accelerated arbitration permits a
PHY to arbitrate immediately following an observed acknowledge packet; this enhancement can reduce the arbitration
delay by a subaction gap time. Fly-by arbitration permits a transmitted packet to be concatenated to the end of a packet
for which no acknowledge is permitted: acknowledge packets themselves or isochronous packets. A PHY shall not use
fly-by arbitration to concatenate an S100 packet after any packet of a higher speed.

Cable arbitration has two parts: a three phase initialization process (bus reset, tree identify and self identify) and a normal
operation phase. Each of these four phases1 is described using a state machine, state machine notes and a list of actions
and conditions. The state machine and the list of actions and conditions are the normative part of the specification. The
state machine notes are informative.

7.9.2.1 Bus reset

The bus reset process starts when a bus reset signal is recognized on a connected port or generated locally. Its purpose is
to guarantee that all nodes propagate the reset signal. This supplement defines two types of bus reset, long bus reset (iden-
tical to that specified by IEEE Std 1394-1995) and arbitrated (short) bus reset. The PHY variable reset_time controls
the length of the bus reset generated or propagated.

 for (i = 0; i < NPORT; i++)
 if (connected[i] && i != receive_port)
 portTspeed(i, S100); // Go back to normal signal levels
 wait_time(DATA_PREFIX_TIME); // Finish data prefix
 wait_event(DATA_STARTED | IDLE_DETECTED); // Wait for decoder to start
 }
 speed_signalled = FALSE; // Reset for each packet
 for (i = 0; i < FIFO_DEPTH/2 - 1; i++)
 wait_event(PHY_CLOCK_indication); // Make sure FIFO is centered
}

1 Clause 4.4.2.2 of IEEE Std 1394-1995, which describes the tree identify process, is unchanged and is not reproduced in this supplement.

Figure 7-7 — Bus reset state machine

Table 7-17 — Start data reception and repeat actions (Sheet 2 of 2)

R1: Reset Wait
reset_wait_actions()

arb_timer >= reset_time

R0: Reset Start
reset_start_actions()

initiated_reset = TRUE
reset_time = RESET_TIME

reset_detected()

initiated_reset = FALSE

ibr
|| PH_CONTROL.request(Reset)

|| arb_state_timeout

arb_timer >= reset_time + RESET_WAIT

All:R0b

All:R0c

R0:R1

R1:R0

to T0:reset_complete()
R1:T0 Tree-ID Start

reset_time = RESET_TIME

reset_time = 0

Power reset

initiated_reset = TRUE
reset_time = 0

All:R0a

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

80 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.2.1.1 Bus reset state machine notes

Transition All:R0a. This is the entry point to the bus reset process if the PHY experiences a power reset. On power reset,
PHY register values and internal variables are set as specified in this section; in particular all ports are marked disconnected. A solitary
node transitions through the reset, tree identify and self-identify states and enters A0: Idle as the root node.

Transition All:R0b. This is the entry point to the bus reset process if the PHY senses BUS_RESET on any connected
port’s arbitration signal lines (see table 4-28 in IEEE Std 1394-1995).

Transition All:R0c. This is the entry point to the bus reset process if this node is initiating the process. This happens
under the following conditions:

1) Serial Bus management makes a PH_CONTROL.request that specifies a long reset;

2) The PHY detects a disconnect on its parent port; or
3) The PHY stays in any state (except the idle state or a state that has an explicit time-out) for longer than

MAX_ARB_STATE_TIME.

With the exception of the last condition, the initiation of a bus reset cannot occur until a state’s actions have been com-
pleted.

State R0:Reset Start. The node sends a BUS_RESET signal whose length is governed by reset_time. In the case of
a standard bus reset, this is long enough for all other bus activity to settle down (RESET_TIME is longer than the worst
case packet transmission plus the worst case bus turn-around time). SHORT_RESET_TIME for an arbitrated (short) bus
reset is significantly shorter since the bus is already in a known state following arbitration.

Transition R0:R1. The node has been sending a BUS_RESET signal long enough for all its connected neighbors to
detect it.

State R1:Reset Wait. The node sends out IDLEs, waiting for all its active ports to receive IDLE or
RX_PARENT_NOTIFY (either condition indicates that the connected PHYs have left their R0 state).

Transition R1:R0. The node has been waiting for its ports to go idle for too long (this can be a transient condition caused
by multiple nodes being reset at the same time); return to the R0 state again. This time-out period is a bit longer than the
R0:R1 time-out to avoid a theoretically possible oscillation between two nodes in states R0 and R1.

Transition R1:T0. All the connected ports are receiving IDLE or RX_PARENT_NOTIFY (indicating that the connected
PHYs are in reset wait or starting the tree ID process).

7.9.2.1.2 Bus reset actions and conditions

Table 7-18 — Bus reset actions and conditions (Sheet 1 of 3)

boolean connection_in_progress[NPORT]; // Not needed outside of the reset state machines
timer connect_timer(); // Timer for connection status monitor

void connection_status() { // Continuously monitor port status in all states
 int i;

 isolated_node = TRUE; // Assume true until first connected port found
 for (i = 0; i < NPORT; i++) {
 isolated_node &= !connected[i];
 if (connection_in_progress[i]) {
 if (!port_status[i])
 connection_in_progress[i] = FALSE; // Lost attempted connection
 else if (connect_timer >= (isolated_node) ? 2 * CONNECT_TIMEOUT : CONNECT_TIMEOUT) {
 connection_in_progress[i] = FALSE;
 connected[i] = TRUE; // Confirmed connection

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 81

 if (isolated_node) // Can we arbitrate?
 ibr = TRUE; // No, transition to R0 for reset
 else
 isbr = TRUE; // Yes, arbitrate for short reset
 }
 } else if (!connected[i]) {
 if (port_status[i]) { // Possible new connection?
 connect_timer = 0; // Start connect timer
 connection_in_progress[i] = TRUE;
 }
 } else if (!port_status[i]) { // Disconnect?
 connected[i] = FALSE; // Effective immediately!
 if (child[i]) // Parent still connected?
 isbr = TRUE; // Yes, arbitrate for short reset
 else
 ibr = TRUE; // No, transition to R0 for reset
 }
 }
}

boolean reset_detected() { // Qualify BUS_RESET with port status / history
 int i;

 if (PHY_state == R0 || PHY_State == R1) // Ignore while in reset states themselves
 return(FALSE);
 if (DS_clock) // RX data makes it impossible to detect reset
 return(FALSE);
 for (i = 0; i < NPORT; i++)
 if (portR(i) == BUS_RESET) // More than 20 ns (transient DS == 11)
 if (connection_in_progress[i]) {
 reset_time = 0;
 if (isolated_node)
 reset_time = SHORT_RESET_TIME;
 else if (connect_timer >= RESET_DETECT)
 reset_time = RESET_TIME;
 if (reset_time != 0) {
 connection_in_progress[i] = FALSE;
 connected[i] = TRUE
 return(TRUE);
 }
 } else if (connected[i]) {
 reset_time = (PHY_state == RX) ? SHORT_RESET_TIME : RESET_TIME;
 return(TRUE);
 }
 return(FALSE);
}

void reset_start_actions() { // Transmit BUS_RESET for reset_time on all ports
 int i;
 root = FALSE;

 PH_EVENT.indication(BUS_RESET_START);
 ibr = isbr = FALSE; // Don’t replicate resets!
 breq = NO_REQ; // Discard any and all link requests
 child_count = physical_ID = 0;
 bus_initialize_active = TRUE:
 if (gap_count_reset_disable) // First reset since setting gap_count?
 gap_count_reset_disable = FALSE; // If so, leave it as is and arm it for next
 else
 gap_count = 0x3F; // Otherwise, set it to the maximum
 for (i = 0; i < NPORT; i++) {
 if (connected[i])
 portT(i, BUS_RESET); // Propagate reset signal
 else
 portT(i, IDLE); // But only on connected ports

Table 7-18 — Bus reset actions and conditions (Sheet 2 of 3)

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

82 This is an unapproved standards draft, subject to change © 1997 IEEE

 child[i] = FALSE;
 child_ID_complete[i] = FALSE;
 }
 arb_timer = 0; // Start timer
}

void reset_wait_actions() { // Transmit IDLE
 int i;

 for (i = 0; i < NPORT; i++)
 portT(i, IDLE);
 arb_timer = 0; // Restart timer
}

boolean reset_complete() { // TRUE when all ports idle or in tree-ID
 int i;

 for (i = 0; i < NPORT; i ++)
 if ((portR(i) != IDLE) && (portR(i) != RX_PARENT_NOTIFY) && port_status[i])
 return(FALSE);
 rx_speed = S100; // For leaf node’s self-ID packet(s)
 return(TRUE); // Transition to tree identify
}

Table 7-18 — Bus reset actions and conditions (Sheet 3 of 3)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 83

7.9.2.2 Self identify

The self identify process has each node uniquely identify itself and broadcast its characteristics to any management ser-
vices.

7.9.2.2.1 Self-ID state machine notes

State S0: Self-ID Start. At the start of the self-ID process, the PHY is waiting for a grant from its parent or the start of
a self-ID packet from another node. This state is also entered whenever a node is finished receiving a self-ID packet and
all its children have not yet finished their self identification.

Transition S0:S1. If a node is the root, or if it receives a RX_SELF_ID_GRANT signal (0Z) from its parent, it enters the
Self-ID Grant state.

Figure 7-8 — Self-ID state machine

root || (portR(parent_port) == RX_SELF_ID_GRANT

concatenated_packet

S0: Self-ID Start
self_ID_start_actions()

S3: Send Speed Capabilities

S2: Self-ID Receive
self-ID_receive_actions()

all_child_ports_identified

S1: Self-ID Grant
self-ID_grant_actions()

if (!root) max_peer_speed[parent_port] = S100;

receive_port = lowest_unidentified_child;

portR(lowest_unidentified_child) == RX_DATA_PREFIX

S0:S2

S1:S2

S2:S2

S0:S1

S1:S4

T2:S0

portR(parent_port) == RX_DATA_PREFIX

receive_port = parent_port;

ping_response

ping_response = FALSE;
S4:S0afrom T2: Parent Handshake

S4: Self-ID Transmit
self_ID_transmit_actions()

to A0: Idle

!ping_response && (root || portR(parent_port) == RX_DATA_PREFIX)

max_peer_speed[parent_port] = portRspeed();
S4:S0bto A0: Idle

S2:S0

(portR(receive_port) == IDLE) || (portR(receive_port) == RX_SELF_ID_GRANT)
|| (portR(receive_port) == RX_DATA_PREFIX && !concatenated_packet)

portTspeed(receive_sport, S100);
max_peer_speed[receive_port] = portRspeed;

arb_timer >= SPEED_SIGNAL_LENGTH
S3:S0

child_ID_complete[receive_port] = TRUE;
portTspeed(receive_port, PHY_SPEED);
max_peer_speed[receive_port] = S100;

arb_timer = 0;

portR(receive_port) == RX_IDENT_DONE
S2:S3

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

84 This is an unapproved standards draft, subject to change © 1997 IEEE

Transition S0:S2. If a node receives a RX_DATA_PREFIX signal (10) from its parent, it knows that a self-ID packet is
coming from a node in another branch in the tree.

State S1: Self-ID Grant. This state is entered when a node is given permission to send a self-ID packet. If it has any uni-
dentified children, it sends a TX_GRANT signal (Z0) to the lowest numbered of those. All other connected ports are sent
a TX_DATA_PREFIX signal (01) to warn them of the start of a self-ID packet.

Transition S1:S2. When the PHY receives a RX_DATA_PREFIX signal (10) from its lowest numbered unidentified
child, it enters the Self-ID Receive state.

Transition S1:S4. If there are no more unidentified children, it immediately transitions to the Self-ID Transmit state.

State S2: Self-ID Receive. As data bits are received from the bus they are passed on to the link layer as PHY data indi-
cations. This process is described in clause 4.4.1.2 of IEEE Std 1394-1995. Note that multiple self-ID packets may be
received in this state.

Transition S2:S0a. When the receive port goes IDLE (ZZ), gets a RX_SELF_ID_GRANT (0Z) or observes
RX_DATA_PREFIX (10) for a unconcatenated packet it enters the Self-ID Start state to continue the self-ID process for
the next child. The last case guards against a possible failure to observe IDLE.

Transition S2:S0b. If the PHY gets an RX_IDENT_DONE (Z1) signal from the receiving port and the node is only capa-
ble of running at the S100 data rate, it flags that port as identified.

Transition S2:S2. Multiple self-ID packets are received by the PHY and self_ID_receive_actions reinvoked for each one.

Transition S2:S3. If the PHY gets an RX_IDENT_DONE (Z1) signal from the receiving port and the node is capable of
running at the S200 or S400 data rates, it flags that port as identified and starts sending the speed capabilities signal. It
also starts the speed signaling timer and sets the port speed to the S100 rate.

State S3: Send Speed Capabilities. If a node is capable of sending data at a higher rate that S100, it transmits on the
receiving child port its speed capability signals as defined in clause 4.2.2.3 of IEEE Std 1394-1995 for a fixed duration
SPEED_SIGNAL_LENGTH.

Transition S3:S0. When the speed signaling timer expires, any signals sent by the child have been latched, so it is safe to
continue with the next child port.

Transition S3:S3a. If the child port signals S200 capabilities, it is recorded in the max_peer_speed variable for that port.

Transition S3:S3b. If the child port signals S400 capabilities, it is recorded in the max_peer_speed variable for that port.

State S4: Self-ID Transmit. At this point, all child ports have been flagged as identified, so the PHY can now send its
own self-ID packet (see clause 7.4) using the process described in clause 4.4.1.1 of IEEE Std 1394-1995. When a non-
root node is finished, it sends a TX_IDENT_DONE signal (1Z) and a speed capability signal as defined in clause 4.2.2.3
of IEEE Std 1394-1995 to its parent and IDLE (ZZ) to its children. The speed capability signal is transmitted for a fixed
time duration (SPEED_SIGNAL_LENGTH). Simultaneously it monitors the bus for a speed capability transmission from
the parent. The root node just sends IDLE (ZZ) to its children. Note that the children will then enter the Idle state
described in the next clause, but they will never start arbitration since an adequate arbitration gap will never open up until
the Self-ID process is completed for all nodes.

Transition S4:S4a. If the parent port signals S200 capabilities, it is recorded in the max_peer_speed variable for that
port.

Transition S4:S4b. If the parent port signals S400 capabilities, it is recorded in the max_peer_speed variable for that
port.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 85

Transition S4:A0a. If self-ID packets were transmitted in response to a “ping” packet, the PHY returns directly to the
Idle state.

Transition S4:A0b. The PHY then enters the Idle state described in the next clause when the self-ID packet has been
transmitted and if either of the following conditions are met:

1) The node is the root. When the root enters the Idle state, all nodes are now sending IDLE signals (ZZ) and
the gap timers will eventually get large enough to allow normal arbitration to start.

2) The node starts to receive a new self-ID packet (RX_DATA_PREFIX – 10). This will be the self-ID packet
for the parent node or another child of the parent. This event shall cause the PHY to transition immediately
out of A0:Idle into A5:Receive.

7.9.2.2.2 Self-ID actions and conditions

Table 7-19 — Self ID actions and conditions (Sheet 1 of 3)

boolean all_child_ports_identified; // Set if all child ports have been identified
int lowest_unidentified_child; // Lowest numbered active child that has not sent its self-ID
boolean self_ID_complete; // Set if the self_ID transmission is complete

void self_ID_start_actions() {
 int i;

 all_child_ports_identified = TRUE; // Will be reset if any active children are unidentified
 concatenated_packet = FALSE; // Prepare in case of multiple self-ID packets
 for (i = 0; i < NPORT; i++)
 if (child_ID_complete[i])
 portT(i, TX_DATA_PREFIX); // Tell identified children to prepare to receive data
 else {
 portT(i, IDLE); // Allow parent to finish
 if (child[i] && connected[i]) { // If connected child
 if (all_child_ports_identified)
 lowest_unidentified_child = i;
 all_child_ports_identified = FALSE;
 }
 }
}

void self_ID_grant_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (!all_child_ports_identified && (i == lowest_unidentifed_child))
 portT(i, TX_GRANT); // Send grant to lowest unidentified child (if any)
 else if (connected[i])
 portT(i, TX_DATA_PREFIX);// Otherwise, tell others to prepare for packet
}

void self_ID_receive_actions() {
 int i;

 portT(receive_port, IDLE); // Turn off grant, get ready to receive
 receive_actions(); // Receive (and repeat) packet
 if (!concatenated_packet) { // Only do this on the first self-ID packet
 if (physical_ID < 63) // Stop at 63 if malconfigured bus
 physical_ID = physical_ID + 1; // Otherwise, take next PHY address
 for (i = 0; i < NPORT; i++)
 portT(i, IDLE); // Turn off all transmitters
 }
}

void self_ID_transmit_actions() {
 int last_SID_pkt = (NPORT + 4) / 8;

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

86 This is an unapproved standards draft, subject to change © 1997 IEEE

 int SID_pkt_number; // Packet number counter
 int port_number = 0; // Port number counter
 quadlet self_ID_pkt, ps;

 self_ID_complete = FALSE;
 receive_port = NPORT; // Indicate that we are transmitting (no port has this number)
 start_tx_packet(S100); // Send data prefix and 98.304 Mbit/sec speed code
 PH_DATA.indication(DATA_PREFIX);
 PH_DATA.indication(DATA_START, S100);
 for (SID_pkt_number = 0; SID_pkt_number <= last_SID_pkt; SID_pkt_number++) {
 selfID.dataQuadlet = 0; // Clear all zero fields in self ID packet
 selfID.type = 0b10;
 selfID.phy_ID = physical_ID;
 if (SID_packet_number == 0) { // First self ID packet?
 selfID.L = LPS && Link_active; // Link active or not?
 selfID.gap_cnt = gap_count;
 selfID.sp = PHY_SPEED;
 selfID.del = PHY_DELAY;
 selfID.c = CONTENDER;
 selfID.pwr = POWER_CLASS;
 selfID.i = initiated_reset;
 } else {
 selfID.seq = 1; // Indicates second and subsequent packets
 selfID.n = SID_pkt_number - 1; // Sequence number
 }
 ps = 0; // Initialize for fresh group of ports
 while (port_number < ((SID_pkt_number + 1) * 8 - 5)) { // Concatenate port status
 if (port_number >= NPORT)
 ; // Unimplemented
 else if (!connected[port_number])
 ps |= 0b01; // Unconnected
 else if (child[port_number])
 ps |= 0v11; // Connected child
 else
 ps |= 0b10; // Connected parent
 port_number++;
 ps <<= 2; // Make room for next port’s status
 }
 selfID |= ps;
 if (SID_pkt_number == last_SID_pkt) { // Last packet?
 tx_quadlet(selfID);
 tx_quadlet(~selfID);
 stop_tx_packet(TX_DATA_END, S100); // Yes, signal data end
 PH_DATA.indication(DATA_END);
 breq = NO_REQ; // Cancel pending requests (only fair and priority possible here)
 } else {
 selfID.m = 1; // Other packets follow, set “more” bit
 tx_quadlet(self_ID_pkt);
 tx_quadlet(~self_ID_pkt);
 stop_tx_packet(TX_DATA_PREFIX, S100); // Keep bus for concatenation
 PH_DATA.indication(DATA_PREFIX);
 PH_DATA.indication(DATA_START, S100);
 }
 }
 if (!ping_response) { // Skip if self-ID packet was in response to a ping
 for (port_number = 0; port_number < NPORT; port_number++)
 if (root || port_number != parent_port)
 portT(port_number, IDLE); // Turn off transmitters to children
 else
 portT(port_number, TX_IDENT_DONE); // Notify parent that self-ID is complete
 if (!root) { // If we have a parent...
 portTspeed(parent_port, PHY_SPEED); // Send speed signal (if any)
 wait_time(SPEED_SIGNAL_LENGTH);
 portTspeed(parent_port, S100); // Stop sending speed signal
 }

Table 7-19 — Self ID actions and conditions (Sheet 2 of 3)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 87

7.9.2.3 Normal arbitration

Normal arbitration is entered as soon as a node has finished the self identification process. At this point, a simple request-
grant handshake process starts between a node and its parent (and all parents up to the root).

 PH_EVENT.indication(SELF_ID_COMPLETE, physical_ID, root); // Register 0
 }
 self_ID_complete = TRUE; // Signal completion
 ping_response = FALSE;
}

void tx_quadlet(quadlet quad_data) { // Send a quadlet...
 int i;

 for (i = 0; i < 32; i++) { // ...a bit at a time
 tx_bit(quad_data & 0x80000000); // From the most significant downwards
 PH_DATA.indication(quad_data & 0x80000000); // Copy our own self-ID packet to the link
 quad_data <<= 1; // Shift to next bit
 }
}

Table 7-19 — Self ID actions and conditions (Sheet 3 of 3)

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

88 This is an unapproved standards draft, subject to change © 1997 IEEE

Figure 7-9 — Cable arbitration state machine

!root && (child_request() || arb_OK())

arb_timer == subaction_gap
|| arb_timer == arb_reset_gap

gap_detect_actions()

concatenated_packet

// Reinvokes receive_actions()

portR(receive_port) == IDLE || (!concatenated_packet && !fly_by_OK())

arb_timer = 0

portR(parent_port) == RX_GRANT && own_request

// Arbitration WON

A0: Idle
idle_actions()

TX: Transmit
transmit_actions()

RX: Receive
receive_actions()

A2: Grant
grant_actions()

portR(parentPort) == RX_GRANT
&& child_request() && !own_request

portR(requesting_child) == RX_REQUEST_CANCEL

arb_timer = 0

A1: Request
request_actions()

portR(parent_port) == RX_GRANT
&& !(child_request() || own_request)

root && child_request() && !arb_OK()

// Arbitration WON

end_of_packet && !link_concatenation

arb_timer = 0

RX:A0

portR(requesting_child) == RX_DATA_PREFIX

RX:RX

receive_port = parent_port
// Arbitration LOST or deferred

portR(parent_port) == RX_DATA_PREFIX

end_of_packet && link_concatenation

// Reinvokes transmit_actions()

A0:RX

TX:A0

A0:TX

A1:TX

A1:RX

A0:A0

A1:A0

A0:A1

A1:A2

A2:A0

A0:A2

A2:RX

TX:R0

data_coming()

// Arbitration LOST or deferred

to R0: Reset start

!concatenated_packet && fly_by_OK()

// Arbitration WON
RX:TX

ping_response == TRUE
A0:S4 to S4: Self-ID TX

TX:TX

isbr == TRUE

initiated_reset = TRUE
reset_time = SHORT_RESET_TIME

receive_port = requesting_child

S4:A0b

from S4: Self-ID TX

accelerating == TRUE;
arb_timer = 0;

breq == IMED_REQ || (root && arb_OK())

arb_timer = 0

S4:A0a
accelerating == TRUE;

arb_timer = 0;

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 89

7.9.2.3.1 Normal arbitration state machine notes

State A0: Idle. All inactive nodes stay in the idle state until an internal or external event. All ports transmit the IDLE
arbitration signal (ZZ). Transitions into this state from states where idle was not being sent reset an idle period timer.

Transition A0:A0. If a subaction gap or arbitration reset gap occurs, the PHY notifies the link layer. In addition, if this is
the first subaction gap after a bus reset it signals the completion of the self-identify process and the PHY notifies the node
controller. The detection of an arbitration reset gap marks the end of a fairness interval; the PHY sets the arbitration
enable flag.

Transition A0:A1. If the PHY has a queued request from its own link or receives an RX_REQUEST signal (0Z) from
one of its children (and is not the root), it passes the request on to its parent. The arb_OK() function qualifies asynchro-
nous requests according to the time elapsed since A0: Idle was last entered. In particular, notice that the test for a subac-
tion gap is performed for a single value (equality), not a greater than comparison. If arbitration were to be initiated at
other times between the detection of a subaction gap and an arbitration reset gap, some nodes could mistakenly observe
an arbitration reset gap.

Transition A0:A2. If, on the other hand, the PHY receives a RX_REQUEST signal (0Z) from one of its children, has no
queued requests from its own link and is the root, it starts the bus grant process.

Transition A0:RX. If the PHY receives the RX_DATA_PREFIX signal on any of its ports while idle, it shifts into the
Receive state and notifies the link layer that any pending arbitration requests have been lost.

Transition A0:TX. If the PHY has a queued isochronous request and is the root or if the PHY has a queued immediate
request (generated during packet reception if the link layer needs to send an acknowledge), the PHY notifies the link layer
that it is ready to transmit and enters the Transmit state.

Transition A0:S4. In response to the receipt of a PHY “ping” packet, the variable ping_response is set TRUE and a tran-
sition is made to the Self-ID Transmit State to send the self-ID packet(s).

State A1: Request. At this point, the PHY sends a TX_REQUEST signal (Z0) to its parent and a data prefix (01) to all
its connected children. This will signal all children to get ready to receive a packet.

Transition A1:A0. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child has withdrawn
its request, the PHY returns to Idle state.

Transition A1:A2. If the PHY receives a RX_GRANT signal (00) from its parent and the requesting child is still making
a request, the PHY grants the bus to that child.

Transition A1:RX. If the PHY receives a RX_DATA_PREFIX signal (10) from its parent, then it knows that it has lost
the arbitration process and prepares to receive a packet. If the link layer was making the request, it is notified.

Transition A1:TX. If the PHY receives a RX_GRANT signal (00) from its parent and the link layer has an outstanding
request (asynchronous or isochronous), the PHY notifies the link layer that it can now transmit and enters the Transmit
state.

State A2: Grant. During the grant process, the requesting child is sent a TX_GRANT signal (Z0) and the other children
are sent a TX_DATA_PREFIX (01) so that they will prepare to receive a packet.

Transition A2:A0. If the requesting child withdraws its request, the granting PHY sees its own TX_GRANT signal
coming back as a RX_REQUEST_CANCEL signal (Z0) and returns to the Idle state.

Transition A2:RX. If the data prefix signal is received from the requesting child, the grant handshake is complete and the
node goes into the Receive state.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

90 This is an unapproved standards draft, subject to change © 1997 IEEE

State RX: Receive. When the node starts the receive process, it clears all its request flags (forcing the link layer to send
new requests if there were any queued) notifies the link layer that the bus is busy and starts the packet receive process
described below. Note that the packet received could be a PHY packet (self-ID, link-on or PHY configuration), acknowl-
edge, or normal data packet. PHY configuration and link-on packets are interpreted by the PHY, as well as being passed
on to the link layer.

Transition RX:A0. If transmitting node stops sending any signals (received signal is ZZ) or if a packet ends normally
when the received signal is RX_DATA_END, the bus is released and the PHY returns to the idle state.

Transition RX:RX. If a packet ends and the received signal is RX_DATA_PREFIX (10), then there may be another
packet coming, so the receive process is restarted.

State TX: Transmit. Unless an arbitrated (short) bus reset has been requested, the transmission of a packet starts by the
node sending a TX_DATA_PREFIX and speed signal as described in clause 4.2.2.3 of IEEE Std 1394-1995 for 100 ns,
then sending PHY clock indications to the link layer. For each clock indication, the Link sends a PHY data request. The
clock indication – data request sequence repeats until the Link sends a DATA_END. Concatenated packets are handled
within this state whenever the Link sends at least one data bit followed by a DATA_PREFIX. The arbitration enable flag
is cleared if this was a fair request.

Transition TX:A0. If the link layer sends a DATA_END, the PHY shuts down transmission using the procedure
described in clause 4.4.1.1 of IEEE Std 1394-1995 and returns to the Idle state.

Transition TX:R0. If arbitration has succeeded and the reset_time variable has a nonzero value, there is no packet to
transmit. The PHY transition’s to the Reset start state to commence a short bus reset.

7.9.2.3.2 Normal arbitration actions and conditions

Table 7-20 — Normal arbitration actions and conditions (Sheet 1 of 3)

int requesting_child; // Lowest numbered requesting child

boolean fly_by_OK() { // TRUE if fly-by acceleration OK

 if (!enab_accel)
 return(FALSE);
 else if (receive_port == parent_port)
 return(FALSE);
 else if (speed == S100 && rx_speed != S100)
 return(FALSE);
 else if (breq == ISOCH_REQ)
 return(TRUE);
 else if (ack && accelerating)
 return(breq == PRIORITY_REQ || (breq == FAIR_REQ && arb_enable));
 else
 return(FALSE);
}

boolean child_request() { // TRUE if a child is requesting the bus
 int i;

 for (i = 0; i < NPORT; i++)
 if (connected[i] && child[i] && (portR(i) == RX_REQUEST)) {
 requesting_child = i; // Found a child that is requesting the bus
 return(TRUE);
 }
 return(FALSE);
}

boolean token_request() { // TRUE if at least one token-enabled child needs a grant
 int i;

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 91

 for (i = 0; i < NPORT; i++)
 if (connected[i] && child[i] && grant_needed[i]) {
 return(TRUE);
 }
 return(FALSE);
}

boolean data_coming() { // TRUE if data prefix is received on any port
 int i;

 for (i = 0; i < NPORT; i++)
 if (connected[i] && (portR(i) == RX_DATA_PREFIX)) {
 receive_port = i; // Remember port for later...
 return(TRUE); // Found a port that is sending a data_prefix signal
 }
 return(FALSE);
}

void gap_detect_actions() {

 if (arb_timer >= reset_gap_time) { // End of fairness interval?
 arb_enable = TRUE; // Reenable fair arbitration
 PH_DATA.indication(ARBITRATION_RESET_GAP); // Alert link
 } else if (arb_timer >= subaction_gap_time) {
 PH_DATA.indication(SUBACTION_GAP); // Notify link
 if (bus_initialize_active) { // End of self-identify process for whole bus?
 PH_EVENT.indication(BUS_RESET_COMPLETE);
 bus_initialize_active = FALSE;
 }
 }
}

void idle_actions() {
 int i;

 rx_speed = S100; // Default in anticipation of no explicit receive speed code
 for (i = 0; i < NPORT; i++) // Turn off all transmitters
 portT(i, IDLE);
}

void request_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (connected[i] && child[i] && (own_request || i != requesting_child))
 portT(i, TX_DATA_PREFIX); // Send data prefix to all non-requesting children
 portT(parent_port, TX_REQUEST); // Send request to parent
}

boolean arb_OK() { // TRUE if OK to request the bus
 boolean async_arb_OK = FALSE; // Timing window OK for asynchronous arbtration?

 if (arb_timer < subaction_gap_time + arb_delay)
 async_arb_OK = enab_accel && accelerating && ack;
 else if (arb_timer == subaction_gap_time + arb_delay)
 async_arb_OK = TRUE;
 else if (arb_timer >= arb_reset_gap_time + arb_delay)
 async_arb_OK = TRUE;
 if (breq == ISOCH_REQ)
 own_request = !parent_token_enable;
 else if (breq == PRI_REQ)
 own_request = async_arb_OK;
 else if (breq == FAIR_REQ)
 own_request = async_arb_OK && arb_enable;

Table 7-20 — Normal arbitration actions and conditions (Sheet 2 of 3)

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

92 This is an unapproved standards draft, subject to change © 1997 IEEE

7.9.2.3.3 Receive actions and conditions

 else if (isbr)
 own_request = async_arb_OK;
 else
 own_request = FALSE;
 return(own_request);
}

void grant_actions() {
 int i;

 for (i = 0; i < NPORT; i++)
 if (i == requesting_child) {
 portT(i, TX_GRANT); // Send grant to requesting child
 if (token_request[i]) {
 portT(parent_port, TX_DATA_PREFIX]);
 token_request[i] = FALSE;
 }
 token_request[i] = FALSE;
 }
 else if (connected[i] && child [i])
 portT(i, TX_DATA_PREFIX); // Send data prefix to all non-requesting children
}

Table 7-21 — Receive actions and conditions (Sheet 1 of 2)

void receive_actions() {
 boolean end_of_data;
 unsigned bit_count = 0, i, rx_data, tx_speed;

 ack = concatenated_packet = FALSE;
 if (!enab_accel && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Cancel the request
 PH_ARB.confirmation(LOST); // And let the link know
 }
 PH_DATA.indication(DATA_PREFIX); // Send notification of bus activity
 start_rx_packet(); // Start up receiver and repeater
 tx_speed = rx_speed;
 PH_DATA.indication(DATA_START, rx_speed); // Send speed indication
 do {
 rx_bit(&rx_data, &end_of_data);
 if (!end_of_data) { // Normal data, send to link layer
 PH_DATA.indication(rx_data);
 if (bit_count < 64) // Accumulate first 64 bits
 rx_phy_pkt.bits[bit_count] = rx_data;
 bit_count++;
 ack = (bit_count == 8); // For acceleration, any 8-bit packet is an ack
 if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Fly-by impossible
 PH_ARB.confirmation(LOST); // Let the link know
 }
 }
 } while (!end_of_data);
 if (portR(receive_port) == IDLE) { // Unexpected end of data...
 if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
 breq = NO_REQ; // Discard (unless link believes there was an ACK)
 PH_ARB.confirmation(LOST);
 }
 ack = FALSE; // Disable fly-by acceleration
 return;
 }
 switch(portR(receive_port)) { // Send appropriate end of packet indicator
 case RX_DATA_PREFIX:

Table 7-20 — Normal arbitration actions and conditions (Sheet 3 of 3)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 93

7.9.2.3.4 Transmit actions and conditions

 concatenated_packet = TRUE;
 PH_DATA.indication(DATA_PREFIX); // Concatenated packet coming
 stop_tx_packet(DATA_PREFIX, rx_speed);
 break;

 case RX_DATA_END:
 if (fly_by_OK())
 stop_tx_packet(DATA_PREFIX, tx_speed); // Fly-by concatenation
 else {
 PH_DATA.indication(DATA_END); // Normal end of packet
 stop_tx_packet(DATA_END, tx_speed);
 }
 break;
 }
 if (bit_count == 64) { // We have received a PHY packet
 for (i = 0; i < 32; i++) // Check PHY packet for good format
 if (rx_phy_pkt.bits[i] == rx_phy_pkt.checkBits[i])
 return; // Check bits invalid - ignore packet
 switch(rx_phy_pkt.type) { // Process PHY packets by type
 case 0b00: // PHY config packet
 if (rx_phy_pkt.ext_type == 0)
 ping_response = (rx_phy_pkt.phy_ID == physical_ID);
 else {
 if (rx_phy_pkt.R) // Set force_root if address matches
 force_root = (rx_phy_pkt.address == physical_ID)
 if (rx_phy_pkt.T) { // Set gap_count unconditionally
 gap_count = rx_phy_pkt.gap_count;
 gap_count_reset_disable = TRUE;
 }
 }
 break;

 case 0b01: // Link-on packet
 if (rx_phy_pkt.address == physical_ID)
 PH_EVENT.indication(LINK_ON);
 break;
 }
 }
}

Table 7-22 — Transmit actions and conditions (Sheet 1 of 2)

void transmit_actions() {

 end_of_packet = FALSE;
 int bit_count = 0, i;
 PHY_packet rx_phy_pkt, tx_phy_pkt;
 phyData data_to_transmit;

 if (breq == FAIR_REQ)
 arb_enable = FALSE;
 breq = NO_REQ;
 tx_speed = speed; // Assume speed has been set correctly...
 // (from PH_ARB.request or concatenated packet speed code)
 receive_port = NPORT; // Impossible port number ==> PHY transmitting
 start_tx_packet(tx_speed); // Send data prefix & speed signal
 if (isbr) // Avoid phantom packets...
 return;
 PH_ARB.confirmation(WON); // Signal grant on Ctl[0:1]
 while (!end_of_packet) {
 PH_CLOCK.indication(); // Tell link to send data
 data_to_transmit = PH_DATA.request(); // Wait for data from the link

Table 7-21 — Receive actions and conditions (Sheet 2 of 2)

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

94 This is an unapproved standards draft, subject to change © 1997 IEEE

7.10 Port disable

PHY implementations compliant with this standard that implement optional per port disable capabilities support the Dis-
able bit as a writable bit (see clause 6.1 for the specification of the PHY register interface used to control this feature).
When the Disable bit is set to one, the affected PHY port shall be disabled. Otherwise the PHY port shall be enabled for
normal connection detection, receive and transmit operations.

When a PHY port is disabled, the following shall be in effect:

— TpBias current for the port shall be off;

— The port drivers shall be placed in a high-impedance state;

— With the sole exception of the common mode connection status receiver, the port line state receivers shall be in a
“disconnected” state; and

— The port common mode connection status bit, Con, shall be zero and the associated port variable maintained by
the PHY connection state machine shall indicate a disconnected port.

 switch(data_to_transmit) {
 case DATA_ONE:
 case DATA_ZERO:
 tx_bit(data_to_transmit);
 if (bit_count < 64) // Accumulate possible PHY packet
 rx_phy_pkt.bits[bit_count] = data_to_transmit;
 bit_count++;
 break;

 case DATA_PREFIX:
 end_of_packet = link_concatenation = TRUE;
 stop_tx_packet(DATA_PREFIX, tx_speed); // MIN_PACKET_SEPARATION needs to be
 break; // guaranteed by stop_tx_packet() and subsequent start_tx_packet()

 case DATA_END:
 stop_tx_packet(DATA_END, tx_speed);
 end_of_packet = TRUE; // End of packet indicator
 break;
 }
 }
 ack = (bit_count == 8); // Used elsewhere to (conditionally) accelerate
 if (bit_count == 64) { // We have transmitted a PHY packet
 for (i = 0; i < 32; i++) // Check PHY packet for good format
 if (tx_phy_pkt.bits[i] == tx_phy_pkt.checkBits[i])
 return; // Check bits invalid - ignore packet
 if (tx_phy_pkt.type == 0b00)
 if (tx_phy_pkt.ext_type == 0)
 ping_response = (tx_phy_pkt.phy_ID == physical_ID);
 else {
 if (tx_phy_pkt.R)
 force_root = (tx_phy_pkt.root_ID == physical_ID);
 if (tx_phy_pkt.T) {
 gap_count = tx_phy_pkt.gap_cnt;
 gap_count_reset_disable = TRUE;
 }
 }
 }
}

Table 7-22 — Transmit actions and conditions (Sheet 2 of 2)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 95

Figure 7-10 below illustrates a possible implementation of the port disable logic.

Figure 7-10 — Port disable logic

+

 -

Strb_Tx

Strb_En

Port_Disable

+

 -
arb & speed
comparators

Port TpBias

TpA

Data_Tx

Data_En

+

 -arb comparators

TpB

+

 - TpBias_Ref

to port_status

to PHY register Bias bit

EN

<

hysteresis filter here

to PHY register Bias_change bit

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

96 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 97

8. Asynchronous streams

Asynchronous streams are an extension of IEEE Std 1394-1995 facilities to use an existing primary packet type with dif-
ferent arbitration requirements. As previously defined, packets with a transaction code of A16 were called isochronous
data block packets1 and are subject to the following restrictions:

— An isochronous stream packet is transmitted only during the isochronous period. The isochronous period is con-
trolled by the cycle master, which signals the start of the period with a cycle start packet. The period ends when a
subaction gap is observed, which happens after all isochronous talkers have had a chance to transmit;

— Two resources, bandwidth and a channel number, are allocated from the isochronous resource manager registers
BANDWIDTH_AVAILABLE and CHANNELS_AVAILABLE, respectively; and

— For a given channel number, no more than one talker may transmit an isochronous stream packet with that chan-
nel number each isochronous period.

This extension to IEEE Std 1394-1995 relaxes some of the above requirements in order to create something new: asyn-
chronous stream(s). An asynchronous stream utilizes packets with a transaction code of A16 and is subject to the follow-
ing requirements:

— An asynchronous stream packet shall be transmitted during the asynchronous period, subject to the same arbitra-
tion requirements, including fairness, as other request subactions;

— The channel number shall be allocated from the isochronous resource manager register
CHANNELS_AVAILABLE; and

— Multiple nodes may transmit asynchronous stream packets with the same channel number or the same node may
transmit multiple asynchronous stream packets with the same channel number as often as desired, subject to arbi-
tration fairness.

An advantage of an asynchronous stream is that broadcast and multicast applications that do not have guaranteed latency
requirements may be supported on Serial Bus without the allocation of a valuable resource, bandwidth. An additional
advantage is that asynchronous streams may be easily filtered by contemporary hardware.

1 Throughout this supplement, primary packets with a transaction code of A16 are referred to as stream packets; the arbitration mode
determines whether they are asynnchronous or isochronous stream packets. The name “isochronous stream packet” is equivalent to the
IEEE Std 1394-1995 name “isochronous data block packet.”

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

98 This is an unapproved standards draft, subject to change © 1997 IEEE

8.1 Asynchronous stream packet format

The format of an asynchronous stream packet is identical to that of an isochronous stream packet, as specified by clause
6.2.3.1 of IEEE Std 1394-1995, and illustrated by figure 8-1.

The fields of an asynchronous stream packet shall conform to requirements of this standard and those specified in clause
6.2.4 of IEEE Std 1394-1995.

The data_length field shall specify the length in bytes of the data field in the asynchronous stream packet The number of
bytes in the data field is determined by the transmission speed of the packet and shall not exceed the maximums specified
by table 8-1 (which replaces table 6-4 in clause 6.2.2.3 of IEEE Std 1394-1995).

The tag field shall have a value of zero: unformatted data.

The channel field shall identify the stream and shall be allocated from the isochronous resource manager
CHANNELS_AVAILABLE register.

NOTE—Subsequent to a bus reset, asynchronous stream packets may not be transmitted until the channel number(s) are reallocated.

The tcode field shall have a value of A16. The new name for this transaction code value is stream packet; the context in
which the packet is sent determines whether it is an asynchronous or isochronous stream packet.

The usage of any fields not specified above remains as described by IEEE Std 1394-1995.

Figure 8-1 — Asynchronous stream packet format

Table 8-1—Maximum data block payload for asynchronous primary packets

Data rate Maximum payload
(bytes) Comment

S25 128 TTL backplane

S50 256 BTL and ECL backplane

S100 512 Cable base rate

S200 1024

S400 2048

S800 4096

S1600 8192

S3200 16384

channeldata_length tcode sy

header_CRC

data_CRC

zero pad bytes (if necessary)

data field

tag

transmitted last

transmitted first

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 99

8.2 Loose vs. strict isochronous

Although IEEE Std 1394-1995 prohibits the reception of an isochronous stream packet outside of the isochronous period
(strict isochronous), a significant number of contemporary Serial Bus link designs relax this requirement and permit the
reception of an isochronous stream packet at any time (loose isochronous).

This standard removes the IEEE Std 1394-1995 strict isochronous requirement; link designs compliant with this standard
shall receive stream packets (primary packets identified by tcode A16) without regard to whether or not the packet falls
within or without the isochronous period.

NOTE—The reception of isochronous packets at any time is sensible, even without consideration of asynchronous streams. If a cycle
start packet is corrupted and rendered unrecognizable, many applications function are able to make valid use of isochronous data that
follows so long as the link permits its reception.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

100 This is an unapproved standards draft, subject to change © 1997 IEEE

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 101

9. Clarifications and corrigenda

Since the publication of IEEE Std 1394-1995 a number of ambiguities, technical errors and typographical errors have
been identified by implementors and other readers. The impact of most is minor and in many cases a thoughtful reading
of the whole of the standard can lead the reader to the correct interpretation.

This section addresses the more important clarifications and corrigenda in no particular order. Some errors in IEEE Std
1394-1995 were deemed too minor (or their correction too self-evident) to warrant inclusion here.

9.1 Cycle start

The requirements placed upon a cycle master to transmit a cycle start packet are different from the criteria used by recip-
ients to recognize a cycle start packet. The following specifications replace IEEE Std 1394-1995 clause 6.2.2.2.3 in its
entirety. The format of a cycle start packet is shown by figure 9-1.

The tcode field shall be 8.

The source_phy_ID field shall be the physical ID of the cycle master that transmits the cycle start packet.

The cycle_time field shall contain the contents of the cycle master’s CYCLE_TIME register (see clause 8.3.2.3.1 of IEEE
Std 1394-1995).

The header_CRC field shall be calculated as specified by clause 6.2.4.15 of IEEE Std 1394-1995.

The cycle master shall signal the start of the isochronous period by transmitting a cycle start packet with the format
defined above. No node except the cycle master shall transmit a cycle start packet.

A cycle start packet shall be recognized if tcode is 8 and the header_CRC is valid; recipients of cycle start packets may
verify the other header fields.

NOTE—The cycle start packet is a write request for data quadlet whose values can be interpreted as a broadcast write to the
CYCLE_TIME register. Although this could be handled in an implementation by the transaction layer and node controller, this standard
assumes that the link layer is responsible for the generation and detection of the start of an isochronous period.

9.2 Read response for data block

This supplement adds an additional requirement to the data_length field specified by clause 6.2.2.3.3 of IEEE Std
1394-1995. When the response code (rcode) is resp_complete, the data_length field in the response packet shall be equal
to the data length specified by the corresponding read request. If data_length is zero no data CRC shall be calculated.

Figure 9-1—Cycle start packet format

cycle_time

zero tcodeFFFF16

F000 020016

F16

3FF16

header_CRC

transmitted first

transmitted last

FFFF16source_phy_ID

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

102 This is an unapproved standards draft, subject to change © 1997 IEEE

9.3 Maximum isochronous data payload

Clause 6.2.3.1 of IEEE Std 1394-1995 mandates that the total size of an isochronous stream packet (a primary packet with
a tcode of A16 intended for transmission during the isochronous period) shall not exceed the bandwidth allocated for the
channel. This supplement adds an additional requirement, that the maximum data payload of an isochronous stream
packet is speed-dependent and shall conform to table 9-1.

9.4 Transaction codes (tcode)

Clause 6.2.4.5 of IEEE Std 1394–1995, “Transaction code (tcode)”, defines the meaning of the tcode that identifies pri-
mary packets. This supplement extends the scope of tcode A16 in order to support asynchronous streams and also perma-
nently reserves tcode E16. Table 9-2 below replaces existing table 6-9 in IEEE Std 1394-1995.

Table 9-1—Maximum payload for isochronous stream packets

Data rate Maximum payload
(bytes) Comment

S25 256 TTL backplane

S50 512 BTL or ECL backplane

S100 1024 Cable base rate

S200 2048

S400 4096

S800 8192

S1600 16384

S3200 32768

Table 9-2—Transaction code encoding

Code Header size
(quadlets) Name Comment

0 5 Write request for data quadlet Request subaction, quadlet payload

1 5 Write request for data block Request subaction, block payload

2 4 Write response Response subaction for both write requests types, no payload

3 Reserved

4 4 Read request for data quadlet Request subaction, no payload

5 4 Read request for data block Request subaction, quadlet (data_length) payload

6 5 Read response for data quadlet Response subaction to read request for quadlet, quadlet payload

7 5 Read response for data block Response subaction to read request for block, block payload

8 5 Cycle start Request to start isochronous period, quadlet payload

9 5 Lock request Request subaction, block payload

A16 2 Stream data block Asynchronous or isochronous subaction, block payload

B16 5 Lock response Response subaction for lock request, block payload

C16 — Reserved for future standardization.

D16 — Reserved for future standardization.

E16 — Utilized internally by some link designs; not to be standardized

F16 — Reserved for future standardization.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 103

9.5 Response codes (rcode)

Clause 6.2.4.10 of IEEE Std 1394–1995, “Response code (rcode)”, defines the meaning of the rcode returned in a split
transaction request. The table, identified as table 6-11 in the current standard, is reproduced below for convenience of ref-
erence.

Despite the intended sufficiency of IEEE Std 1394-1995, discussions in a variety of forums have made it clear that the
usage of the response code is subject to interpretation. This supplement clarifies response code usage in ambiguous cases
so as to assure equivalent behavior, and hence interoperability, of link layer, transaction layer and application implemen-
tations from different vendors. The examples given are not exhaustive nor do they illustrate the common usage already
specified by IEEE Std 1394-1995.

9.5.1 resp_complete

Nodes shall respond with resp_complete in the circumstances described below (this is not an exhaustive list, just some
examples as circumstances for which there might be confusion with other response codes):

A write request is received for a writable address that contains read-only bits or fields. The transaction completes success-
fully and the write effects on the read-only bits are as specified in IEEE Std 1394–1995 or the document that describes
the unit architecture. Generally an address is not considered writable if all bits are read-only; see the discussion of
resp_type_error below.

9.5.2 resp_conflict_error

Nodes shall respond with resp_conflict_error in the circumstances described below:

An otherwise valid request packet is received but the resources required to act upon the request are not available. The
requester may reasonably expect the same packet to succeed at some point in the future when the resources are available.
Note that the distinction between resp_conflict_error and ack_busy_X, ack_busy_A or ack_busy_B hinges upon the pos-
sibility of deadlock. The busy acknowledgments are appropriate for transient conditions of expected short duration that
cannot cause a deadlock. On the other hand, resp_conflict_error shall be returned when an end-to-end retry is necessary
to avoid the possibility of deadlock. Deadlocks may arise when a request cannot be queued and blocks a node’s transac-
tion resources.

9.5.3 resp_data_error

Nodes shall respond with resp_data_error in the circumstances described below:

An otherwise valid request packet is received but there is a data CRC error for the data payload.

Table 9-3—Response code encoding

Code Name Comment

0 resp_complete The node has successfully completed the command.

1 to 3 — Reserved for future standardization.

4 resp_conflict_error A resource conflict was detected. The request may be retried.

5 resp_data_error Hardware error, data is unavailable.

6 resp_type_error A field in the request packet was set to an unsupported or incor-
rect value, or an invalid transaction was attempted (e.g., a write
to a read-only address).

7 resp_address_error The destination offset in the request was set to an address not
accessible in the destination node.

8 to F16 — Reserved for future standardization.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

104 This is an unapproved standards draft, subject to change © 1997 IEEE

For read requests, an otherwise valid packet is received but a hardware error at the node prevents the return of the
requested data. For example, an uncorrectable memory error shall be reported as resp_data_error.

For write or lock requests, an otherwise valid packet is received but a hardware error at the node prevents the updates
indicated by the data payload from initiation or completion.

9.5.4 resp_type_error

Nodes shall respond with resp_type_error in the circumstances described below:

A request packet is received with a valid tcode (transaction code) value but the extended_tcode field value is reserved by
IEEE Std 1394–1995.

NOTE—If a packet is received with a tcode value that is reserved by IEEE Std 1394–1995, the node shall not respond.

A request packet is received with valid tcode and extended_tcode values, but the referenced address does not implement
the indicated request. An example of this is a write request to an address that is entirely read-only (note that this is dis-
tinct from a write request that references read-only bits or fields at an otherwise writable location). Another example is a
transaction whose tcode specifies a lock operation but the destination address supports only read and write operations.

A request packet is addressed to a valid destination_ID, the destination_offset references an address implemented by the
node but the alignment of the destination offset does not match the node’s alignment requirements. For example, a quadlet
register is implemented but cannot respond to a one byte data block request.

9.5.5 resp_address_error

Nodes shall respond with resp_address_error in the circumstances described below:

A request packet is addressed to a valid destination_ID but the destination_offset references an address that is not imple-
mented by the node.

A block request packet is addressed to a valid destination_ID but the combination of the destination_offset and the
data_length reference addresses some of which are not implemented by the node.

9.6 Tag

Clause 6.2.4.12 of IEEE Std 1394–1995, “Tag”, defines the meaning of the tag field transmitted in an isochronous stream
packet. This supplement defines, by reference to IEC 61883/FDIS, one of the previously reserved tag values. Table 9-4
below replaces existing table 6-12 in IEEE Std 1394-1995.

The tag field provides a label, useful to applications, that specifies the format of the payload carried by a stream packet.

Table 9-4—Tag field encoding

Value Meaning

0 Data field format unspecified

1 Data format and sy field specified by
IEC 61883/FDIS

2 Reserved for future standardization

3 Reserved for future standardization

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 105

9.7 Acknowledge codes (ack_code)

Clause 6.2.5.2.2 of IEEE Std 1394–1995, “Acknowledge code (ack_code)”, defines the meaning of the ack_code trans-
mitted in immediate response to a nonbroadcast request or response packet. This supplement defines three new acknowl-
edge codes, ack_address_error, ack_conflict_error and ack_tardy. Table 9-5 below replaces existing table 6-13 in IEEE
Std 1394-1995.

An ack_complete shall not be sent in response to a read or lock request.

Although a resource conflict or an address error in a request packet is usually detected by the transaction or higher appli-
cation layer, there may be circumstances in which the link is capable of detecting these errors within the time permitted
for a unified response to a request subaction. The new acknowledge codes ack_conflict_error and ack_address_error are
defined to provide the same utility as the existing resp_conflict_error and resp_address_error.

The ack_tardy code has been defined to enable low power consumption states for Serial Bus devices. Such a device may
be able to place its link layer in a partially functional state and suspend the transaction and all higher application layers.
The link layer shall be able to recognize nonbroadcast request packets whose destination_ID addresses the suspended
node. Upon recognition of such a packet, the link shall send an ack_tardy and shall initiate the resumption of full link and
transaction layer functionality. The recipient of an ack_tardy may retransmit the request packet in a subsequent fairness
interval. The time required for the link and transaction layers to become fully operational is implementation-dependent
but is expected to be on the order of min to max milliseconds.

Table 9-5—Acknowledge codes

Code Name Comment

0 reserved Not to be used in any future Serial Bus standard.

1 ack_complete The node has successfully accepted the packet. If the packet was a request sub-
action, the destination node has successfully completed the transaction and no
response subaction shall follow.

2 ack_pending The node has successfully accepted the packet. If the packet was a request sub-
action, a response subaction will follow at a later time. This code shall not be
returned for a response subaction.

3 reserved

4 ack_busy_X The packet could not be accepted. The destination transaction layer may accept
the packet on a retry of the subaction.

5 ack_busy_A The packet could not be accepted. The destination transaction layer will accept
the packet when the node is not busy during the next occurrence of retry phase
A (see clause 7.3.5 in IEEE Std 1394-1995).

6 ack_busy_B The packet could not be accepted. The destination transaction layer will accept
the packet when the node is not busy during the next occurrence of retry phase B
(see clause 7.3.5 in IEEE Std 1394-1995).

7 — A16 reserved

B16 ack_tardy The node could not accept the packet because the link and higher layers are in a
suspended state; the destination node shall restore full functionality to the link
and transaction layers and may accept the packet on a retransmission in a subse-
quent fairness interval.

C16 ack_conflict_error A resource conflict prevented the packet from being accepted.

D16 ack_data_error The node could not accept the block packet because the data field failed the CRC
check, or because the length of the data block payload did not match the length
contained in the data_length field. This code shall not be returned for any packet
that does not have a data block payload.

E16 ack_type_error A field in the request packet header was set to an unsupported or incorrect value,
or an invalid transaction was attempted (e.g., a write to a read-only address).

F16 ack_address_error The node could not accept the packet because the destination_offset field in the
request was set to an address not accessible in the destination node

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

106 This is an unapproved standards draft, subject to change © 1997 IEEE

NOTE—Request subactions are completed by either an ack_pending and a subsequent response packet or by an acknowledgment other
than ack_pending. At the transaction layer both methods are equivalent and the same criteria shall be used in either case to select the
appropriate acknowledgement or response code. Responses indicated by acknowledge packets are preferred over a separate response
packets, since the former utilizes less Serial Bus bandwidth.

9.8 Priority arbitration for response packets

When transmitting a response packet, a link may use priority arbitration requests. If the node implements the
PRIORITY_BUDGET register (see clause 9.15), priority requests for response packets shall not count against the node’s
budget. A response packet is an asynchronous primary packet with a tcode of 2, 6, 7 or B16.

If an ack_busy_X, ack_busy_A or ack_busy_B is received in acknowledgment of a response packet, the node shall not
retransmit the response packet until the next fairness interval.

9.9 Transaction layer services

Section 6 of IEEE Std 1394-1995, “Link layer specification”, in the descriptions of the different types of primary Serial
Bus packets, requires that the transaction codes (tcode) used in response to data requests correspond to the original tcode
of the request. That is, a read response for data quadlet shall be sent only in response to a read request for data quadlet, a
read response for data block shall be sent only in response to a read request for data block and a lock response shall be
sent only in response to a lock request. A close examination of clause 7, “Transaction layer specification”, reveals that
insufficient information is communicated to the transaction layer in order for it to meet this requirement.

The portion of section 7 that describes which tcode the transaction layer shall select for a READ or WRITE request man-
dates, at present, that a quadlet tcode shall be used if the data length of the transaction is four, independent of whether or
not the destination offset is quadlet aligned. This is does not conform to the expectations of most Serial Bus implemen-
tors, namely, that quadlet transactions should be used only if the address is quadlet aligned.

There is also ambiguity in IEEE Std 1394-1995 with respect to the source_ID field transmitted in a response packet. A
request addressed to a node is identified by the destination_ID field and may specify a bus ID of either 3FF16 (the local
bus) or the value present in the most significant ten bits of the addressed node’s NODE_IDS register. In order for the
requester’s transaction label matching between requests and responses to operate correctly, the response’s source_ID shall
be identical to the destination_ID field from the request.

Uniform behavior of transaction layer implementations shall be achieved by conformance to the specifications given
below. Briefly, the specifications:

a) Require that the source node ID in a response packet be equal to the destination node ID from the corresponding
request;

b) Limit the use of quadlet READ and WRITE transactions to the case where the data length is four and the
destination offset is quadlet aligned;

c) Optionally permit the use of block READ and WRITE transactions in the case where the data length is four and
the destination offset is quadlet aligned;

d) Add new parameters to a transaction layer data service so that quadlet responses may be properly generated for
quadlet requests and block responses for block requests; and

e) Emphasize that support for quadlet transactions is mandatory in all Serial Bus implementations but that support
for block transactions is optional.

9.9.1 Transaction data request (TRAN_DATA.request)

In clause 7.1.2.1, two new parameters are added to the list of parameters communicated to the transaction layer via this
service:

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 107

a1) Local bus ID. When TRUE, this indicates that the link shall use 3FF16 as the bus ID component of source_ID;
otherwise the most significant 16 bits of the NODE_IDS register shall be used as source_ID.

a2) Packet format. In the case of READ or WRITE transactions with a data length of four and a quadlet aligned
destination address, this parameter shall govern the type of tcode, quadlet or block, generated by the transaction
layer. This parameter shall have a value of BLOCK TCODE or QUADLET TCODE.

9.9.2 Transaction data response (TRAN_DATA.response)

In clause 7.1.2.4, two new parameters are added to the list of parameters communicated to the transaction layer via this
service:

a1) Local bus ID. When TRUE, this indicates that the link shall use 3FF16 as the bus ID component of source_ID;
otherwise the most significant 16 bits of the NODE_IDS register shall be used as source_ID.

a2) Packet format. In the case of READ or WRITE transactions, this parameter shall indicate the type of tcode,
quadlet or block, received by the transaction layer. This parameter shall have a value of BLOCK TCODE or
QUADLET TCODE.

9.9.3 Sending a transaction request

Clause 7.3.3.1.2, under the heading “State TX1: Send Transaction Request”, describes how the transaction code parameter
(communicated to the link layer via LK_DATA.request) is to be selected. The nonprocedural list that follows the first
paragraph is replaced with:

— Write request for data quadlet, if the transaction type value in the transaction data request is WRITE, the data
length is four, the destination address is quadlet aligned and the packet format value is QUADLET TCODE;

— Write request for data block, if the transaction type value in the transaction data request is WRITE, the data
length is four, the destination address is quadlet aligned and the packet format value is BLOCK TCODE;

— Write request for data block, if the transaction type value in the transaction data request is WRITE and the
data length is not four or the destination address is not quadlet aligned;

— Read request for data quadlet, if the transaction type value in the transaction data request is READ, the data
length is four, the destination address is quadlet aligned and the packet format value is QUADLET TCODE;

— Read request for data block, if the transaction type value in the transaction data request is READ, the data
length is four, the destination address is quadlet aligned and the packet format value is BLOCK TCODE;

— Read request for data block, if the transaction type value in the transaction data request is READ and the data
length is not four or the destination address is not quadlet aligned; or

— Lock request, if the transaction type value in the transaction data request is LOCK.

9.9.4 Sending a transaction response

Clause 7.3.3.1.3, under the heading “State TX2: Send Transaction Response”, describes how the transaction code param-
eter (communicated to the link layer via LK_DATA.request) is to be selected. The nonprocedural list that follows the first
paragraph is replaced with:

— Write response for data quadlet, if the transaction type value in the transaction data request is WRITE, the
data length is four and the packet format value is QUADLET TCODE;

— Write response for data block, if the transaction type value in the transaction data request is WRITE and the
data length is not four or the packet format value is BLOCK TCODE;

— Read response for data quadlet, if the transaction type value in the transaction data request is READ, the data
length is four and the packet format value is QUADLET TCODE;

— Read response for data block, if the transaction type value in the transaction data request is READ and the
data length is not four or the packet format value is BLOCK TCODE; or

— Lock response, if the transaction type value in the transaction data request is LOCK.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

108 This is an unapproved standards draft, subject to change © 1997 IEEE

9.9.5 CSR Architecture transactions mapped to Serial Bus

In IEEE Std 1394-1995 clause 7.4, below Table 7-10, “CSR Architecture / Serial Bus transaction mapping”, a paragraph
describes alignment and minimal transaction requirements for Serial Bus nodes. That paragraph is replaced with the fol-
lowing language:

All Serial Bus nodes shall implement support for transaction data requests with a transaction type of READ or WRITE, a
data length of four, a destination address that is quadlet aligned and a packet format of QUADLET TCODE. These corre-
spond to the read4 and write4 requests of the CSR Architecture.

All other transaction support, i.e., transaction data requests with a data length other than four, a destination address that is
not quadlet aligned or lock requests, is optional.

NOTE—Transaction support for block reads or writes for some arbitrary data length n does not necessarily imply transaction support
for any other length block read or write.

9.10 Serial Bus control request (SB_CONTROL.request)

A Serial Bus reset has the potential to disrupt isochronous data flow. Isochronous devices may be designed to compensate
for anticipated disruptions but until equilibrum is reestablished may be more vulnerable to disruption. Any additional bus
resets that occur during this time increase the likelihood that users perceive an interrupton in isochronous data flow.

For this reason, applications, the bus manager or the node controller should not make an SB_CONTROL.request that
specifies a Reset action until two seconds have elapsed subsequent to the completion of the self-identify process that fol-
lows a bus reset.

9.11 Serial Bus event indication (SB_EVENT.indication)

The definition of the DUPLICATE CHANNEL DETECTED and UNEXPECTED CHANNEL DETECTED bus event
parameters in clause 8.2.3 of IEEE Std 1394-1995 are replaced with the following:

— DUPLICATE CHANNEL DETECTED (Optional). A stream packet was received with a channel number
equal to one of the node’s active, transmit isochronous channels.

— UNEXPECTED CHANNEL DETECTED (Optional, available only at the active isochronous resource
manager). The isochronous resource manager observed a stream packet whose channel number is not
specified in the Expected Channel List.

NOTE—The above events shall not be reported for a stream packet (transaction code A16) observed after the subaction gap that
terminates the isochronous period and before the cycle start packet that initiates the next isochronous period.

9.12 NODE_IDS register

The following specifications replace IEEE Std 1394-1995 clause 8.3.2.2.3 in its entirety.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 109

The NODE_IDS register reports and permits modification of a node’s bus ID and physical ID. Together these form a 16-
bit node ID used by the link to determine if a primary packet is addressed to the node. Serial Bus reserves the 16-bit bus-
dependent field, as indicated by the shaded field within figure 9-2.

The 10-bit read/write bus_ID field provides software with a mechanism for reconfiguration of the initial node address
space. The bus_ID field permits node addresses on one bus to be distinguished from those on another. All nodes on a bus
shall have identical bus_ID values.

NOTE—A bus consists of all physically connected nodes that are within the same arbitration domain, i.e., nodes that receive their
arbitration grant(s) from the same root node.

The 6-bit offset_ID field shall have a value generated as a side-effect of the bus initialization process. Within this stan-
dard, the value of NODE_IDS.offset_ID is also known as the physical ID of the node. This field is read-only in the cable
environment and read/write in the backplane environment.

NOTE—The CSR Architecture requires that if there are any side-effects of a nonbroadcast write transaction to a register, the affected
node shall delay the return of a transaction response until all effects of the write are complete. In the case of the NODE_IDS register,
a return of resp_complete indicates that the node recognizes transactions to the newly assigned NODE_IDS value. The contents of the
source_ID field of the response packet shall be equal to the most significant 16 bits of the NODE_IDS register.

9.13 SPLIT_TIMEOUT register

Split-transaction error detection requires that all nodes on Serial Bus share the same time-out value and that requester and
responder behave in complementary fashion. The following specifications replace IEEE Std 1394-1995 clause 8.3.2.2.6 in
its entirety.

The SPLIT_TIMEOUT register establishes the time-out value for the detection of split-transaction errors. The value of
SPLIT_TIMEOUT is the maximum time permitted for the receipt of a response subaction after the transmission of a
request subaction. After this time, a responder shall not transmit a response for the request subaction and a requester shall
terminate the transaction with a request status of TIMEOUT. For a requester the time-out period commences when an
ack_pending is received in response to a request subaction. A responder starts the time-out period when an ack_pending
is transmitted. Figure 9-3 illustrates the portions of the SPLIT_TIMEOUT register implemented on Serial Bus.

Figure 9-2—NODE_IDS format

bus_ID

initial values

command reset values

definition

zerosunchanged

read values

bus-dependent

zeros

offset_ID

last write last update

10 6 16

zerosphysical IDones

write effects (cable environment)

ignoredstored ignored

write effects (backplane environment)

ignoredstored

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

110 This is an unapproved standards draft, subject to change © 1997 IEEE

NOTE—A requester should not reuse the transaction label from an expired request subaction in a subsequent request subaction to the
same node unless at least twice the split time-out period has elapsed since the initiation of the expired subaction.

The sec field, in units of seconds, and the cycles field, in units of 125 µs, together specify the time-out value. The value
of cycles shall be less than 8000. The bus manager, if present, shall insure that all nodes on the bus have identical values
in their SPLIT_TIMEOUT registers.

The minimum timeout value is 0.1 second. If a value smaller than this is written to the SPLIT_TIMEOUT register it may
be ignored or rounded up to 0.1 second.

NOTE—The Serial Bus definition of the SPLIT_TIMEOUT register differs from that of the CSR Architecture. Serial Bus interprets the
most significant 13 bits of the SPLIT_TIMEOUT_LO register as units of 1/8000 seconds, rather than a true binary fraction of a second
with units of 1/8192 seconds. Since precise time-outs are not necessary, the bus manager may ignore this difference when calculating
values for use within the SPLIT_TIMEOUT_LO register.

9.14 Command reset effects

A write to the RESET_START register (command reset) shall have no effects upon any of the Serial Bus-dependent reg-
isters defined either in this document or in clause 8.3.2.3 of IEEE Std 1394-1995.

9.15 PRIORITY_BUDGET register

Reserved, backplane environment.

Optional, cable environment. This register shall be implemented on nodes capable of using asynchronous priority arbitra-
tion for certain primary packets and shall be located at offset 21816 within initial register space.

Figure 9-3—SPLIT_TIMEOUT format

19

definition

cycles

reserved
3

13

read values

write effects

ignored

zeros w

conditionally stored

last write zeros

stored

ignored

initial values

zeros

zero

800 zeros

command reset and bus reset values

zeros

unchanged zeros

reserved
29

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 111

The PRIORITY_BUDGET register permits the bus manager to configure a node’s asynchronous arbitration behavior.
This register provides a mechanism for a node to be granted permission to use priority arbitration during the asynchro-
nous period. The definition is given by figure 9-4 below.

The pri_max field shall specify the maximum value the node expects to be stored in pri_req. If a write request attempts
to update pri_req to a larger value, the result is unspecified.

The pri_req field shall specify the maximum number of asynchronous priority arbitration requests the link is permitted to
make of the PHY during a fairness interval. A Serial Bus fairness interval exists between the occurrence of an arbitration
reset gap and the first subsequent arbitration reset gap. In addition to response packets (see clause 9.8), the primary packet
transaction codes for which priority asynchronous arbitration may be used are specified by table 9-6. The pri_req default
value of zero is equivalent to the fair arbitration behavior specified by IEEE Std 1394-1995; any priority requests enabled
by a nonzero value of pri_req are in addition to the fair arbitration request permitted each node.

Each time a link receives PHY status of ARB_RESET_GAP, it shall reset an internal variable, priority_request_count, to
the value of pri_req. Except in one case, the link may use priority asynchronous arbitration for any of the transaction
codes specified by table 9-6 so long as priority_request_count is nonzero. Even if priority_request_count is nonzero, if a
node receives an ack_busy_X, ack_busy_A or ack_busy_B in acknowledgment of a request subaction, the node shall not
retransmit the request packet until the next fairness interval. Each time a priority arbitration request is granted, the link
shall decrement priority_request_count.

NOTE—IEEE Std 1394-1995 specifies only one use for the priority arbitration request from the link to the PHY: to arbitrate for the bus
in order to transmit a cycle start packet. This supplement does not change that use of priority request and it does not count against the
priority_request_count maintained by the link.

The bus manager shall ensure that the sum of the values of pri_req in the PRIORITY_BUDGET registers of all nodes on
the local bus is less than or equal to 63 minus the number of nodes.

Figure 9-4— PRIORITY_BUDGET format

Table 9-6—Request subactions eligible for priority asynchronous arbitration

tcode Name Comment

0 Write request for data quadlet Request subaction, quadlet payload

1 Write request for data block Request subaction, block payload

4 Read request for data quadlet Request subaction, no payload

5 Read request for data block Request subaction, quadlet (data_length) payload

9 Lock request Request subaction, block payload

A16 Stream data block Asynchronous subaction, block payload

pri_req
18

definition

initial values

read values

write effects

ignored

zeros

stored

zeros

reserved
6

v

6
pri_max

zeros

2
r

v z u

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

112 This is an unapproved standards draft, subject to change © 1997 IEEE

9.16 Unit registers

Clause 8.3.2.4 in IEEE Std 1394-1995 reserves a range of addresses in initial units space for Serial Bus-dependent or
other uses, notably the TOPOLOGY_MAP and SPEED_MAP registers defined by that standard. Additional portions of
that address space have been utilized both by this supplement and by other draft standards. Table 9-7 below replaces
existing table 8-4 in IEEE Std 1394-1995.

Except as specified by IEEE Std 1394-1995, this supplement or future Serial Bus standards, unit architectures shall not
implement any CSRs that fall within the above address space.

9.16.1 SPEED_MAP_REGISTERS (cable environment)

The paragraph in IEEE Std 1394-1995 clause 8.3.2.4.2 that describes the speed_code entries is replaced with the follow-
ing definition:

The three least-significant bits of the speed_code bytes specify one of the data transfer speeds S100, S200 or S400, S800,
S1600 or S3200. The speed_code bytes use the same encoding as the xspd field specified in table 7-3. The remaining
most-significant five bits are reserved for future standardization and may not be relied upon to be read as zeros.

9.16.2 TOPOLOGY_MAP registers (cable environment)

The definition of the TOPOLOGY_MAP is unchanged from the current standard but implementors are advised that PHYs
compliant with this supplement transmit a minimum of two self-ID packets during the self-identify process.

9.17 Configuration ROM Bus_Info_Block

Several new fields are specified for the Bus_Info_Block in order to support enhanced capabilities defined by this stan-
dard:

Table 9-7—Serial Bus-dependent registers in initial units space

Offset Name Notes

80016 — 8FC16 Reserved for Serial Bus

90016 OUTPUT_MASTER_PLUG Specified by IEC 61883/FDIS

90416 — 97C16 OUTPUT_PLUG Specified by IEC 61883/FDIS

98016 INPUT_MASTER_PLUG Specified by IEC 61883/FDIS

98416 — 9FC16 INPUT_PLUG Specified by IEC 61883/FDIS

A0016 — AFC16 Reserved for Serial Bus

B0016 — CFC16 FCP command frame Specified by IEC 61883/FDIS

D0016 — EFC16 FCP response frame Specified by IEC 61883/FDIS

F0016 — FFC16 Reserved for Serial Bus

100016 — 13FC16 TOPOLOGY_MAP Present at the bus manager, only.

140016 — 1FFC16 Reserved for Serial Bus

200016 — 2FFC16 SPEED_MAP Present at the bus manager, only

300016 — FFFC16 Reserved for Serial Bus

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 113

— Immediately subsequent to a bus reset nodes might generate a flurry of quadlet read requests to ascertain the iden-
tity, by means of the EUI-64, of nodes whose physical ID may have been reassigned in the self-identify process.
The volume of read requests may be minimized if it is not necessary to reread all (or a significant part) of a node’s
configuration ROM. A new field, generation, has been added whose purpose is to indicate whether or not config-
uration ROM has changed from one bus reset to the next;

— Outside of IEEE P1394a standardization activities, work is underway to define power management for Serial Bus.
A new entity, the power manager, will manage power distribution and consumption in the cable environment. A
new bit, pmc, is defined to identify nodes capable of power management;

— IEEE Std 1394-1995 does not specify how both the link and the PHY maximum speed capabilities shall be report-
ed when they differ—nor does it require all link and PHY combinations to support the same speed capabilities.
This supplement adds a new field, link_spd, to the Bus_Info_Block to permit the speeds to be reported indepen-
dently;

The revised format of the Bus_Info_Block is shown in figure 9-5; this replaces existing figure 8-20 in clause 8.3.2.5.4 of
IEEE Std 1394-1995.

With the exception of max_rec, the definitions of all fields previously specified by IEEE Std 1394-1995 are unchanged.

The max_rec field defines the maximum data payload size that the node supports. The data payload size applies to block
write requests or asynchronous stream packets addressed to the node and to block read responses transmitted by the node.
The maximum data payload is equal to 2max_rec+1 bytes, as specified by table 9-8.

Figure 9-5—Bus_Info_Block format

Table 9-8—Encoding of max_rec field

Code Maximum data payload
(bytes)

0 Not specified

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8 512

9 1024

A16 2048

B16 4096

C16 8192

isc bmcirmc cmc
1 1

r

8

max_rec

3916 (“9”)

link_spd

chip_id_lo

chip_id_hinode_vendor_id
24

32

8

8

cyc_clk_acc
8 8

3116 (“1”) 3316 (“3”) 3416 (“4”)

11

pmc
1 3

r
3344 2

g
8

r

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

114 This is an unapproved standards draft, subject to change © 1997 IEEE

The maximum isochronous data payload supported by the node, either as a talker or listener, is not governed by max_rec.

The pmc bit when set to one indicates the node is power manager capable. A node that sets its pmc bit to one shall also
set its bmc bit to one to indicate bus manager capabilities. The capabilities and responsibilities of a power manager capa-
ble node are beyond the scope of this standard.

Upon the detection or initiation of a bus reset, the generation field (abbreviated as g in the figure above) shall be modi-
fied if any portion of configuration ROM has changed since the prior bus reset. Configuration ROM includes not only the
first kilobyte of ROM (quadlets in the address range FFFF F000 040016 through FFFF F000 07FC16, inclusive) but any
directories or leaves that are indirectly addressed from the first kilobyte. The CRC in the first quadlet of configuration
ROM shall be recalculated each time the generation field is updated.

The link_spd field shall report the maximum speed capability of the node’s link layer; the encoding used is the same as
for the self-ID packet xspd field specified in table 7-3.

9.18 Node_Unique_ID

The requirements of clauses 8.3.2.5.5.3 and 8.3.2.5.7.1 of IEEE Std 1394-1995 for a Node_Unique_ID leaf and a root
directory entry to address it are removed. Since the same information is required in the Bus_Info_Block, the node unique
ID leaf is obsoleted.

9.19 Determination of the bus manager

Clause 8.4.2.5 of IEEE Std 1394-1995 describes the use of the BUS_MANAGER_ID register to determine the identity of
the bus manager subsequent to a bus reset. The text is misleading where it describes the return of an old_value of 3F16 as
the only way in which a candidate bus manager is confirmed as the new bus manager. If a candidate bus manager success-
fully completes a lock (compare and swap) request to the BUS_MANAGER_ID register but the response packet is cor-
rupted the candidate shall retry the lock request as described. In this case the old_value returned is not the anticipated
3F16 but is instead the physical ID of the bus manager.

If the response to a successful lock (compare and swap) request to the BUS_MANAGER_ID register returns an old_value
of either 3F16 or the physical ID of the candidate bus manager, the candidate is confirmed as the new bus manager.

9.20 Gap count optimization

A bus manager or, in the absence of a bus manager, an isochronous resource manager may optimize Serial Bus perfor-
mance by transmitting a PHY configuration packet (see clause 7.4.3) with the gap_cnt field set to a value less than 63 and
the T bit set to one.

A node that transmits a PHY configuration packet with the T bit set to one shall initiate a bus reset as soon as possible
after the PHY configuration has been sent. This is essential so that the gap_count_reset_disable variable at all
node(s) is cleared to FALSE. Without this precaution, the subsequent addition of a new node to the bus could result in
different values of gap_count at different nodes and resultant unpredictable arbitration behavior.

D16 16384

E16 to F16 Reserved

Table 9-8—Encoding of max_rec field (Continued)

Code Maximum data payload
(bytes)

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 115

9.21 Automatic activation of the cycle master

As defined by IEEE Std 1394-1995, the operations of an incumbent cycle master may resume immediately after a bus
reset. The intent is to disrupt isochronous operations as little as possible when a bus reset occurs. However, because of
Serial Bus topology changes, there may be a new root node subsequent to a bus reset. As specified by IEEE Std
1394-1995, the new root shall not commence cycle master operations until enabled by either the bus manager or isochro-
nous resource manager. If the new root is cycle master capable, it would be desirable for it to commence cycle master
operations automatically.

Cycle master operations are controlled by the cmstr bit in the STATE_SET register defined in clause 8.3.2.2.1 of the cur-
rent standard. The paragraphs that specify the behavior of cmstr are replaced with the following definition:

Cycle master capable nodes shall implement the cmstr bit. The cmstr bit enables the node as a cycle master. A cmstr
value of one enables cycle master operations while a zero value disables cycle master operations. Only the bus manager
or, in the absence of a bus manager, the isochronous resource manager may change the state of cmstr by means of a write
transaction. Any request that attempts to set cmstr to one shall be ignored if the node is not the root.

In the cable environment, the value of cmstr subsequent to a bus reset is determined as follows:

a) If this node is not the root, the cmstr bit shall be cleared to zero; else

b) If this node had been the root prior to the bus reset, cmstr shall retain its prior value; else

c) Otherwise cmstr shall be set to the value of the cmc bit (from the bus information block).

9.22 Isochronous period too long

If the cycle master detects an isochronous period that exceeds the maximum time, it shall clear its own cmstr bit and
cease transmission of cycle start packets. The cycle too long condition is defined as the failure to detect a subaction gap
within 125 µs of the transmission of a cycle start packet.

9.23 Abdication by the bus manager

This clause provides an orderly method for a bus manager to yield its role to another bus manager candidate. Although
the new intended bus manager is presumably more capable, in some fashion, than the current bus manager, the details are
beyond the scope of this supplement.

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

116 This is an unapproved standards draft, subject to change © 1997 IEEE

In order to support the procedures described here, a new bus-dependent bit is defined for the STATE_CLEAR register, as
illustrated below.

The four shaded r bits are reserved for future definition by Serial Bus.

The gone and linkoff bits are specified by IEEE Std 1394-1995.

The cmstr bit is specified by clause 9.21 above.

The abdicate bit shall be implemented by bus manager-capable nodes; it controls the behavior of the node during conten-
tion for the role of bus manager. When abdicate is zero, the incumbency of the node prior to a bus reset determines the
amount of time the node waits before contending to become the bus manager. As specified by IEEE Std 1394-1995, the
incumbent manager contends immediately after the first subaction gap that follows a bus reset while nonincumbent, bus
manager-capable nodes wait one second before contending. When abdicate is one, the node shall wait one second before
contending—whether incumbent or not.

A bus manager-capable node that wishes to assume the role of bus manager shall proceed as follows:

a) The candidate bus manager shall set the abdicate bit in the incumbent bus manager’s STATE_SET register;

b) The candidate bus manager shall initiate a Serial Bus reset;

c) Subsequent to the bus reset, the candidate bus manager shall attempt to become the bus manager in accordance
with the procedures in IEEE Std 1394-1995, with one exception. The candidate bus manager shall not wait 125 ms
before making a lock transaction to the BUS_MANAGER_ID register at the isochronous resource manager node
but shall attempt to become the bus manager immediately upon the completion of the self-identify process; and

d) If the candidate bus manager fails to become the bus manager, it shall transmit a PHY configuration packet with
the R bit set to one, the root_ID field set to the value of the candidate’s own physical ID and the T bit cleared to
zero. The effect of this PHY configuration packet is to clear the force_root variable of other nodes to zero while
leaving the gap_count at its present value. The candidate bus manager shall set it’s own force_root variable to
one, initiate a Serial Bus reset and attempt to become the bus manager as described in c) above.

Figure 9-6—STATE_CLEAR. bus_depend field

cmstrlinkoff

initial values

read values

write effects

definition

abdicate

 bus reset and command reset values

rrrrgone
1 1 1 1 1 1 1 1

zerozerozerozerozerozerozero

unchangedzerozerozerozerozeroone

last updatelast writelast writezerozerozerozerolast update

nonzero value clears corresponding (writeable) bit

unchanged

zero

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 117

NOTE—The last step is necessary to wrest control of the bus manager role from an incumbent bus manager that is the root and does
not implement the abdicate bit. When the candidate bus manager becomes the root after the bus reset it has the highest arbitration
priority of all the nodes on the bus and should be able to be the first to complete a lock transaction to the BUS_MANAGER_ID
register.

The means by which a candidate bus manager determines that it is more capable than the incumbent bus manager are not
specified by this supplement. The candidate may interrogate the incumbent bus manager’s CSRs for the presence or
absence of advanced features or the two nodes may engage in some negotiation to determine which is more capable.

9.24 Internal device physical interface

Annex C of IEEE Std 1394-1995 specifies a physical interface suitable for Serial Bus devices mounted internal to a mod-
ule’s enclosure. When this optional interface is utilized, all clauses of annex C are normative with the exception of clause
C.1, “Overview”. The overview is informative and describes the rationale for the internal device physical interface speci-
fied by the remainder of the annex.

This supplement retitles clause C.1 “Overview (informative)” and replaces the clause in its entirety with the text that fol-
lows. The other clauses of annex C are not affected.

The cable media attachment specification in clause 4.2.1 of IEEE Std 1394-1995 is suitable to external, box-to-box applica-
tions. (An example would be a computer, printer and video camera connected via Serial Bus; the computer and printer are
powered from different AC outlets while the camera takes power from the Serial Bus cable.) The external cable also pro-
vides power to all PHYs on the bus so that they can maintain their bus repeater capability even when their local power is off.
When necessary to accommodate different power domains (i.e., from different AC power sources), each node provides iso-
lation between the its local AC power and external cable power. The external environment requires mechanically strong
shielded cables and connectors.

Iinternal devices may not have the same design criteria as external, box-to-box applications; they may be optimized for low
cost, low power, minimum components and minimum package size (e.g., mass storage devices). Internal devices usually
share a common power domain with other devices packaged within the enclosure and may not require mechanically strong
or shielded connectors and cables. Internal devices may require other packaging options, such as hot-plug, auto-dock, blind-
mate; they may need various connector methodologies, such as cable or board attachment with such connector systems as
surface mount or card edge.

A goal of the internal device interface is to allow implementation options for both the device vendor and the system inte-
grator. These options enable Serial Bus internal devices to accommodate a wide range of applications in a cost-effective
manner. Device options include a second port that can be configured as either as a repeater (bus) or as a second indepen-
dent port (dual path). Packaging options include cable attachment, board attachment, or a combination of the two. Pins are
allocated in the internal device connector to support these options.

9.25 Transaction integrity safeguards

IEEE Std 1394-1995 makes little provision for facilities or implementation constraints that enhance resistance to tamper-
ing by malicious agents. Because Serial Bus may be connected to external gateways (such as cable network interface
units) which may be reprogrammable from a remote location, there is a desire to provide building blocks upon which
more tamper-resistant systems may be constructed. In particular it is important for Serial Bus modules to possess unforge-
able identities and to not be able to snoop asynchronous request or response packets addressed to other nodes.

A module compliant with this supplement shall meet the following requirements at the time of manufacture:

— If a node’s unique ID, EUI-64, is read from the configuration ROM bus information block by quadlet read
requests, the value returned shall be the EUI-64 assigned by the manufacturer. In particular, the EUI-64 so
returned shall not be alterable by software;

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

118 This is an unapproved standards draft, subject to change © 1997 IEEE

— A node shall not originate an asynchronous request or response packet with a source_ID field that is not
equal to either a) the most significant 16 bits of the node’s NODE_IDS register or b) the concatenation of
3FF16 and the physical ID assigned to the node’s PHY during the self-identify process; and

— A node’s link shall not receive nor make available to the transaction layer or any other application layer an
asynchronous request or response packet unless the destination_ID field is equal to either a) the
concatenation of the most significant 10 bits of the node’s NODE_IDS register and either the physical ID
assigned to the node’s PHY during the self-identify process or 3F16, or b) the concatenation of 3FF16 and
either the physical ID assigned to the node’s PHY during the self-identify process or 3F16.

All exceptions to these requirements, if any, shall be explicitly specified in future standards developed and approved
through the IEEE standards development process. At the time of writing, the only anticipated exceptions are for Serial
Bus to Serial Bus bridges, which work is in progress in the IEEE P1394.1 working group.

NOTE—A module that does not conform to these transaction integrity requirements shall not claim full compliance with this
specification.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 119

Annex A

(normative)

Cable environment electrical isolation

This annex replaces IEEE Std 1394-1995 annex A, “Cable environment system properties”, in its entirety. That annex
defines specifications in the following areas:

1) External shielded cable interconnection;
2) Internal unshielded interconnection;
3) Cable power sourcing and connection;
4) Powering PHY integrated circuits (ICs) and devices; and
5) Electrical isolation requirements.

Systems designers have concluded that, with the exception of the last item, the areas above are either adequately specified
in other clauses of IEEE Std 1394-1995 or else are outside of the scope of the standard.

Although electrical isolation is an important system design issue for many Serial Bus devices, it is not possible to specify
uniform isolation requirements for all devices. Electrical isolation is not a normative requirement of this standard. In
addition to the elimination of the normative requirements of prior annex A, clause 4.2.1.4.8 of IEEE Std 1394-1995,
“Shield ac coupling,” is deleted.

Designers are cautioned that particulars of their application, e.g., industrial or medical usage, may require electrical isola-
tion to comply with applicable standards. In other cases, the lack of electrical isolation may cause grounding problems
that in turn make it difficult to comply with agency requirements.

A.1 Grounding characteristics of AC powered devices

AC-powered devices whose power cords provide for a connection to ground are typically wired as shown below.

The ground wire is electrically connected to the metal chassis and does not carry power current to or from the powered
device. The neutral wire is connected to earth ground but must also carry the full current used by the powered device;
neutral wires exhibit significant voltages due to IR drops across them. In the event of an internal short-circuit of the hot
wire to the chassis, significant current flows through the ground wire to ground and causes the activation of a current lim-
iting device in the hot wire circuit. This arrangement is intended to reduce the user’s risk of electrocution.

Figure A-1 — AC power supply with ground

Device

Chassis (metal)

hot

neutral

ground

AC supply

High Performance Serial Bus (Supplement) P1394a Draft 1.2
November 21, 1997

120 This is an unapproved standards draft, subject to change © 1997 IEEE

NOTE—Many consumer electronic products have power cords with only two conductors, hot and neutral, but they typically have
insulated cases that protect against shock hazards.

A consequence of the grounding scheme illustrated above is that the device chassis potential floats to the local ground
voltage level. For a number of reasons, e.g., the return of large currents to earth by nearby, unrelated equipment, lightning
strikes or as the result of different power transformer supply domains, earth ground potential may vary by many volts.
System designers are cautioned not to assume that the ground wire from different pieces of equipment connects to the
same earth ground at the same voltage.

A.2 Electrical isolation

The cables and connectors specified by IEEE Std. 1394-1995 provide three ways in which chassis-to-chassis ground cur-
rents may flow:

— The ground wire returns ground current to a chassis with a non-isolated power supply that provides cable power;

— The ground wire returns ground current to the chassis via the logic circuits of the receiving PHY in the case where
the PHY is not electrically isolated from the rest of the logic circuitry in a node (e.g., the link or other ICs); or

— The outer shield the cable makes electrical connection, through the connector shield, to all connected chassis. Al-
though this blocks RF emissions it introduces another problem: a DC connection that forms a direct ground loop.
The secondary problem may be solved by the use of RC circuits between the shield and the chassis that limit pow-
er line frequency currents while passing RF frequency currents.

The alternate cables and connectors standardized in this supplement, which have no power and ground conductors, pose
an additional problem: that of providing a return path to the PHY for common mode speed signalling currents through
their shields while still blocking power line currents. There are two solutions:

— Limit alternate cables to S100 operation—in which case common mode speed signalling currents do not arise; or

— Carefully manage the connector shield returns provide adequate RF emissions shielding and no power line fre-
quency conductance at the same time preserving recognizable speed signals for the PHY.

A.3 Agency requirements

The information below provides guidance, valid at the time of publication of IEEE Std 1394-1995, for safety aspects
relating to the interconnection and power distribution for Serial Bus devices. Because the standard permits cable power
distribution at voltages greater than 24V international safety standards apply.

The cabling and interconnection requirements are applicable to installations of information-processing or business equip-
ment intended for or capable of permanent or cord connection (during operation) to 600 V or lower potential branch cir-
cuits when such equipment is intended for installations covered under the National Electric Code, ANSI/NFPA 70. The
equipment may also be installed according to the Standard for the Protection of Electronic Computer/Data-Processing
Equipment, ANSI/NFPA 75.

Examples of the types of equipment covered by these recommendations include but are not limited to: accounting and cal-
culating machines, cash registers, copiers, data-processing equipment, dictating and transcribing machines, duplicators,
erasers, modems and other data communication equipment, motor driven filing cabinets including cassette, CD, and tape
accessing equipment, printers, staplers, tabulating machines, postal machines, typewriters and other electrically operated
equipment that separately or assembled in systems will accumulate, process and store data.

Specifically not covered by these guidelines are equipment covered by other safety standards including but not limited to
the following: HVAC systems, sensors, alarms, and other equipment for the detection and signalling of conditions capable
of causing damage or injury to persons, fire extinguishing systems and electrical power-supply equipment such as motor-
generator sets, and branch-circuit supply wiring. Separate safety standards apply to this kind of equipment, and the
cabling and distribution must be modified in accordance to the specifications covering that kind of equipment, in force in
the location of the installed equipment.

P1394a Draft 1.2 High Performance Serial Bus (Supplement)
November 21, 1997

© 1997 IEEE This is an unapproved standards draft, subject to change 121

Reference documents applicable in the United States include:

Information Processing and Business Equipment, UL 478

National Electric Code, ANSI/NFPA 70

Standard for the Protection of Electronic Computer/Data-Processing Equipment, ANSI/NFPA 75

Reference documents applicable in Japan include:

Electronic Equipment Technology Criteria by the Ministry of Trading and Industry (Similar to NFPA 70)

Wired Electric Communication Detailed Law 17 by the Ministry of Posts and Telecom Law for Electric Equipment

Dentori law made by the Ministry of Trading and Industry

Fire law made by the Ministry of Construction

A more accurate citation of these references is given by the text below:

Reference documents applicable in Europe include materials to secure the European Union CE marking as follows:

Telecommunications Terminal Equipment (91/263/EEC)

EMC Directive (89/339/EEC)

CE Marking Directive (93/68/EEC)

LOW Voltage Directive (73/23/EEC) as amended by the CE Marking Directive (The CE Marking Directive is recommended
as the basis for compliance)

The documents cited above provide reference information for selection and installation of cabling in walls, temporary par-
titions, under floors, in overhead or suspended ceilings or in adverse atmospheres.

