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P1394a
Draft Standard for a
High Performance Serial Bus (Supplement)

1. Overview

1.1 Scope

This is a full-use standard whose scope is to provide a supplement to IEEE Std 1394-1995 that defines or clarifies features
and mechanisms that facilitate management of Serial Bus resources, at reconfiguration or during normal operation, and
that defines alternate cables and connectors that may be needed for specialized applications.

The following are included in this supplement:

a) Cables and connectors for a 4-pin variant (from the 6-pin already standardized);

b) Standardization of the PHY/link interface, which at present is an informative annex to the existing standard;

c) Performance enhancements to the PHY layer that are interoperable with the existing standard, e.g., a method to
shorten the arbitration delay when the last observed Serial Bus activity is an acknowledge packet;

d) A redefinition of the isochronous data packet, transaction code A16, to permit its use in either the asynchronous or
isochronous periods;

e) More stringent requirements on the power to be supplied by a cable power source and a clarification of electrical
isolation requirements;

f) Miscellaneous corrigenda to the existing standard.

The preceding are arranged in no particular order.

1.2 Purpose

Experience with Serial Bus has revealed some areas in which additional features or improvements may result in better
performance or usability. This supplement to IEEE Std 1394-1995 reflects their consideration by a variety of users and
their refinement into generally useful facilities or features.

1.3 References

This standard shall be used in conjunction with the following publications. When the following publications are super-
seded by an approved revision, the revision shall apply.

ANSI/EIA-364-B-90, Electrical Connector Test Procedures Including Environmental Classifications.1
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IEEE Std 1394-1995, Standard for a High Performance Serial Bus

ISO/IEC 9899: 1990, Programming languages—C.2

ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Edition], Information technology—Microprocessor systems—Control and
Status Registers (CSR) Architecture for microcomputer buses.

This standard shall also be used in conjunction with the following publications under development. When approved as a
standard, the approved version shall apply.

IEEE P1394b, Draft Standard for a High Performance Serial Bus (Supplement)

IEC 61883/FDIS, Digital Interface for Consumer Electronic AV Equipment

1.4 Document organization

This standard contains this overview, a list of definitions, an informative summary description, sections of technical spec-
ification and application annexes. The new reader should read the informative summary and the sections that precede it
before the remainder of the document.

1.5 Service model

IEEE Std 1394-1995 and this supplement both use a protocol model with multiple layers. Each layer provides services to
the next higher layer and to Serial Bus management. These services are abstractions of a possible implementation; an
actual implementation may be significantly different and still meet all the requirements. The method by which these
services are communicated between the layers is not defined by this standard. Four types of service are defined by this
standard:

a) Request service. A request service is a communication from a layer to an adjacent layer to request some action. A
request may also communicate parameters that may or may not be associated with an action. A request may or
may not be confirmed. A data transfer request usually triggers a corresponding indication on peer node(s). (Since
broadcast addressing is supported on the Serial Bus, it is possible for the request to trigger a corresponding
indication on multiple nodes.)

b) Indication service. An indication service is a communication from a layer to an adjacent layer to indicate a change
of state or other event detected by the originating layer. An indication may also communicate parameters that are
associated with the change of state or event. Indications are not necessarily triggered by requests; an indication
may or may not be responded to by a response. A data transfer indication is originally caused by a corresponding
request on a peer node.

c) Response service. A response service is a communication from a layer to an adjacent layer in response to an
indication; a response is always associated with an indication. A response may communicate parameters that
indicate its type. A data transfer response usually triggers a corresponding confirmation on a peer node.

d) Confirmation service. A confirmation service is a communication from a layer to an adjacent layer to confirm a
request service; a confirmation is always associated with a request. A confirmation may communicate parameters
that indicate the completion status of the request or that indicate other status. For data transfer requests, the
confirmation may be caused by a corresponding response on a peer node. 

1 EIA publications are available from Global Engineering, 1990 M Street NW, Suite 400, Washington, DC, 20036, USA.
2 ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20,

Switzerland/Suisse. ISO publications are also available in the United States from the Sales Department, American National Standards
Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
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If all four service types exist, they are related as shown by the following figure:

1.6 Document notation

1.6.1 Mechanical notation

All mechanical drawings in this document use millimeters as the standard unit and follow ANSI Y14.2 and ANSI Y14.5-
1982 formats.

1.6.2 Signal naming

All electrical signals are shown in all uppercase characters and active-low signals have the suffix “*”. For example: TPA
and TPA* are the normal and inverted signals in a differential pair.

1.6.3 Size notation

The Serial Bus description avoids the terms word, half-word and double-word, which have widely different definitions
depending on the word size of the processor. In their place, the Serial Bus description uses terms established in previous
IEEE bus standards, which are independent of the processor. These terms are illustrated in table 1-1.

Figure 1-1—Service model

Table 1-1—Size notation examples

Size (in bits) 16-bit word notation 32-bit word notation IEEE standard notation
(used in this standard)

4 nibble nibble nibble

8 byte byte byte

16 word half-word doublet

32 long-word word quadlet

64 quad-word double octlet

Requester
Service Layer

Responder

Request

Confirmation

Indication

Response

Service Layer
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The Serial Bus uses big-endian ordering for byte addresses within a quadlet and quadlet addresses within an octlet. For
32-bit quadlet registers, byte 0 is always the most significant byte of the register. For a 64-bit quadlet-register pair, the
first quadlet is always the most significant. The field on the left (most significant) is transmitted first; within a field the
most significant (leftmost) bit is also transmitted first. This ordering convention is illustrated in figure 1-2.

Although Serial Bus addresses are defined to be big-endian, their data values may also be processed by little-endian pro-
cessors. To minimize the confusion between conflicting notations, the location and size of bit fields are usually specified
by width, rather than their absolute positions, as is also illustrated in figure 1-2.

When specific bit fields must be used, the CSR Architecture convention of consistent big-endian numbering is used.
Hence, the most significant bit of a quadlet (“msb” in figure 1-2) will be labeled “quad_bit_example[0],” the most signif-
icant byte of a quadlet (“byte_0”) will be labeled “quad_byte_example[0:7],” and the most significant quadlet in an octlet
(“quadlet_high”) will be labeled “dual_quadlet_example[0:31].”

The most significant bit shall be transmitted first for all fields and values defined by this standard, including the data
values read or written to control and status registers (CSRs).

1.6.4 Numerical values

Decimal, hexadecimal and binary numbers are used within this document. For clarity, the decimal numbers are generally
used to represent counts, hexadecimal numbers are used to represent addresses and binary numbers are used to describe
bit patterns within binary fields. 

Decimal numbers are represented in their standard 0, 1, 2,... format. Hexadecimal numbers are represented by a string of
one or more hexadecimal (0-9, A-F) digits followed by the subscript 16. Binary numbers are represented by a string of
one or more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented as
“1A 16” or “110102”. In C code examples, hexadecimal numbers have a “0x” prefix and binary numbers have a “0b” pre-
fix, so the decimal number “26” would be represented by “0x1A” or “0b11010.”

Figure 1-2—Bit and byte ordering

bits in a quadlet:

lsbmsb

bytes in a quadlet:

byte_0

quadlet_high quadlet_low

quadlets in an octlet:

Note that specifications use field widths

MSB LSB

byte_1 byte_2 byte_3

quad_bit_example

quad_byte_example

dual_quadlet_example

middle_bits

MSB LSB

1 30 1

8 8 8 8

32 32
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1.6.5 Packet formats

Most Serial Bus packets consist of a sequence of quadlets. Packet formats are shown using the style given in figure 1-3.

Fields appear in packet formats with their correct position and widths. Field widths are also stated explicitly in field
descriptions. Bits in a packet are transmitted starting with the upper leftmost bit and finishing with the bottom rightmost
bit. Given the rules in 1.6.3, this means that all fields defined in this standard are sent most significant bit first.

1.6.6 Register formats

All Serial Bus registers are documented in the style used by the CSR Architecture.

1.6.7 C code notation

The conditions and actions of the state machines are formally defined by C code. Although familiar to software engineers,
C code operators are not necessarily obvious to all readers. The meanings of C code operators, arithmetic, relational log-
ical and bitwise, both unary and binary, are summarized in table 1-2.

Figure 1-3—Example packet format

Table 1-2—C code operators summary

Operator Description

+, -, * and / Arithmetic operators for addition, subtraction, multiplication and integer division

% Modulus; x % y produces the remainder when x is divided by y

>, >=, < and <= Relational operators for greater than, greater than or equal, less than and less than or equal

== and != Relational operators for equal and not equal; the assignment operator, =, should not be con-
fused with ==

++ Increment; i++ increments the value of the operand after it is used in the expression while ++i 
increments it before it is used in the expression

-- Decrement; post-decrement, i--, and pre-decrement, --i, are permitted.

&& Logical AND

|| Logical OR

! Unary negation; converts a nonzero operand into 0 and a zero operand into 1

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

quadlet 1

quadlet 2

transmitted first

transmitted last

other quadlets
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A common construction in C is conditional evaluation, in the form (expr) ? expr1 : expr2. This indicates that if the
logical expression expr evaluates to nonzero value then expr1 is evaluated, otherwise expr2 is evaluated. For example,
x = (q > 5) ? x + 1 : 14; first evaluates q > 5. If TRUE, x is incremented otherwise x is assigned the value 14.

The descriptions above are casual; if in doubt, the reader is encouraged to consult ISO/IEC 9899:1990.

The C code examples assume the data types listed in table 1-3 are defined.

All C code is to be interpreted as if it could be executed instantaneously. Time elapses only when the following function
is called:

&= Logical AND and consequent assignment. The statement q &= FALSE sets the value of q to 
the expression (q && FALSE). The value of q used in the evaluation of the expression is 
obtained before the assignment.

<< Left shift; x << 2 shifts the value of x left by two bit positions and fills the vacated positions 
with zero

>> Right shift; vacated bit positions are filled with zero or one according to the data type of the 
operand but in this supplement are always filled with zero

~ One’s complement (unary)

Table 1-3—Additional C data types

Data type Description

timer A real number, in units of seconds, that autonomously increments at a defined rate

Boolean A single bit, where 0 encodes FALSE and 1 encodes TRUE

Table 1-2—C code operators summary (Continued)

Operator Description
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void wait_time(float time);// Wait for time, in seconds, to elapse

1.6.8 State machine notation

All state machines in this standard use the style shown in figure 1-4.

These state machines make three assumptions:

a) Time elapses only within discrete states.

b) State transitions are logically instantaneous, so the only actions taken during a transition are setting flags and
variables and sending signals. These actions complete before the next state is entered.

c) Every time a state is entered, the actions of that state are started. Note that this means that a transition that points
back to the same state will repeat the actions from the beginning. All the actions started upon entry complete
before any tests are made to exit the state.

1.6.9 CSR, ROM and field notation

This standard describes CSRs and fields within them. To distinguish register and field names from node states or descrip-
tive text, the register name is always capitalized. For example, the notation STATE_CLEAR.lost is used to describe the
lost bit within the STATE_CLEAR register.

All CSRs are quadlets and are quadlet aligned. The address of a register is specified as the byte offset from the beginning
of the initial register space and is always a multiple of 4. When a range of register addresses is described, the ending
address is the address of the last register.

This document describes a number of configuration ROM entries and fields within these entries. To distinguish ROM
entry and field names from node states or descriptive text, the first character of the entry name is always capitalized.
Thus, the notation Bus_Info_Block.cmc is used to describe the cmc bit within the Bus_Info_Block entry.

Entries within temporary data structures, such as packets, timers and counters, are shown in lowercase (following normal
C language conventions) and are formatted in a fixed-space typeface. Examples are arb_timer and connected[i].

NOTE—Within the C code, the character formatting is not used, but the capitalization rules are followed.

Figure 1-4—State machine example

condition for transition from S0 to S1

S1: State One
actions started on entry to S1

condition for transition from S1 to S0

S0: State Zero
actions started on entry to S0

S1:S0

S0:S1

transition label

state label

action taken on this transition

note that the S0 actions are 
restarted following this transition

action taken on this transition

action taken on this transition

S0:S0
condition for transition from S0 back to itself
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1.6.10 Register specification format

This document defines the format and function of Serial Bus-specific CSRs. Registers may be read only, write only or
both readable and writable. The same distinctions may apply to any field within a register. A CSR specification includes
the format (the sizes and names of bit field locations), the initial value of the register, the value returned when the register
is read and the effect(s) when the register is written. An example register is illustrated in figure 1-5.

The register definition lists the names of register fields. These names are descriptive, but the fields are defined in the text;
their function should not be inferred solely from their names. However, the register definition fields in figure 1-5 have the
following meanings.

A node’s CSRs shall be initialized when power is restored (power_reset) or when a quadlet is written to the node’s
RESET_START register (command_reset). If a CSR’s power_reset or command_reset values differ from its initial values,
all values are explicitly specified.

The read value fields in figure 1-5 have the following meanings.

Figure 1-5—CSR format specification (example)

Table 1-4—Register definition fields

Name Abbreviation Definition

unit dependent unit_depend The meaning of this field shall be defined by the unit architecture(s) of the node.

vendor dependent vendor_depend The meaning of this field shall be defined by the vendor of the node.

Within a unit architecture, the unit_dependent fields may be defined to be vendor 
dependent.

Table 1-5—Read value fields

Name Abbreviation Definition

last write w The value of the data field shall be the value that was previously written to the same 
register address.

last update u The value of the data field shall be the last value that was updated by node hardware.

unit_depend vendor dependent resvsig why not

unit_depend zeros 01 0 0

last write last update 0w u u

stored ignored is i e

definition

initial value

read value

write effect

12 16 1 1 1 1
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The write-effect fields in figure 1-5 have the following meanings.

1.6.11 Reserved CSR fields

Reserved fields within a CSR conform to the requirements of the conformance glossary in this standard (see clause 2.1).
Within a CSR, such a field that is labeled reserved (sometimes abbreviated as lowercase r or resv). Reserved fields behave
as specified by figure 1-6: they shall be zero and any attempt to write to them shall be ignored.

Table 1-6—Write value fields

Name Abbreviation Definition

stored s The value of the written data field shall be immediately visible to reads of the same 
register.

ignored i The value of the written data field shall be ignored; it shall have no effect on the state of 
the node.

effect e The value of the written data field shall have an effect on the state of the node, but is not 
immediately visible to reads of the same register.

Figure 1-6—Reserved CSR field behavior

reserved

zeros

zeros

ignored

definition

initial values

read values

write effects

32
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This is straight-forward as it applies to read and write requests. The same rules apply to lock requests, but the behaviors
are less obvious. Table 1-7 summarizes the different lock functions specified by IEEE Std 1394-1995. The definition of
mask_swap is corrected to conform to the CSR Architecture.

In the preceding, arg_value and data_value are the fields of the same name from the lock request packet. The old_value
field is the current value of the addressed CSR obtained as if from a read request; this is also the value returned in the
lock response packet. The new_value field is the updated value of the CSR as if a write request were used to store the cal-
culated value.

The behavior of a particular lock function is determined by applying rules for reserved fields in order, as follows:

a) The CSR’s old_value is obtained as if via a read request and returned in the lock response; reserved fields are read
as zeros;

b) An intermediate value is calculated according to the C code above (this is not explicitly shown but is the right-
hand part of each of the assignment statements in the table); and

c) The intermediate value is stored in the CSR as if via a write request; reserved fields are ignored and remain zero
in the CSR. The contents of the CSR after this operation are the new_value.

1.6.12 Operation description priorities

The description of operations in this standard are done in three ways: state machines, C code segments and English lan-
guage. If more than one description is present, then priority shall be given first to the state machines, then the C code and
finally to the English text (including the state machine notes).

Table 1-7—Summary of lock functions

Lock function Action

mask_swap new_value = (data_value & arg_value) | (old_value & ~arg_value);

compare_swap if (old_value == arg_value) new_value = data_value;

fetch_add new_value = old_value + data value;

little_add (little) new_value = (little) old_value + (little) data_value;

bounded_add if (old_value != arg_value) new_value = old_value + data_value;

wrap_add new_value = (old_value != arg_value) ? old_value + data_value : data_value;
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2. Definitions and abbreviations

2.1 Conformance glossary

Several keywords are used to differentiate between different levels of requirements and optionality, as defined below. This
clause replaces existing clause 2.1 of IEEE Std 1394-1995, “Conformance glossary,” in its entirety; the following definitions
shall apply to both IEEE Std 1394-1995 and this supplement.

2.1.1 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

2.1.2 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

2.1.3 may: A keyword that indicates flexibility of choice with no implied preference.

2.1.4 reserved: A keyword used to describe objects—bits, bytes, quadlets, octlets and fields—or the code values assigned to
these objects in cases where either the object or the code value is set aside for future standardization. Usage and interpretation
may be specified by future extensions to this or other IEEE standards. A reserved object shall be zeroed or, upon development
of a future IEEE standard, set to a value specified by such a standard. The recipient of a reserved object shall not check its
value. The recipient of an defined object defined by this standard as other than reserved shall check its value and reject
reserved code values.

2.1.5 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory require-
ments to ensure interoperability with other products conforming to this standard.

2.1.6 should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is rec-
ommended.”

2.2 Technical glossary

The following are terms that are used within this standard:

2.2.1 acknowledge: An acknowledge packet.

2.2.2 acknowledge packet: An 8-bit packet that may be transmitted in response to the receipt of a primary packet. The most
and least significant nibbles are the one’s complement of each other.

2.2.3 acronym: A contrived reduction of nomenclature yielding mnemonics (ACRONYM).

2.2.4 active port: A connected, enabled port that observes bias and is capable of detecting all Serial Bus signal states and par-
ticipating in the reset, tree identify, self-identify and normal arbitration phases.

2.2.5 arbitration: The process by which nodes compete for control of the bus. Upon completion of arbitration, the winning
node is able to transmit a packet or initiate a short bus reset.

2.2.6 arbitration reset gap: The minimum period of idle bus (longer than a normal subaction gap) that separates fairness
intervals.

2.2.7 arbitration signalling: A protocol for the exchange of bidirectional, unclocked signals between nodes during arbitra-
tion.

2.2.8 asynchronous packet: A primary packet transmitted in accordance with asynchronous arbitration rules (outside of the
isochronous period).
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2.2.9 base rate: The lowest data rate used by Serial Bus in a backplane or cable environment. In multiple speed environments,
all nodes are able to receive and transmit at the base rate. The base rate for the cable environment is 98.304 MHz ± 100 ppm.

2.2.10 boundary node: A node with two or more ports, at least one of which is active and another suspended.

2.2.11 bus ID: A 10-bit number that uniquely identifies a particular bus within a group of interconnected buses.

2.2.12 bus manager: The node that provides power management, sets the gap count in the cable environment and publishes
the topology of the bus and the maximum speed for data transmission between any two nodes on the bus. The bus manager
node may also be the isochronous resource manager node.

2.2.13 byte: Eight bits of data.

2.2.14 cable PHY: Abbreviation for the cable physical layer.

2.2.15 channel: A relationship between a group of nodes, talkers and listeners. The group is identified by a number between
zero and 63. Channel numbers are allocated cooperatively through isochronous resource management facilities.

2.2.16 concatenated transaction: A split transaction comprised of concatenated subactions.

2.2.17 connected PHY: A peer cable PHY at the other end of a particular physical connection from the local PHY.

2.2.18 CSR Architecture: ISO/IEC 13213:1994 [ANSI/IEEE Std 1212, 1994 Edition], Information technology—Micro-
processor systems—Control and Status Registers (CSR) Architecture for microcomputer buses.

2.2.19 cycle master: The node that generates the periodic cycle start packet 8000 times a second.

2.2.20 cycle start packet: A primary packet sent by the cycle master that indicates the start of an isochronous period.

2.2.21 disabled port: A port configured to neither transmit, receive or repeat Serial Bus signals. A disabled port shall be
reported as disconnected in a PHY’s self-ID packet(s).

2.2.22 disconnected port: A port whose connection detect circuitry detects no peer PHY at the other end of a cable. It is not
important whether the peer PHY is powered or whether the port is enabled.

2.2.23 doublet: Two bytes, or 16 bits, of data.

2.2.24 fairness interval: A time period delimited by arbitration reset gaps. Within a fairness interval, the total number of
asynchronous packets that may be transmitted by a node is limited. Each node’s limit may be explicitly established by the bus
manager or it may be implicit.

2.2.25 gap: A period of idle bus.

2.2.26 initial node space: The 256 terabytes of Serial Bus address space that is available to each node. Addresses within ini-
tial node space are 48 bits and are based at zero. The initial node space includes initial memory space, private space, initial reg-
ister space and initial units space. See either ISO/IEC 13213:1994 or IEEE Std 1394-1995 for more information on address
spaces.

2.2.27 initial register space: A two kilobyte portion of initial node space with a base address of FFFF F000 000016. This
address space is reserved for resources accessible immediately after a bus reset. Core registers defined by ISO/IEC
13213:1994 are located within initial register space as are Serial Bus-dependent registers defined by IEEE Std 1394-1995.

2.2.28 initial units space: A portion of initial node space with a base address of FFFF F000 040016. This places initial units
space adjacent to and above initial register space. The CSR’s and other facilities defined by unit architectures are expected to
lie within this space.
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2.2.29 isochronous: Uniform in time (i.e., having equal duration) and recurring at regular intervals.

2.2.30 isochronous period: A period that begins after a cycle start packet is sent and ends when a subaction gap is detected.
During an isochronous period, only isochronous subactions may occur. An isochronous period begins, on average, every
125 µs.

2.2.31 isochronous gap: For an isochronous subaction, the period of idle bus that precedes arbitration.

2.2.32 isochronous resource manager: The node that contains CSRs (BUS_MANAGER_ID,
BANDWIDTH_AVAILABLE and CHANNELS_AVAILABLE) that permit the cooperative allocation of isochronous
resources.

2.2.33 isochronous subaction: Within the isochronous period, either a concatenated packet or a packet and the gap that pre-
ceded it.

2.2.34 isolated node: A node without active ports; the node’s ports may be disabled, disconnected or suspended in any combi-
nation.

2.2.35 kilobyte: A quantity of data equal to 210 bytes.

2.2.36 link layer (LINK): The Serial Bus protocol layer that provides confirmed and unconfirmed transmission or reception
of primary packets.

2.2.37 listener: An application at a node that receives a stream packet.

2.2.38 nibble: Four bits of data.

2.2.39 node: A Serial Bus device that may be addressed independently of other nodes. A minimal node consists of only a PHY
without an enabled link. If the link and other layers are present and enabled they are considered part of the node.

2.2.40 node ID: A 16-bit number that uniquely differentiates a node from all other nodes within a group of interconnected
buses. The 10 most significant bits of node ID are the same for all nodes on the same bus; this is the bus ID. The six least-sig-
nificant bits of node ID are unique for each node on the same bus; this is called the physical ID. The physical ID is assigned as
a consequence of bus initialization.

2.2.41 octlet: Eight bytes, or 64 bits, of data.

2.2.42 originating port: A transmitting port on a PHY which has no receiving port. The source of the transmitted packet is
either the PHY’s local link or the PHY itself.

2.2.43 packet: A sequence of bits transmitted on Serial Bus and delimited by DATA_PREFIX and DATA_END.

2.2.44 payload: The portion of a primary packet that contains data defined by an application.

2.2.45 PHY packet: A 64-bit packet where the most significant 32 bits are the one’s complement of the least significant 32
bits.

2.2.46 physical ID: The least-significant 6 bits of the node ID. On a particular bus, each node’s physical ID is unique.

2.2.47 physical layer (PHY): The Serial Bus protocol layer that translates the logical symbols used by the link layer into
electrical signals on Serial Bus media. The physical layer is self-initializing. Physical layer arbitration guarantees that only one
node at a time is sending data. The mechanical interface is defined as part of the physical layer. There are different physical
layers for the backplane and for the cable environment.

2.2.48 port: The part of the PHY that allows connection to one other node.
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2.2.49 primary packet: Any packet that is not an acknowledge or a PHY packet. A primary packet is an integral number of
quadlets and contains a transaction code in the first quadlet.

2.2.50 quadlet: Four bytes, or 32 bits, of data.

2.2.51 repeating port: A transmitting port on a PHY that is repeating a packet from the PHY’s receiving port.

2.2.52 request: A primary packet (with optional data) sent by one node’s link (the requester) to another node’s link (the
responder).

2.2.53 response: A primary packet (with optional data) sent in response to a request subaction.

2.2.54 resuming port: A previously suspended port which has observed bias or has been instructed to generate bias. In either
case, the resuming port engages in a protocol with its connected peer PHY in order to reestablish normal operations and
become active.

2.2.55 self-ID packet: A PHY packet transmitted by a cable PHY during the self-ID phase or in response to a PHY ping
packet.

2.2.56 speed code: The code used to indicate bit rates for Serial Bus.

2.2.57 split transaction: A transaction where unrelated subactions may take place on the bus between its request and response
subactions.

2.2.58 subaction gap: For an asynchronous subaction, the period of idle bus that precedes arbitration.

2.2.59 subaction: A complete link layer operation: optional arbitration, packet transmission and optional acknowledgment.

2.2.60 suspend initiator: An active port that transmits the TX_SUSPEND signal and engages in a protocol with its connected
peer PHY to suspend the connection.

2.2.61 suspend target: An active port that observes the RX_SUSPEND signal. A suspend target requests all of the PHY’s
other active ports to become suspend initiators while the suspend target engages in a protocol with its connected peer PHY to
suspend the connection.

2.2.62 suspended domain: .One or more suspended nodes linked by suspended connection(s). Two nodes are part of the same
suspended domain if there is a physical connection between them and all ports on the path are suspended. A boundary node is
adjacent to one or more suspended domain(s) but not part of the suspended domain(s).

2.2.63 suspended node: An isolated node with at least one port that is suspended.

2.2.64 suspended port: A connected port not operational for normal Serial Bus arbitration but otherwise capable of detecting
both a physical cable disconnection and received bias.

2.2.65 talker: An application at a node that transmits a stream packet.

2.2.66 terabyte: A quantity of data equal to 240 bytes.

2.2.67 transaction layer: The Serial Bus protocol layer that defines a request-response protocol for read, write and lock oper-
ations.

2.2.68 transaction: A request and the optional, corresponding response.

2.2.69 transmitting port: Any port transmitting clocked data or an arbitration state. A transmitting port is further charac-
terized as either originating or repeating.
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2.2.70 unified transaction: A transaction completed in a single subaction.

2.2.71 unit: A component of a Serial Bus node that provides processing, memory, I/O or some other functionality. Once the
node is initialized, the unit provides a CSR interface. A node may have multiple units, which normally operate independently
of each other.

2.2.72 unit architecture: The specification document that describes the interface to and the behaviors of a unit implemented
within a node.
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3. New features (informative)

The changes to IEEE Std 1394-1995 contained in this supplement are related to each other only in that they are incremen-
tal enhancements or extension to the existing standard. This section provides an informative description of some of these
new facilities, which is intended as a foundation for the reader’s better understanding of the normative specifications that
follow.

3.1 Connection debounce

In the cable environment, Serial Bus configures itself and assigns a unique 6-bit physical ID to each of the 63 devices that
may be interconnected within a single arbitration domain. The bus initialization and configuration process is triggered by
a change in connection status at any PHY port: one or more devices have been added or removed and the connection
topology has changed.

IEEE Std 1394-1995 specifies that a change in detected bias voltage causes an instantaneous connection status change and
commences bus initialization. Unfortunately, this idealized model fails to account for two aspect of the physical world:

— The connection process is asymmetric. When two nodes are connected, it is extraordinary for bias to be detected
by both at the same time. The node that detects bias first immediately commences a bus reset but is unable to
complete bus initialization until the other node detects bias and also commences a bus reset. During this interval,
which may be on the order of tens of milliseconds, the first node is unable to send or receive packets. If that node
is connected to others, that entire Serial Bus is unable to operate normally; and

— The connection process is not smooth. As the plug and connector scrape together, electrical contact is made and
broken many times. Bus initialization requires no more than approximately 200 µs but the completion of the in-
sertion proceeds at a human pace. What appears to the user as one new connection may generate a storm of con-
nections and disconnections.

All of this occurs quickly by human standards but the disruption caused to normal bus operations is particularly serious
for isochronous data.

The problem of contact scrape is fairly simple to resolve: implement a connection time-out before new connections are
confirmed. Disconnections may be detected immediately. There is no need to measure the connection time-out with great
precision. An n-stage counter could derive a clock tick from the PHY’s 24.576 MHz clock on the order of 5 ms; an over-
all time-out in the vicinity of 340 ms is adequate to debounce the contact scrape.

The problem of connection asymmetry is not solved by the connection timer. The first step in its solution is to require that
all arbitration line states (except BUS_RESET) be ignored during the connection time-out interval. If BUS_RESET is
observed, skip the remaining connection time-out interval and commence a bus reset. This works well when the connec-
tion is between two P1394a (new) PHYs or between an isolated node with a new PHY connected to an IEEE Std 1394-
1995 (old) PHY of an operational bus.

In the case where an isolated node with an old PHY is connected to a new PHY of an operational bus, the old PHY gen-
erates a storm of bus resets which are propagated by the new PHY. This may be avoided if the new PHY implements an
additional “reset detect” time-out of approximately 80 ms before it responds to BUS_RESET.

3.2 Cable arbitration enhancements

At the time IEEE Std 1394-1995 was in the final steps towards becoming a standard, a number of valuable performance
enhancements had been identified. Their overall effect is to reclaim Serial Bus bandwidth used unnecessarily in arbitra-
tion and make it available for data transmission. This both increases the throughput of the bus as a whole and reduces the
latency of individual transactions.
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3.2.1 Arbitrated (short) bus reset

The addition of connection debounce, described above, does much to reduce the time the bus is unusable during bus ini-
tialization. However, even under ideal circumstances, e.g., a bus reset initiated by software, that involve no physical con-
nection changes, bus initialization is still more time consuming than necessary. Bus initialization is composed of three
phases: reset, tree identify and self-identify. The last phase, self-identify, requires approximately one microsecond per
node or about 70 µs worst case when there are 63 nodes. Tree identify is also quite rapid and takes less than 10 µs. The
longest phase is bus reset and it lasts about 167 µs while the BUS_RESET signal is propagated. The total duration of bus
initialization is longer than the nominal isochronous cycle time, 125 µs, and may disrupt two isochronous periods. This
compels device designers to add additional buffer depth to preserve the smooth flow of isochronous data from the per-
spective of their application. If sufficient time could be trimmed from bus initialization size the necessity for larger buff-
ers could be reduced.

The reason for the long duration of BUS_RESET is that a transmitting node is unable to detect this arbitration line state.
It is only after packet transmission is complete that the node will observe the reset. Hence BUS_RESET must be asserted
longer than the longest possible packet transmission. This guarantees the success of bus reset regardless of the bus activ-
ity in progress.

Suppose a node arbitrates for and is granted control of Serial Bus; now all the other nodes are in the receive state. If
BUS_RESET is transmitted, all the nodes will detect it. In this case, the bus reset duration can be shortened to approxi-
mately 1.3 µs. The worst case bus initialization time is improved from roughly 250 µs to 80 µs for a bus fully populated
by 63 devices1. Typical bus initialization times would be shorter, for example approximately 20 µs for a bus with 16
devices.

The concept is simple but requires analysis for particular cases:

— Parent port disconnection. A prerequisite for arbitrated (short) bus reset is the ability to arbitrate. Since there is no
longer a connection to the root, the long bus reset defined by IEEE Std 1394-1995 is all that is available;

— Child port disconnection. The node requests the bus and, if granted control of the bus, initiates a short reset. If the
arbitration request ultimately fails because of an arbitration state time-out, a long bus reset is initiated;

— New connection (root node or a node with a parent port). After the connection time-out, the node requests the bus
and, if granted control of the bus, initiates a short reset. If the arbitration request ultimately fails because of an ar-
bitration state time-out, a long bus reset is initiated; and

— New connection (isolated node). The isolated node should defer bus reset in anticipation that the other node, after
its connection time-out, successfully arbitrates and initiates a short reset. If the isolated node fails to observe
BUS_RESET within a second, it initiates a long bus reset.

When two buses are connected it is extremely unlikely that timings align to produce a short bus reset. Both nodes that
sense the new connection are behaving as in the third item above and one will likely win arbitration before the other.
When the slower node observes BUS_RESET it initiates a long reset. Even in the event that the slower node fails to sense
the reset, the other node’s bus initialization process will time out and a long bus reset will result.

3.2.2 Ack-accelerated arbitration

The timing strategy for asynchronous arbitration specified by IEEE Std 1394-1995 is straightforward: arbitration cannot
start until the bus is idle for a subaction gap time. For a bus with few nodes the subaction gap might be one microsecond
while for a bus with 63 nodes it could be 5 µs. This design was adopted when simplicity, proof of concept and time to
market were of greater importance to Serial Bus than the extraction of the last possible bit of bandwidth. However, the
penalty of wasted bus idle time becomes increasingly onerous as transmission rates and the number of connected nodes
increase.

1 The calculation is based on the assumption that worst case PHY repeater delay and cable delay together are less than 500 ns; this would
permit up to 100 m of cable.
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The duration of a subaction gap is determined by bus topology; it is necessary for it to be greater than the worst case
round-trip propagation time between any two nodes on the bus. This insures that after the transmission of an asynchro-
nous primary packet no node starts arbitration before the acknowledge packet has been transmitted and received. Unfor-
tunately this makes no distinction between akcnowledge packets and primary packets: an acknowledge packet never
follows and acknowledge packet. Arbitration can start immediately after an acknowledge packet is observed.

NOTE—In a sense this is not a new form of arbitration but exactly the form of arbitration used for isochronous packets. Since there are
no acknowledge packets during the isochronous period, isochronous arbitration starts as soon as an idle gap is detected after a packet.

3.2.3 Fly-by concatenation

IEEE Std 1394-1995 defines one arbitration enhancement, concatenated subactions. This is a method of completing a split
transaction without relinquishing the bus in between the acknowledge packet and the response packet. From the stand-
point of the link that receives both the link and the response packet, it is impossible to distinguish between concatenated
subactions and closely spaced subactions separated by an intervening arbitration. This provides an opportunity to reclaim
more Serial Bus bandwidth for data transmission.

Suppose a node has a packet ready for transmission when an unrelated packet addressed to the same node is received and
acknowledged. Are there any consequences if the node concatenated the packet awaiting transmission to the acknowledge
packet? This sequence of received packet, acknowledge packet and transmitted packet is indistinguishable from the con-
catenated subactions permitted by IEEE Std 1394-1995—except for the content of the transmitted packet. Provided that
fair arbitration is observed and some timing and topology issues are considered, Serial Bus operates as before.

One consideration is that fly-by concatenation may be used only when the candidate packet is received on a child port.
When a packet is received on a parent port it is likely that other nodes are simultaneously receiving the packet. If more
than one node attempted fly-by concatenation, their transmitted packets would collide. When a packet is received on a
child port, packet reception is unique: it is not possible for any other node to be receiving the same packet on a child port
at the same time.

When a packet is received on a child port, there are two opportunities for fly-by concatenation:

— after an acknowledge packet, an unrelated asynchronous primary packet may be concatenated; or

— after a cycle start packet or isochronous packet, an isochronous packet may be concatendated.

Figure 3-1 — Fly-by concatenation
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Fly-by concatenation is illustrated by figure 3-1. The transmitted packet appears concatenated on the repeating ports but
as a separate packet transmitted by the child port. The figure shows a two-port PHY with a child port at the left. At the
outset, a packet is about to be received by the child port. In the succeeding snapshots of Serial Bus state for both ports of
the PHY time moves down the page. As the received packet is repeated by the other port it is seen to emerge, first the
data prefix (now signaled as TX_DATA_PREFIX by the repeating port), then the clocked data of the packet. The packet
retransmission is nearly complete as trailing TX_DATA_PREFIX is signaled by the repeating port; the use of data prefix
instead of data end on retransmission signals concatenation. In the last snapshots, the concatenated packet is seen to
emerge from both ports of the PHY; on the original receiving port the new packet appears as a single, unconcatenated
packet.

3.2.4 Multi-speed packet concatenation

IEEE Std 1394-1995 was published before 200 Mbit/s and faster PHYs were available. As a consequence, the details of
operation at speeds other than S100 are sketchy and in some cases susceptible to multiple interpretations, each of which
is arguably reasonable. As an example, IEEE Std 1394-1995 contains a contradictory requirement that PHYs signal speed
only for the first packet of a multiple packet sequence but expect to observe a separate speed signal for each received
packet.

Apart from the interoperability problems, multi-speed packet concatenation is an essential building block for the enhance-
ments specified by this supplement because it permits:

— concatenation of a read response of arbitrary speed after an acknowledge packet;

— concatenation of isochronous packets without regard to the speed of each; and

— fly-by concatenation without regard to the speed of the concatenated packet.

The deficiencies of IEEE Std 1394-1995 with respect to multi-speed packet concatenation are corrected in both the
PHY/link interface specified in section 5 and the PHY state machines and C language code in section 7. Complete
interoperability with older PHYs cannot be guaranteed but is promoted by a requirement that S100 packets cannot be con-
catenated after faster packets.

3.2.5 Arbitration enhancements and cycle start

There are interoperability problems between the enhancements described above when the cycle master (root) is a node
compliant with IEEE Std 1394-1995. The problem arises when the cycle master needs to transmit a cycle start packet.
Existing nodes give precedence to arbitration requests from child ports over their own requests. When none of the nodes
implement arbitration enhancements, this is not a problem: a subaction gap will appear at the end of any transaction in
progress and the root, by virtue of its natural arbitration priority, will win arbitration and be able to send the cycle start
packet. If some or all of the child nodes are employing arbitration enhancements, the root may be unable to win arbitra-
tion for a protracted period. IEEE Std 1394-1995 is designed to accommodate a delayed cycle start packet, but only up to
the extent of the longest asynchronous primary packet. The delay caused by the root’s children could violate isochronous
timing assumptions and disrupt the flow of isochronous data.

The solution is to modify the interface betweeen the link and PHY so that the link may selectively disable and enable ack-
accelerated and fly-by concatenation enhancements when a cycle start is due to be transmitted. All nodes except the cycle
master are required to disable these accelerations from the time of their local cycle synchronization event until a cycle
start packet is observed. Once the cycle start packet is observed it is safe to reenable acceleration.

3.3 Performance optimization via PHY “pinging”

The simplest performance improvement that a bus manager can make is to tune the “gap count” to the topology of Serial
Bus. The gap count determines the value of two fundamental time intervals, the subaction gap and the arbitration reset
gap. The smaller the gap count, the less idle bus time consumed by these gaps.
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IEEE Std 1394-1995 contains recommendations that permit the bus manager to reduce the gap count from the default
3F16 in effect after bus reset. The bus manager2 calculates the worst case round-trip propagation delay between any two
nodes on the bus. The calculation should be based upon the greatest hop count between any two nodes (as determined
from the self-ID packets) and an assumption that cable lengths do not exceed 4.5 meters. Some implementations do not
analyze the self-ID packets to determine the greatest hop count but assume a maximum hop count of 16. Approximate as
they are, neither the cable length nor maximum hop count assumption is reliable, since they are not normatiuve require-
ments of IEEE Std 1394-1995.

This supplement provides an alternate method for the bus manager to optimize gap count: the PHY “ping” packet. This is
a packet that is addressed to any one of the 63 local nodes on a bus. In response, the addressed PHY returns a set of self-
ID packets. The originator of the ping packet may time the transaction and calculate a round-trip time between itself and
the targeted PHY.

With these tools, the bus manager can readily calculate the rount-trip time between any two leaf nodes. Consider the
example illustrated by figure 3-2.

In the case where the bus manager, M, is on the path between two leaf nodes it is clear how the round-trip time can be
measured: ping each leaf node and then derive the round-trip time from the formula round_trip(α, δ) = round_trip(α, M)
+ round_trip(M,δ) + PHY_delayM. When the bus manager is not on the path that connects two leaf nodes the procedure
is more complex. First ping each leaf node and then ping the node furthest from the bus manager that is on both paths.
With this data the round trip time may be derived from the formula round_trip(γ, δ) = round_trip(M,γ) + round_trip(M,δ)
- 2 * rt[M, β] - PHY_delayβ.

NOTE—For the purpose of calculating the round-trip time, the contents of the packet returned by the PHY are unimportant. The return
of the self-ID packet(s) permits some additional diagnostic utility in the bus manager. Alternatively, the bus manager could address
some other packet, such as the remote access packets defined for the suspend / resume facility, and time the packet sent in response.

3.4 Priority arbitration

A fundamental part of IEEE Std 1394-1995 is the concept of “fairness” which insures that all nodes on the bus are each
able to arbitrate within a bounded time period: no node may starve another node’s arbitration requests. Within any partic-
ular period (called a “fairness interval”) the order in which nodes are granted the bus is arbitrary, but each node is guar-
anteed fair access.

This mechanism is useful to promote equal access to the bus, but individual nodes may consume bus time awaiting their
chance to arbitrate. These inefficiencies can be significant, particularly in cases where there are few nodes attached to the
bus.

2 In the absence of a bus manager, the isochronous resource manager is permitted to optimize the gap count.

Figure 3-2 — PHY pinging and round-trip times

βMα

δ

γ
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One opportunity to improve efficiency concerns response subactions. Since each response subaction is originally triggered
by a request subaction, it is arguably true that fair arbitration for requests inherently limits the number of responses.
Hence the new provision of this supplement that responses shall always be permitted to use priority arbitration.

In the case where there are fewer nodes than the maximum of 63, the number of fair arbitration opportunities may be
divided amongst them. For example, the system disk for a computer might be granted permission to use additional prior-
ity arbitration requests within a fairness interval. This would reduce the latency and increase the throughput for the trans-
fer of data to and from the disk.

Finally, for reasons of simplicity some infrequent subactions, such as the transmission of a PHY packet, are granted
exemption from the normal requirements of fair arbitration.

3.5 Port disable, suspend and resume

The cable PHY arbitration state machines in IEEE Std 1394-1995 describe the behavior of connected, fully functional
ports in the four bus phases: reset, tree identify, self-identification and normal arbitration. The only other port state is dis-
connected; it requires little or no description. This supplement defines additional port states, disabled and suspended, and
the protocols for orderly transition between port states.

Each PHY port may independently be in one of the following four states:

— Disabled. The port generates no signals and is not capable of detecting signals. From the standpoint of a connect-
ed peer PHY, there is no observable difference a disabled port and an unpowered PHY.

— Disconnected. There is no physical cable connection between the port and a peer PHY.

— Suspended. No bias is generated by this port but a physical connection exists with a peer PHY (which may or may
not be generating bias). The absence of bias generated by this port permits a connection detect circuit to monitor
the physical connection.

— Active. A physical connection exists with a peer PHY and bias is both generated and observed by this port. The
active state is called connected in IEEE Std 1394-1995, but this supplement redefines “connected” to mean only
the detection of a peer PHY, powered or unpowered, at the other end of a cable.

The preceding four states are fundamental; additional, transitional states are defined in the state diagrams in order to accu-
rately describe PHY behavior.

An important motivation for the definition of these new states is to permit power savings in PHY implementations. In all
states except active, many PHY components may be left unpowered. When all the ports of a PHY are either disabled, dis-
connected or suspended there are opportunities for substantial savings.

3.5.1 Connection detect circuit

Additional circuitry is required to detect the presence or absence of a physical connection. The circuit produces meaning-
ful output only while the port itself is not generating bias.

3.5.2 Suspended connection

A suspended connection exists between two connected peer PHYs if the port at each end of the connection is suspended.
The suspended connection is established by a protocol between the two ports, one which is the suspend initiator and the
other of which is the suspend target.

A port becomes a suspend initiator because of the receipt of a remote command packet that sets the port’s suspend vari-
able to one. The remote command packet may have been transmitted by the PHY’s local link or by some other node. In
either case, the originating PHY arbitrated for the bus; consequently the suspend initiator has ownership of the bus to
transmit a remote response packet. Subsequent to the transmission of the remote response packet, the suspend initiator
asserts the TX_SUSPEND signal for a period equal to SHORT_RESET_TIME.



P1394a Draft 1.5 High Performance Serial Bus (Supplement)
February 28, 1998

© 1997, 1998 IEEE This is an unapproved standards draft, subject to change 23

A port becomes a suspend target when it observes RX_SUSPEND while in the idle state. In response to RX_SUSPEND,
the suspend target drives TpBias low and starts a timer.

In the meantime, the suspend initiator idles its transmitters after signalling TX_SUSPEND for the required time. The sus-
pend initiator then starts a timer and monitors bias. If the suspend initiator detects that bias has been removed by the sus-
pend target, the suspend initiator in turn drives TpBias low and continues to do so for a fixed time—after which the
suspend initiator enters the suspended state. If the suspend initiator’s timer expires and bias is still present, the suspend
initiator enters the suspended state in a faulted condition.

While the suspend target drives TpBias low it also monitors bias. If bias is removed by the suspend initiator, the hand-
shake is complete and the suspend target enters the suspended state. Otherwise, the suspend target waits until its timer
expires and then suspends even though bias is still observed. If the suspend target’s timer expires and bias is still
observed, the suspend target also enters the suspended state but in a faulted condition.

Entry into the suspended state necessitates activation of the port’s connection detect circuitry, which is usable only if the
port itself does not generate bias. Each port, suspend initiator or target, delays entry into the suspended state until the
output of the connection detect circuit becomes stable and indicates a physical connection.

Once a port is suspended it is capable of detecting two events: a) physical disconnection or b) the presence of bias. Phys-
ical disconnection causes the port to transition to the disconnected state. The effects of bias depend upon the fault state of
the port. If the port completed the suspend initiator/target handshake normally and bias was removed, the presence of bias
causes the port to resume normal operations. Otherwise, if the port entered the suspended state in a faulted condition
(because bias was not removed by the connected peer PHY), the presence of bias has no effect until software clears the
fault. Once the faulted condition is cleared, the port attempts to resume normal operations if bias is present.

3.5.3 Suspended domain

A suspended domain is a set of one or more suspended nodes that are physically connected through suspended nodes via
suspended connections. A node without active ports and at least one suspended port is a suspended node. In order for two
suspended nodes to be part of the same suspended domain, a path of suspended connections exists between them. It is
possible for connected but disabled ports to split a group of physically connected suspended nodes into separate sus-
pended domains.

A suspended domain propagates as the result of suspend target behavior. When a port becomes a suspend target (as a con-
sequence of observing RX_SUSPEND), it not only suspends the connection with its peer suspend initiator but also
requests that all other active ports on the same PHY become suspend initiators. That is, during the same time that the sus-
pend target observes RX_SUSPEND the formerly active ports transmit TX_SUSPEND.

Unless blocked, the TX_SUSPEND signal transmitted by a suspend initiator propagates until it reaches a leaf node. The
propagation of the suspended domain may be blocked by a PHY compliant with IEEE Std 1394-1995, a disabled port or
a suspended port. It is possible to control the extent of a suspended domain by disabling selected PHY ports prior to the
activation of the suspend initiator.

3.5.4 Resumption

Any one of a number of reasons may cause a suspended port to attempt to resume normal operations:

— Bias is detected and there is no fault condition;

— Except at a boundary node, another suspended (but unfaulted) port detects bias;

— A resume packet is received or transmitted by the PHY. The originator of the resume packet may be either the
PHY’s local link or another node;

— A remote command packet that sets the resume variable to one is addressed to the suspended port; or

— At an isolated node, another disconnected (but enabled) port detects a new connection.
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If a port is in the process of suspending, any of the above events causes the port to resume after the completion of the sus-
pend handshake.

Except for boundary nodes or the resumption of a single port by means of its resume variable, a resumption by one sus-
pended port causes all of a PHY’s other suspended ports to initiate resumption.

A suspended port initiates the resume process by generating TpBias and then waits to observe bias. Once bias is present
at both ends of the cable, an active connection has been restored. Because topology changes may have occurred while
connections were suspended, resumption of a connection always generates a bus reset. Heuristics are employed to mini-
mize any proliferation of bus resets: delay a short time before initiating a bus reset, attempt to perform an arbitrated
(short) bus reset if a boundary node else delay a short while longer if not a boundary node—and in all cases defer to a
detected bus reset.

3.5.5 Boundary nodes

Boundary nodes, on the border between an active Serial Bus and a suspended domain, behave differently than suspended
nodes during resumption. The boundary node acts to minimize disruption of the active bus while the suspended domain
resumes.

After a resume event on one of its suspended ports, a boundary node waits for three RESET_DETECT intervals before it
initiates an arbitrated (short) bus reset on the active bus. The delay is intended to permit all nodes in the suspended
domain to resume before the active bus is made aware of their presence. If the bounday node experiences a resume event
on more than one of its suspended ports, the delay is measured from the the most recent resume event.

If a boundary node detects BUS_RESET on any of its resumed ports during this interval, it initiates a long bus reset on
the active bus. This is necessary because there is no time to arbitrate on the active bus and issue a short bus reset; bus
reset is already underway on the resumed segment and must be propagated without delay.

The suspended nodes that have resumed wait seven RESET_DETECT intervals before they initiate bus reset. This longer
interval permits the entire suspended domain to resume and then allows time for the boundary node(s) to arbitrate on the
active bus.

When a suspended domain that adjoins more than one boundary node is resumed, one of the boundary nodes likely arbi-
trates on its active bus before the other(s) and transmits BUS_RESET into the resumed domain. When the bus reset is
observed by the other boundary node(s) they respond by converting it to a long bus reset.
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4. Alternative cable media attachment specification

The facilities of Serial Bus, IEEE Std 1394-1995, have found wide applicability in the consumer electronics industry for
a new generation of digital products. For some of these product applications, the standard cable and connectors specified
by the existing standard are less than ideal:

— Battery operated devices. Because these devices draw no power from the cable, their design could be simplified
and their cost reduced if electrical isolation were not required for the connector assembly. In addition, the power
conductors of the standard cable represent a potential source of analog noise—a significant concern for audio
equipment.

— Hand-held devices. In contrast to the compactness of some consumer products, such as video camcorders, the
standard cable and connectors are relatively bulky. A more compact design would be better suited to these prod-
ucts.

The alternative cables and conductors specified by this supplement enable backwards compatibility with the standard con-
nectors specified by IEEE Std 1394-1995. The remarks below apply to external (inter-crate) cabling, where extra care
must be exercised for safety and EMC compliance. (Intra-crate connections are not standardized in this clause.)

With respect to these alternative cables and connectors, only, this section entirely replaces clause 4.2.1 of IEEE Std
1394-1995. Except as superseded by other sections in this supplement, all other clauses in section 4 of the existing stan-
dard, “Cable physical layer specification,” continue to apply to alternative cables and connectors. With respect to the stan-
dard cables and connectors, clause 4.2.1 of IEEE Std 1394-1995 is not affected in any way by this supplement.

NOTE—This specification of alternative cables and connectors supersedes any and all earlier standards or draft standards that describe
4-pin variants of cable assemblies. In particular, this section supersedes those parts of IEC FDIS/61883-1 that specify a 4-pin connector
and cable.

4.1 Connectors

In typical applications computer, consumer electronic or peripheral equipment boxes shall present one or more connector
sockets, for attachment to other boxes via cables. The detachable ends of the cable shall be terminated with connector
plugs. IEEE Std 1394-1995 specifies standard connectors that have six contacts; this supplement specifies alternative con-
nectors that have four contacts.

All dimensions, tolerances and descriptions of features which affect the intermateability of the alternative shielded con-
nector plugs and sockets are specified within this clause. Features of connector plugs and sockets which do not affect
intermateability are not specified and may vary at the option of the manufacturer. Connector features which are not
directly controlled within this clause shall be indirectly controlled by performance requirements in clauses 4.3 and 4.4.

The holes and patterns (footprint) for the mounting of some of the possible versions of connectors to the printed circuit
board are recommended in clause 4.1.8

4.1.1 Connector plug

The mating features of the connector plug are specified in figures 4-1 and 4-2. They will assure the intermateability of the
plug with the alternative sockets specified by this supplement.
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Figures 4-1 and 4-2 describe a plug intended to be used when only detent retention with the socket is required.

Figure 4-1 — Plug body

Figure 4-2 — Plug section details
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4.1.2 Connector plug terminations

The termination of the stranded wire to the plug contacts may be varied to suit the manufacturing process needs of the
cable assembler.

For reference, the following methods are listed: crimp, insulation displacement (IDC), insulation piercing, welding and
soldering

4.1.3 Connector socket

The mating features of the connector socket are described in figures 4-3 through 4-5. They will assure the intermateability
of the socket with the alternative plugs specified by this supplement.

The contacts are attached to the signals using the guidance in table 4-1.

Figure 4-3 — Connector socket interface

Table 4-1 — Connector socket signal assignment

Contact number Signal name Comment

1 TPB*
Strobe on receive, data on transmit (differential pair)

2 TPB

3 TPA*
Data on receive, strobe on transmit (differential pair)

4 TPA



High Performance Serial Bus (Supplement) P1394a Draft 1.5
February 28, 1998

28 This is an unapproved standards draft, subject to change © 1997, 1998 IEEE

Figure 4-4 describes the relationship of the contacts and the shell. This includes the wiping portion of the contact and shell
detent.

Figure 4-5 shows the mated cross section of the plug and socket contacts.

Figure 4-4 — Socket cross-section A–A

Figure 4-5 — Cross-section of plug and socket contacts
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When mounted on a printed circuit board, the socket shall be at a fixed height as illustrated by figure 4-6.

4.1.4 Contact finish on plug and socket contacts

It is necessary to standardize the electroplated finish on the contacts to assure the compatibility of plugs and sockets from
different sources. The following standardized electroplatings are compatible and one shall be used on contacts.

a) 0.76 µm (30µin), minimum, gold, over 1.27 µm (50 µin), minimum, nickel;

b) 0.05 µm (2 µin), minimum, gold, over 0.76 µm (30 µin), minimum, palladium, over 1.27 µm (50 µin), minimum,
nickel; or

c) 0.05 µm (2 µin), minimum, gold, over 0.76 µm (30 µin), minimum, palladium-nickel alloy (80% Pd–20% Ni),
over 1.27 µm (50 µin), minimum, nickel.

NOTES:

1—Selective plating on contacts is acceptable. In that case, the above electroplating shall cover the complete area of con-
tact, including the contact wipe area.

2—Either a copper or palladium strike is acceptable, under the nickel electroplate.

4.1.5 Termination finish on plug and contact socket terminals

It is acceptable to use an electroplate of tin-lead with a minimum thickness of 3.04 µm (120 µin) over 1.27 µm (50 µin),
minimum, nickel. A copper strike is acceptable under the nickel.

4.1.6 Shell finish on plugs and sockets

It is necessary to standardize the plated finish on the shells to ensure compatibility of products from different sources.
Both shells shall be electroplated with a minimum of 3.03 µm (120 µin) of tin or tin alloy over a suitable barrier under-
plate.

4.1.7 Connector durability

The requirements of different end-use applications call for connectors which can be mated and unmated a different
number of times, without degrading performance beyond acceptable limits. Accordingly, this supplement specifies mini-
mum performance criteria of 1000 mating cycles.

Figure 4-6 — Socket position when mounted on a printed circuit board
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4.1.8 Printed circuit board footprints

The footprint of a surface-mount printed circuit board connector shall conform to the dimensional specifications illus-
trated by figure 4-7 below.

The footprint of a through-hole printed circuit board connector shall conform to the dimensional specifications illustrated
below.

Figure 4-7 — Flat surface mount printed circuit board connector footprint

Figure 4-8 — Flat through-hole mount printed circuit board connector footprint



P1394a Draft 1.5 High Performance Serial Bus (Supplement)
February 28, 1998

© 1997, 1998 IEEE This is an unapproved standards draft, subject to change 31

4.2 Cables

All cables and cable assemblies shall meet assembly criteria and test performance found in this supplement.

4.2.1 Cable material (informative)

Linear cable material typically consists of two twisted pair conductors. The two twisted pairs carry the balanced differen-
tial data signals. Figure 4-9 illustrates a reference design adequate for a 4.5 m cable. Clause 4.4 describes the performance
requirements for the cable.

NOTE—This construction is illustrated for reference only; other constructions are acceptable as long as the performance criteria are
met.

4.2.2 Cable assemblies

Cable assemblies consist of two plug connectors, either the standard connector specified by IEEE Std 1394-1995 or the
alternative connector defined by this supplement, joined by a length of cable material. Clause 4.3 describes the perfor-
mance requirements for the cable assemblies.

The suggested maximum length is 4.5 m. This is to assure that a maximally-configured cable environment does not
exceed the length over which the end-to-end signal propagation delay would exceed the allowed time. Longer cable
lengths are possible if special considerations is given to the actual Serial Bus system topology to be used, as discussed in
greater detail in annex A of IEEE Std 1394-1995.

Figure 4-9 — Cable material construction example (for reference only)

30 AWG (typ.) PVC Jacket

Mylar Barrier

Braided Shield
Inner Braid Shield (typ.)

Aluminized Mylar Tape (metal side out)
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Both cable configurations, standard connector to standard connector and alternative connector to standard connector, are
illustrated in the figures below. The connector pins are terminated as shown by figures 4-10 and 4-11. The two signal
pairs “cross” in the cable to effect a transmit-to-receive interconnection.

4.3 Connector and cable assembly performance criteria

To verify the performance requirements, performance testing is specified according to the recommendations, test
sequences and test procedures of ANSI/EIA 364-B-90. Table 1 of ANSI/EIA 364-B-90 shows operating class definitions
for different end-use applications. For Serial Bus, the test specifications follow the recommendations for environmental
class 1.3, which is defined as follows: “No air conditioning or humidity control with normal heating and ventilation.” The

Figure 4-10 — Cable assembly and schematic (standard to alternate connector)

Figure 4-11—Cable assembly and schematic (alternate connectors)

Note: Connectors are viewed as looking at the front plug face.
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Equipment Operating Environmental Conditions shown, for class 1.3 in table 2 are: Temperature; + l5 degree C to + 85
degrees C, Humidity; 95% maximum. Class 1.3 is further described as operating in a “harsh environmental” state, but
with no marine atmosphere.

Accordingly, the performance groupings, sequences within each group and the test procedures shall follow the recommen-
dations of ANSI/EIA 364, except where the unique requirements of the Serial Bus connector and cable assembly may call
for tests which are not covered in ANSI/EIA 364 or where the requirements deviate substantially from those in that doc-
ument. In those cases, test procedures of other recognized authorities or specific procedures described in the annexes will
be cited.

Sockets, plugs and cable assemblies shall perform to the requirements and pass all the following tests in the groups and
sequences shown.

Testing may be done as follows:

a) Plug and socket only. In this case, for those performance groups that require it, the plugs may be assembled to the
cable, to provide a cable assembly, by the connector manufacturer or by a cable assembly supplier.

b) Cable assembly (with a plug on each end) and socket. In this case, a single supplier may do performance testing
for both elements or a connector supplier may team up with a cable assembly supplier to do performance testing
as a team.

c) Cable assembly only (with a plug on each end). In this case, the cable assembly supplier should use a plug
connector source which has successfully passed performance testing, according to this standard.

d) Plug only or socket only. In this case, the other half shall be procured from a source. which has successfully
passed performance testing, according to this standard. For those performance groups that require it, the plugs
may be assembled to the cable, to provide a cable assembly, by the connector manufacturer or by a cable assembly
supplier.

NOTES:

1—All performance testing is to be done with cable material which conforms to this specification. In order to test to these
performance groups, ANSI/EIA require that the test results specify the cable construction used.

2—All resistance values shown in the following performance groups are for connectors only, including their terminations
to the wire and/or PC board, but excluding the resistance of the wire. Resistance measurements shall be performed in an
environment of temperature, pressure and humidity specified by ANSI/EIA 364.

3—The number of units to be tested is a recommended minimum; the actual sample size is to be determined by require-
ments of users. This is not a qualification program.

4.3.1 Performance group A: Basic mechanical dimensional conformance and electrical 
functionality when subjected to mechanical shock and vibration

Number of samples:

[2] Sockets, unassembled to printed circuit board used for Phase 1, A1 and A2 (one each).

[2] Sockets, assembled to printed circuit board

[2] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one each).

[2] Cable assemblies with a plug assembled to one end, 25.4 cm long.
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NOTE—Connectors are to be mounted on a fixture which simulates typical usage. The socket shall be mounted to a panel which is
permanently affixed to the fixture. The mounting means shall include typical accessories such as:

a) An insulating member to prevent grounding of the shell to the panel

b) A printed circuit board in accordance with the pattern shown in figure 4-7 or 4-8 for the socket being tested. The
printed circuit board shall also be permanently affixed to the fixture.

The plug shall be mated with the socket and the other end of the cable shall be permanently clamped to the fixture. Refer
to figure 4-10 in IEEE Std 1394-1995 for details.

4.3.2 Performance group B: Low-level contact resistance when subjected to thermal 
shock and humidity stress

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable.

[2] Cable assemblies with a plug assembled to one end, 25.4 cm long.

Table 4-2 — Performance group A

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance Level

A1 Visual and 
dimensional 
inspection

ANSI/EIA 
364-18A-84

Unmated con-
nectors

Dimensional 
inspection

Per figures
4-1 through 
4-5

No defects that would impair 
normal operations. No deviation 
from dimensional tolerances.

A2 Plating 
thickness mea-
surement

Record thickness; see 4.1.4

A3 None Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

50 mΩ maximum initial per 
mated pair.

A4 Vibration ANSI/EIA 
364-28A-83

Condition II
(See note)

Continuity ANSI/EIA 
364-46-84

No discontinuity at 1 µs or 
longer. (Each contact)

A5 None Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

A6 Mechanical 
shock 
(specified 
pulse)

ANSI/EIA 
364-27A-83

Condition A G
(See note)

Continuity ANSI/EIA 
364-46-84

No discontinuity at 1 µs or 
longer. (Each contact)

A7 None Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.
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4.3.3 Performance group C: Insulator integrity when subjected to thermal shock and 
humidity stress

Number of samples:

[2] Sockets, unassembled to printed circuit board

[0] Sockets, assembled to printed circuit board

[2] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[0] Cable assemblies with a plug assembled to one end, 2 m long.

Table 4-3 — Performance group B

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

B1 None Low-level con-
tact resistance

ANSI/EIA 
364-23A-85

50 mΩ maximum initial per 
mated contact.

B2 Thermal shock IEC 68-2-14
ANSI/EIA 
364-32B-92

Condition I
10 cycles 
(mated)

Low-level con-
tact resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

B3 Humidity ANSI/EIA 
364-31A-83

Condition A 
(96 h.)
Method II 
(cycling)
nonenergized
Omit steps 7a 
and 7b. 
(mated)

Low-level con-
tact resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

Table 4-4 — Performance group C

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

C1 Withstanding 
voltage

ANSI/EIA 
364-20A-83

Test voltage

100 Vdc ±
10 Vdc
Method C 
(unmated and 
unmounted)

Withstanding 
voltage

ANSI/EIA 
364-20A-83

No flashover.
No sparkover.
No excess leakage.
No breakdown.

C2 Thermal shock IEC 68-2-14
ANSI/EIA 
364-32B-92

Condition I
10 cycles 
(unmated)

Withstanding 
voltage (same 
conditions as 
C1)

ANSI/EIA 
364-20A-83

No flashover.
No sparkover.
No excess leakage.
No breakdown.
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4.3.4 Performance group D: Contact life and durability when subjected to mechanical 
cycling and corrosive gas exposure

Number of samples:

[0] Sockets, unassembled to printed circuit board

[4] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[4] Cable assemblies with a plug assembled to one end, 25.4 cm long.

C3 Insulation resis-
tance

ANSI/EIA 
364-21A-83

Test voltage

100 Vdc ±
10 Vdc
(unmated and 
unmounted)

Insulation resis-
tance

ANSI/EIA 
364-21A-83

1 GΩ 100 MΩ, minimum, 
between adjacent contacts and 
contacts and shell.

C4 Humidity 
(cyclic)

ANSI/EIA 
364-31A-83

Condition A 
(96 h.) Method 
III nonener-
gized
Omit steps 7a 
and 7b

Insulation resis-
tance (same con-
ditions as C3)

ANSI/EIA 
364-21A-83

100 MΩ, minimum.

Table 4-5 — Performance group D

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

D1 None Low-level con-
tact resistance

ANSI/EIA 
364-23A-85

50 mΩ maximum initial per 
mated contact.

D2 Continuity-
housing (shell)

See figure 4-12 
for measurement 
points

Contact resis-
tance, braid to 
socket shell

ANSI/EIA 
364-06A-83

50 mΩ, maximum, initial from 
braid to socket shell at 100 mA, 5 
Vdc open circuit max.

D3 Durability ANSI/EIA 
364-09B-91

(a) 2 mated 
pairs, 5 cycles

(b) 2 mated 
pairs, automatic 
cycling to 500 
cycles, rate 500 
cycles/h ±50 
cycles.

D4 None Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

D5 Continuity-
housing (shell)

See figure 4-12 
for measurement 
points

Contact 
resistance

ANSI/EIA 
364-06A-83

50 mΩ maximum change from 
initial from braid to socket shell 
at 100 mA, 5 Vdc open circuit 
maximum.

Table 4-4 — Performance group C (Continued)

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level
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D6 Mixed 
flowing gas

ANSI/EIA 
364-65-92

Class II Expo-
sures:

(a) 2 mated pairs 
- unmated for 1 
day

(b) 2 mated pairs 
- Mated 10 days

Low level 
contact 
resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

D7 Durability ANSI/EIA 
364-09B-91

Class II Expo-
sures:
(a) 2 mated 
pairs, 5 cycles

(b) 2 mated 
pairs, automatic 
cycling to 500 
cycles, rate 500 
cycles/h ±50 
cycles

D8 Mixed 
flowing gas

ANSI/EIA 
364-65-92

Class II
Exposures:
Expose mated 
for 10 day

Low level 
contact 
resistance at end 
of 
exposure

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

D9 Continuity-
housing (shell)

See figure 4-12 
for measurement 
points

Contact 
resistance

ANSI/EIA 
364-06A-83

50 mΩ maximum change from 
initial from braid to socket shell 
at 100 mA, 5 Vdc open circuit 
maximum.

Figure 4-12 — Shield and contact resistance measuring points

Table 4-5 — Performance group D (Continued)

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

PWB Socket Plug Cable 

a)  contact resistance

Wire 
I 

V 

I 
V 

Wire termination 

X
Note:  subtract 
bulk wire resistance of 
length "X" from 
measurement

PWB Socket Plug Cable 

I V 

I 

V 
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4.3.5 Performance group E: Contact resistance and unmating force when subjected to 
temperature life stress

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable used for Phase 1, A1 and A2 (one).

[2] Cable assemblies with a plug assembled to one end, 2 m long.

4.3.6 Performance group F: Mechanical retention and durability

Number of samples:

[0] Sockets, unassembled to printed circuit board

[2] Sockets, assembled to printed circuit board

[0] Plugs, unassembled to cable.

[2] Plugs, assembled to cable, one end only, 25 cm long.

Table 4-6 — Performance group E

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

E1 Mating and 
unmating 
forces

ANSI/EIA 
364-13A-83

Mount socket 
rigidly. Insert 
receptacle by 
hand.

Mating only

Auto Rate:
 25 mm/min

Unmating only ANSI/EIA 
364-13A-83

Unmating force: 
4.9 N minimum
39.0 N maximum

E2 None Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

50 mΩ maximum initial per 
mated contact.

E3 Continuity-
housing (shell)

See figure 4-12 Contact 
resistance

ANSI/EIA 
364-06A-83

50 mΩ maximum initial from 
braid to socket shell at 100 mA, 
5 Vdc open circuit maximum.

E4 Temperature 
life

ANSI/EIA 
364-17A-87

Condition 2 
(79° C) 
96 hours
Method A 
(mated)

Low-level 
contact 
resistance

ANSI/EIA 
364-23A-85

20 30 mΩ maximum change 
from initial per mated contact.

E5 Continuity-
housing (shell)

Contact 
resistance

ANSI/EIA 
364-06A-83

50 mΩ maximum change from 
initial from braid to socket shell 
at 100 mA, 5 Vdc open circuit 
maximum.

E6 Mating and 
unmating 
forces

ANSI/EIA 
364-13A-83

Mount socket 
rigidly. Insert 
plug by hand.

Mating only

Auto Rate:
 25 mm/min

Unmating only ANSI/EIA 
364-13A-83

Unmating force: 
4.9 N minimum
39.0 N maximum
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4.3.7 Performance group G: General tests

Suggested procedures to test miscellaneous but important aspects of the interconnect.

Since the tests listed below may be destructive, separate samples must be used for each test. The number of samples to be
used is listed under the test title.

Table 4-7 — Performance group F

Phase
Test Measurements to be 

performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

F1 Mating and 
unmating 
forces

ANSI/EIA 
364-13A-83

Mount socket 
rigidly. Insert 
plug by hand.

Mating only

F2 Mating and 
unmating 
forces

ANSI/EIA 
364-13A-83

Auto rate:
 25 mm/min

Unmating only ANSI/EIA 
364-13A-83

Unmating force: 
4.9 N minimum
39.0 N maximum

F3 Durability ANSI/EIA 
364-09B-91

Automatic 
cycling to 1000 
cycles. 
500 cycles/h ±50 
cycles

Unmating only ANSI/EIA 
364-13A-83

Unmating force at end of durability 
cycles: 
4.9 N minimum
39.0 N maximum

Table 4-8 — Performance group G

Phase
Test Measurements to be performed Requirements

Title ID No. Severity or 
conditions Title ID No. Performance level

G1 Electrostatic 
Discharge

[1 plug]

[1 socket]

IEC 801-2 1 to 8 kV in 1 kV 
steps. Use 8 mm 
ball probe. Test 
unmated.

Evidence of dis-
charge

No evidence of discharge to any of 
the 4 contacts; discharge to shield is 
acceptable.

G2 Cable axial pull 
test. 

[2 cable assem-
blies]

Fix plug housing 
and apply a 
49.0 N load for 
one minute on 
cable axis.

Continuity, visual ANSI/EIA 
364-46-84

No discontinuity on contacts or 
shield greater than 1 µs under load. 
No jacket tears or visual exposure of 
shield. No jacket movement greater 
than 1.5 mm at point of exit.

G3 Cable flexing

[2 cable assem-
blies]

ANSI/EIA 
364-41B-89

Condition I, 
dimension 
X=5.5 x cable 
diameter; 100 
cycles in each of 
two planes

(a) Withstanding 
voltage

Per C1 Per C1

(b) Insulation 
resistance 

Per C3 Per C3

(c) Continuity ANSI/EIA 
364-46-84

No discontinuity on contacts or 
shield greater than 1 µs during flex-
ing.

(d) Visual - No jacket tears or visual exposure of 
shield. No jacket movement greater 
than 1.5 mm at point of exit.
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4.4 Signal propagation performance criteria

The test procedures for all parameters listed in this clause are described in Annex K of IEEE Std 1394-1995.

4.4.1 Signal impedance

The differential mode characteristic impedance of the signal pairs shall be measured by time domain reflectometry at less
than 100 ps rise time using the procedure described in annex K.3 of IEEE Std 1394-1995:

ZTPA = (110 ± 6) Ω (differential)

ZTPB = (110 ± 6) Ω (differential)

The common mode characteristic impedance of the signal pairs shall be measured by time domain reflectometry at less
than 100 ps rise time using the procedure described in annex K.3 of IEEE Std 1394-1995:

ZTPACM = (33 ± 6) Ω (common mode)

ZTPBCM = (33 ± 6) Ω (common mode)

4.4.2 Signal pairs attenuation

A signal pairs attenuation requirement applies only to the two signal pairs, for any given cable assembly. Attenuation is
measured using the procedure described in annex K.4 of IEEE Std 1394-1995.

Figure 4-13 — Fixture for cable flex test

Frequency Attenuation

100 MHz Less than 2.3 dB

200 MHz Less than 3.2 dB

400 Mhz Less than 5.8 dB

Nearest end
of internal 
cable clamp

To suit cable dia.

Fixed cable
holding fixt

(25.4 mm) rollers X 203.2 mm min.

45
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4.4.3 Signal pairs propagation delay

The differential propagation delay of the signal pairs through the cable shall be measured in the frequency domain using
the procedure described in annex K.5 of IEEE Std 1394-1995:

VTPA ≤ 5.05 ns/meter

VTPB ≤ 5.05 ns/meter

NOTE—The common mode propagation delay of the signal pairs should be the same or less than the differential propagation delay. No
test procedure is described for this in annex K.5 since this will be the case for all but the most exotic cable constructions:

VTPACM ≤ 5.05 ns/meter

VTPBCM ≤ 5.05 ns/meter

4.4.4 Signal pairs relative propagation skew

The difference between the differential mode propagation delay of the two signal twisted pairs shall be measured in the
frequency domain using the procedure described in annex K.6.1 of IEEE Std 1394-1995:

S ≤ 400 ps

4.4.5 Crosstalk

The TPA-TPB and signal-power crosstalk shall be measured in the frequency domain using a network analyzer in the fre-
quency range of 1 MHz to 500 MHz using the procedure described in annex K.8 of IEEE Std 1394-1995:

X ≤ -26 dB
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5. PHY/Link interface specification

This section standardizes the PHY/link interface previously described in an informative annex of IEEE Std 1394-1995. It
specifies the protocol and signal timing. It does not describe specific operation of the PHY except for behavior with
respect to this interface.

The interface specified in this section is a scalable method to connect one Serial Bus link chip to one Serial Bus PHY
chip. It supports data rates of S25 and S50 in the backplane environment and S100, S200 and S400 in the cable environ-
ment. The width of the data bus scales with Serial Bus speed: two signals support speeds up to 100 Mbps while at faster
speeds a total of two signals per 100 Mbps are necessary. The clock rate of the signals at this interface remains constant,
independent of Serial Bus speed. The interface permits isolation for implementations where it is desirable.

The interface may be used by the link to transmit data, receive data or status, or issue requests. The link makes requests
of the PHY via the dedicated LReq signal. In response, the PHY may transfer control of the bidirectional signals to the
link. At all other times the PHY controls the bidirectional signals.

Discrete PHY implementations shall support all of the PHY signals shown in figure 5-1. Discrete link implementations
shall support D[0:n], Ctl[0:1], LReq and SClk; link support for the other signals is optional. For both PHY and link, the
number of data bits implemented, n, depends upon the maximum speed supported by the device. The PHY/link interface
signals are described in table 5-1.

Figure 5-1 — Discrete PHY/link interface

Table 5-1 — PHY/link signal description

Name Driven by Description

D[0:n] Link or PHY Data

Ctl[0:1] Link or PHY Control

LReq Link Link request

SClk PHY 12.288, 24.576 or 49.152 MHz clock (synchronized to the 
PHY transmit clock)

LPS Link Link power status. Indicates that the link is powered and 
functional

LinkOn PHY Occurrence of a link-on event.

D[0:n]

Ctl[0:1]

LReq

SClkLink PHY

Direct Direct

Backplane

Clk25

LPS

LinkOn
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Data is transferred between the PHY and link on D[0:n]. The implemented width of D[0:n] depends on the maximum
speed of the device: 2 bits for S100 or slower, 4 bits for S200 and 8 bits for S400. At S100 or slower, packet data is trans-
ferred on D[0:1], at S200 on D[0:3] and at S400 on D[0:7]. Implemented but unused D[0:n] signals shall be driven low
by the device that has control of the interface.

The LReq signal is used by the link to request access to Serial Bus for packet transmission, to read or write PHY registers
or to control arbitration acceleration.

The presence of a stable SClk signal generated by the PHY is necessary for the PHY/link interface to be operational.
When SClk is not shown in the timing diagrams in this section, each Ctl[0:1], D[0:n] or LReq bit cell represents a single
clock sample time. The specific timing relationships are described in clauses 5.9.2 and 5.9.3.

The LPS signal may be used by the link to disable SClk or reset the interface, as specified in clause 5.1.

The LinkOn signal permits the PHY to indicate an interrupt to the link when either LPS is logically false or the PHY reg-
ister Link_active bit is zero. The details are specified in clause 5.2.

The Direct input controls digital differentiators on the D[0:n], Ctl[0:1] and LReq signals. When set high it shall disable
differentiator outputs on these signals (which shall be otherwise enabled). In the case that the link does not implement
Direct, the link shall be configured so that output on these signals, differentiated or not, conforms to the value of Direct
provided to the PHY.

NOTE—Differentiators may be required when the PHY and link are connected through an optional isolation barrier. A digital
differentiator drives its output signal for one clock period whenever the input signal changes, but places the output signal in a high-
impedance state so long as the input signal remains constant. Figure 5-2 illustrates this signal transformation.

When a backplane PHY is connected to a link the Backplane input shall be strapped high. The Clk25 input is meaningful
only to indicate the SClk frequency generated by a backplane PHY. In the backplane environment, data transfers use D[0:1].
SClk is used to clock the transfers at either 12.288 MHz (for TTL applications) or 24.576 MHz (for BTL and ECL applications). This
yields PHY data rates at the backplane of S25 and S50, respectively.

Direct Neither Set high to disable differentiator outputs for the Ctl[0:1], 
D[0:n] and LReq signals.

Backplane Neither Set high if backplane PHY

Clk25 Neither Meaningful only if Backplane is high. Set high to indicate 
a 24.576 MHz SClk; otherwise 12.288 MHz.

Figure 5-2 — Digital differentiator signal transformation

Table 5-1 — PHY/link signal description (Continued)

Name Driven by Description

0 1 1 0 0 0 1 0 0

0 1 Z 0 Z Z 1 0 Z

Input

Output
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5.1 Initialization and reset

The LPS input requests the PHY to disable or enable the PHY/link interface. The output characteristics of LPS, if pro-
vided by the link, depend upon the interface mode, differentiated or undifferentiated. When the interface mode is differ-
entiated, LPS shall be a pulsed output while logically asserted. When logically deasserted, LPS shall be driven low in
either interface mode. The characteristics of LPS are specified by figure 5-3 and table 5-2.

The link requests the PHY to reset the interface by deasserting LPS. Within 1.2 µs after it deasserts LPS, the link shall
place Ctl[0:1] and D[0:n] in a high-impedance state and condition LReq according to the interface mode: if undifferenti-
ated, LReq shall be driven zero otherwise it shall be placed in a high-impedance state.

Figure 5-3 — LPS waveform when differentiated

Table 5-2 — LPS timing parameters

Parameter Description Unit Minimum Maximum

TLPSL LPS low time (when pulsed) µs 0.09 1.00

TLPSH LPS high time (when pulsed) µs 0.09 1.00

TLPS_RESET Time for PHY to recognize LPS logically 
deasserted and reset the interface

µs 1.2 2.75

TLPS_DISABLE Time for PHY to recognize LPS logically 
deasserted and disable the interface.

µs 25 30

TRESTORE Time to permit the optional differentiator 
and isolation circuits to restore during an 
interface reset.

µs 15 20a

a. This maximum does not apply when the PHY/link interface is disabled 
(see figure 5-5), in which case an indefinite time may elapse before LPS is 
reasserted. Otherwise, in order to reset but not disable the interface it is 
necessary that the link insure that LPS is logically deasserted for less than 
TLPS_DISABLE.

TLPSH TLPSL

LPS
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If the PHY observes LPS logically deasserted for TLPS_RESET, it shall reset the interface. The voltage levels show in
figure 5-4 for Ctl[0:1], D[0:n] and LReq while LPS is logically deasserted are accurate only for a undifferentiated inter-
face, but the timing relationships remain accurate for both modes. When the interface is undifferentiated, the PHY drives
Ctl[0:1] and D[0:n] to zero. Otherwise, the PHY places the Ctl[0:1] and D[0:n] signals in a high-impedance state.

If the link continuously deasserts LPS for a longer period, it requests the PHY not only to reset but also to disable the
interface. The link shall condition its outputs as already described for reset.

If the PHY observes LPS logically deasserted for TLPS_DISABLE, it shall disable the interface. The PHY has already reset
the interface as described above; it now disables the interface by stopping SClk. The voltage levels show in figure 5-5 for
Ctl[0:1], D[0:n], LReq and SClk while LPS is logically deasserted are accurate only for a undifferentiated interface, but
the timing relationships remain accurate for both modes. When the interface is undifferentiated, the PHY disables the
interface by driving SClk to zero while continuing to drive Ctl[0:1] and D[0:n] to zero. Otherwise, the PHY disables the
interface by placing SClk in a high-impedance state while continuing to maintain theCtl[0:1] and D[0:n] signals in a high-
impedance state.

NOTE—When the PHY/link interface is disabled and none of the PHY’s ports are active or in a transitional state, the PHY may place
most of its circuitry in a low power state.

When the PHY/link interface is reset the PHY shall cancel any outstanding bus request or register read request. Although
the cancellation of bus requests may affect PHY arbitration states in ways not described in section 7, the PHY’s behaviors
(as observable from Serial Bus) shall be consistent with that section. For example, the PHY may have initiated arbitration
in response to a bus request but reset of the PHY/link interface might cancel the request before it is granted. Appropriate
PHY behavior would be either the transmission of a null packet or the removal of the arbitration request before it is
granted.

Figure 5-4 — PHY/link interface reset via LPS

Figure 5-5 — PHY/link interface disable via LPS

TRESTORE

SClk

LPS

LPS
(pulsed)

TLPS_RESET

Ctl
D
LReq

TRESTORE

SClk

LPS

LPS
(pulsed)

TLPS_DISABLE

Ctl
D
LReq
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The C code and state machines in section 7 describe the PHY’s operation as if the interface to the link is always opera-
tional. If the PHY/link interface is reset while the link is transmitting a packet, the PHY shall behave as if the link had
signaled Idle and terminated the packet. Similarly, any S[0:3] status bit information generated by the PHY while the inter-
face is disabled shall be zeroed discarded and shall not cause a status transfer upon restoration of the interface.

The handshake just described either resets or resets and then disables the interface when the link deasserts LPS for a min-
imum of 2.75 µs or 25 µs, respectively. In either case (or after power reset), normal operations may be restored if the link
asserts LPS. After observing LPS, if SClk is not already provided by the PHY, it shall resume SClk as soon as possible.
If the PHY/link interface is differentiated and SClk is resumed, the PHY shall commence by driving SClk low for a min-
imum of 5 ns. In either mode, the PHY shall ensure that duty cycle and period requirements of table 5-21 are met from
the first rising edge of SClk onwards. Once SClk is available the PHY and link shall condition their Ctl[0:1] and D[0:n]
outputs in accordance with table 5-3. The reference point is the first rising edge of SClk after LPS is asserted.

NOTE—The PHY may not be able to determine its operating mode, differentiated or undifferentiated, during power reset. While the
operating mode is indeterminate, the PHY shall place its outputs in a high-impedance state. The PHY shall not provide SClk until the
operating mode is determined and the PHY/link interface is operational.

Upon the eighth SClk cycle the PHY shall assert Receive on Ctl[0:1] while simultaneously providing data prefix indica-
tion on D[0:n] for at least one SClk cycle. Upon the subsequent SClk cycles the PHY shall drive Ctl[0:1] and D[0:n] as
follows:

- the PHY shall continue to indicate data prefix while it is in a state in which it otherwise would be transferring data
to the link, after which it shall assert Idle on Ctl[0:1]; and

- no status information shall be transferred that commences part way through the status bits.
- no partial packets shall be transferred on D[0:n].

The link may examine Ctl[0:1] once it has driven Ctl[0:1], D[0:n] and LReq to zero for one cycle subsequent to the SClk
reference point. When the link simultaneously observes Receive on Ctl[0:1] and data prefix on D[0:n] and subsequently
observes Idle on Ctl[0:1], the reset of the PHY/link interface is complete. No more than 10 ms shall elapse from the reas-
sertion of LPS until the interface is reset. The link shall not assert LReq until the reset is complete.

Table 5-3 — Initialization of the PHY/link interface

Device
Interface mode

Differentiated Undifferentiated

PHY For one and only one of the first six cycles 
of SClk after the reference point, drive 
Ctl[0:1] and D[0:n] to zero and otherwise, 
for these cycles and the seventh, place them 
in a high-impedance state.

Continue to drive Ctl[0:1] and D[0:n] to zero 
for the first seven cycles of SClk after the 
reference point.

Link For one and only one of the first six cycles 
of SClk after the reference point, drive 
Ctl[0:1], D[0:n] and LReq to zero and other-
wise place them in a high-impedance state.

For one and only one of the first six cycles 
of SClk after the reference point, drive 
Ctl[0:1], D[0:n] and LReq to zero; prior to 
this place them in a high-impedance state.

Once these signals have been driven low, 
return Ctl[0:1] and D[0:n] to a high-imped-
ance state but continue to drive LReq low 
until after the reset completes.
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5.2 Link-on indication

The PHY LinkOn output provides a method to signal the link at times when the link is not active. The link is inactive
when either the LPS signal is logically deasserted (see clause 5.1) or the PHY register Link_active bit is zero. The char-
acteristics of the LinkOn signal, specified by table 5-4, permit the link to detect LinkOn in the absence of SClk and also
permit the signal to cross an optional isolation barrier. When LinkOn is logically deasserted it shall be driven low.

When either LPS is logically false or the PHY register Link_active bit is zero, a PH_EVENT.indication of LINK_ON
shall cause the assertion of LinkOn. This signal shall persist so long as the logical AND of the LPS signal and
Link_active is zero.

At other times (when the link is active), a PH_EVENT.indication of LINK_ON shall be communicated to the link by the
transfer of the link-on packet that caused the event. The PHY shall not assert LinkOn if the link is already active.

The LinkOn signal is also used to provide interrupt notification to an inactive link. When any of the PHY register bits
Loop, Pwr_fail, Timeout or Port_event is one and either LPS is logically false or the PHY register Link_active bit is
zero,the PHY shall assert LinkOn. The PHY shall continue to assert LinkOn so long as the link remains inactive.

5.3 Operation

There are four operations that occur on the interface: link request, status transfer, data transmit and data receive. The link
issues a link request to read or write a PHY register, to ask the PHY to initiate a transmit operation or to control arbitra-
tion acceleration. The PHY may initiate a status transfer either autonomously or in response to a register read request and
shall initiate a receive operation whenever a packet is received from Serial Bus.

The Ctl bus is 2 bits wide. The encoding of these signals is shown in tables 5-5 and 5-6.

Table 5-4 — LinkOn timing parameters

Description Unit Minimum Maximum

Frequency MHz 4 8

Duty cycle % 40 60

Persistence. Time, measured from the point at 
which both LPS is active and Link_active is one, 
after which the PHY shall not signal LinkOn.

ns 500

Table 5-5 — Ctl[0:1] when PHY is driving

Ctl[0:1] Name Meaning

002 Idle No activity.

012 Status The PHY is sending status information to the link.

102 Receive A incoming packet is being transferred from the PHY to the link.

112 Grant The link is granted the bus to send a packet.

Table 5-6 — Ctl[0:1] when the link is driving (upon a grant from the PHY)

Ctl[0:1] Name Meaning

002 Idle Transmission complete, release bus.

012 Hold The link is holding the bus while preparing data or indicating that it wishes to 
reacquire the bus without arbitrating to send another packet.
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5.4 Link requests

To request the bus, access a PHY register or control arbitration acceleration, the link sends a bit sequence (request) to the
PHY on the LReq signal. The link always signals all bits of the request. The information sent includes the type of request
and parameters which depend upon the type of request. Examples of parameters are packet transmission speed, priority,
PHY register address or data. With the exception of the bus request, each request is terminated by a stop bit of zero. The
size of the request, inclusive of the stop bit, varies between 6 and 17 bits. When the link transmits zeros on LReq the
request interface is idle.

The timing for this signal and the definition of the bits in the transfer are shown in figure 5-6.

If the LReq transfer is a bus request in the cable environment, it is 7 or 8 bits long and has the format given in table 5-7.
Links compliant with this supplement shall send all 8 bits.

NOTE—PHYs shall accept bus requests in both the format specified by IEEE Std 1394-1995 and the format shown below.

If the LReq transfer is a bus request in the backplane environment, it is 11 bits long and has the format given in table 5-8.

102 Transmit The link is sending a packet to the PHY.

112 — Unused.

Figure 5-6 — LReq and Ctl timings

Table 5-7 — Bus request format for cable environment

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates type of bus request—immediate, isochronous, priority or fair. See table 5-12 
for the encoding of this field.

4-6 Request Speed The speed at which the PHY will transmit the packet on Serial Bus. This field has the 
same encoding as the speed code from the first symbol of the receive packet. See 
table 5-13 for the encoding of this field.

7 Stop Bit Indicates end of transfer. Always 0. If bit 6 is zero, this bit may be omitted.

Table 5-8 — Bus request format for backplane environment

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates type of bus request—immediate, isochronous, priority or fair. See table 5-12 
for the encoding of this field.

4-5 Reserved.

Table 5-6 — Ctl[0:1] when the link is driving (upon a grant from the PHY)

Ctl[0:1] Name Meaning

CB

LR(n-1)LR(n-2)LR1 LR2 LR3LR0LReq

Ctl[0:1] CA
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If the transfer is a register read request, it is 9 bits long and has the format given in table 5-9.

If the transfer is a register write request, it is 17 bits long and has the format given in table 5-10.

If the transfer is a acceleration control request, it is 6 bits long and has the format given in table 5-11.

The request type field is encoded as shown in table 5-12.

6-9 Request Priority Indicates priority of urgent requests. (Only used with FairReq request type.)

All zeros indicates fair request. 

All ones is reserved (this priority is implied by a PriReq).

Other values are used to indicate the priority of an urgent request.

10 Stop Bit Indicates end of transfer. Always 0.

Table 5-9 — Register read request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is a register read. See table 5-12 for the encoding of this field.

4-7 Address The internal PHY address to be read.

8 Stop Bit Indicates end of transfer. Always 0.

Table 5-10 — Register write request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is a register write. See table 5-12 for the encoding of this field.

4-7 Address The internal PHY address to be written.

8-15 Data For a write transfer, the data to be written to the specified address.

16 Stop Bit Indicates end of transfer. Always 0.

Table 5-11 — Acceleration control request format

Bit(s) Name Description

0 Start Bit Indicates start of request. Always 1.

1-3 Request Type Indicates that this is an acceleration control request. See table 5-12 for the encoding of 
this field.

4 Accelerate When zero, instructs the PHY to disable arbitration accelerations. A value of one 
requests the PHY to enable arbitration accelerations.

5 Stop Bit Indicates end of transfer. Always 0.

Table 5-12 — Request type field

Request Type Name Meaning

0002 ImmReq Take control of the bus immediately upon detecting idle; do not arbitrate. Used for acknowledge 
packets.

0012 IsoReq Arbitrate for the bus after an isochronous gap. Used for isochronous stream packets.

0102 PriReq Ignore the PHY’s fairness protocol and, unless accelerating, arbitrate after a subaction gap. Used 
for cycle master or other packets for which the link need not wait for a fairness interval.

Table 5-8 — Bus request format for backplane environment (Continued)

Bit(s) Name Description
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The request speed field is encoded as shown in table 5-13. Although encoding for speeds up to S3200 is specified below,
the PHY/link interface defined by this supplement does not support speeds in excess of S400.

The PHY continuously monitors LReq for link requests and sets internal variables in response to the parameters of the
request. These actions occur independently of the state of the PHY arbitration control; the effects upon PHY arbitration,
if any, are a consequence of the values of the internal variables, as specified in clause 7.10. Table 5-14 summarizes the
effects of the various link requests.

To request the bus for fair or priority access, the link sends a FairReq or PriReq after the interface has been idle for at
least one clock. The expected response to a bus request is Grant on Ctl[0:1] which the PHY asserts after it has won arbi-
tration. Under other circumstances the PHY may cancel the bus request or retain it, pending the completion of other PHY
activity (see table 5-16). The link may reissue a cancelled request when the interface is subsequently idle.

0112 FairReq Arbitrate within the current fairness interval if permitted by the PHY’s fairness interval, other-
wise arbitrate after an arbitration reset gap.

1002 RdReg Return specified register contents through status transfer.

1012 WrReg Write to specified register.

1102 AccCtrl Disable or enable PHY arbitration accelerations.

1112 — Reserved for future standardization

Table 5-13 — Request speed field

LR[4:6] Data rate

0002 S100

0012 S1600

0102 S200

0112 S3200

1002 S400

1102 S800

All other values Reserved

Table 5-14 — Link request effects on PHY variables

Request PHY variables affected Note

ImmReq,
IsoReq,
PriReq,
FairReq

breq,
speed

accelerating
(see note)

The breq variable is set to IMMED_REQ, ISOCH_REQ, 
PRIORITY_REQ or FAIR_REQ according to the type of request.

The speed variable is set to S100, S200, etc. according to the encod-
ings specified by table 5-13.

The accelerating variable is affected only by an IsoReq, which 
sets it to TRUE.

RdReg — The values returned in response to a register read are an instantaneous 
snapshot. Asynchronous events, such as bus reset, may cause the PHY 
to autonomously change the values of PHY register(s).

WrReg See table 6-1 The PHY updates the addressed register with the data field 
value from the request and sets the value of any PHY variables 
that correspond to register bits or fields.

AccCtrl accelerating If the Accelerate bit in the request is zero accelerating is cleared 
to FALSE; otherwise it is set TRUE.

Table 5-12 — Request type field (Continued)

Request Type Name Meaning
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The cycle master link uses a priority request (PriReq) to send the cycle start packet. To request the bus to send isochro-
nous data, the link issues an IsoReq while sending or receiving a cycle start or, during the same isochronous period, while
sending or receiving an isochronous packet. The PHY cancels an isochronous request when a subaction gap or bus reset
is observed

NOTE—In order to meet timing requirements, a link may issue an isochronous request after observing tcode 8 in a putative cycle start
packet but before verifying the CRC. If the CRC fails, the link should not transmit isochronous packet(s) but drop the isochronous
request as soon as possible.

To send an acknowledge, the link issues an ImmReq during or immediately after packet reception. This ensures that the
ACK_RESPONSE_TIME requirement is met and that other nodes do not detect a subaction gap. After the packet ends,
the PHY immediately takes control of Serial Bus and asserts Grant on Ctl[0:1]. If the packet header CRC passed, the link
transmits an acknowledge. Otherwise, the link asserts Idle on Ctl[0:1] for two three SClk cycles after observing Grant on
Ctl[0:1].

NOTE—Although unlikely, more than one node may perceive (one correctly, the others mistakenly) that a incoming packet is intended
for it and issue an immediate request before checking the CRC. The PHYs of all nodes would grab control of the bus immediately after
the packet is complete. This condition would cause a temporary, localized collision of DATA_PREFIX somewhere between the PHYs
intending to acknowledge while all the other PHYs on the bus would see DATA_PREFIX. This collision would appear as “ZZ” line
state and would not be interpreted as a bus reset. The mistaken node(s) should drop their request(s) as soon as they check the CRC; the
spurious “ZZ” line state would vanish. The only side-effect of such a collision might be the loss of the intended acknowledge packet,
which would be handled by the higher layer protocol.

A bus reset causes the PHY to cancel any pending bus request.

In response to register write requests, the PHY takes the value from the data field of the transfer and updates the
addressed register. For register read requests, the PHY returns the contents of the addressed register at the next oppor-
tunity through a status transfer. If the status transfer is interrupted by a incoming packet received or generated by the PHY,
the PHY restarts the status transfer at the next opportunity.

Once the link issues a request for access to the bus, it shall not issue another bus request until the packet transmission is
complete or the request is cancelled. The PHY shall ignore bus requests issued while a previous request is pending.

5.4.1 LReq rules

In general, the link issues requests asynchronously with respect to activities on Serial Bus. However, certain requests are
allowed only at specific times. Even when a request is issued at a valid time, Serial Bus activity may cause the PHY to
cancel the request or to defer the request until the other activity has been completed. This clause specifies when a link
may issue a request and the corresponding PHY behavior; these rules permit the link to unambiguously determine the
state—satisfied, cancelled or deferred—of a request.

For the purpose of these rules, two specific cycles are defined, labelled CA and CB in figure 5-6. The rules are specified
in terms of the values of the Ctl[0:1] lines during these cycles. The sample point at which the link decides whether or not
to initiate a request is CA, which is one or more SClk cycles before CB, the cycle in which the link sends the request’s
start bit. The disposition of the request is determined by the value of Ctl[0:1] from CB onwards.

General rules that govern link and PHY use of the request interface are as follows:

— the link shall not initiate a bus request (fair, priority, immediate or isochronous) or use the Hold protocol to con-
catenate a packet until any outstanding bus request has been granted or the link has been able to determine that it
has been cancelled;

— the link should not issue a register read or write request when a previous register read request is outstanding. PHY
behavior in this case is undefined; and

— all pending bus requests (but not register read requests) are cancelled on a bus reset.
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Additional rules for issuing a request are given in table 5-15.

In general, the PHY behavior varies dependent on whether another Serial Bus packet is detected before it has successfully
completed processing the LReq.

Table 5-15 — Link rules to initiate a request on LReq

Request
Permitted when PHY has control of 
the interface and Ctl[0:1] at CA is

Permitted when link 
controls the interface Additional requirements

Fair,
Priority Idle, Status No

No fair or priority request shall be issued until 
any outstanding bus request completes.

Immediate Receive, Idle No Sent after destination_ID decode during packet 
reception when the link is ready to transmit an 
acknowledge packet.

The start bit of an immediate request shall be 
transmitted no later than the fourth cycle subse-
quent to that in which Ctl[0:1]went Idle follow-
ing packet reception.

Isochronous Any Yes Sent during an isochronous period when the 
link is ready to transmit an isochronous packet.

The start bit of an isochronous request shall be 
transmitted no later than a) the eighth cycle sub-
sequent to that in which Ctl[0:1] went from 
Transmit to Idle or b) the fourth cycle subse-
quent to that in which Ctl[0:1] went from 
Receive to Idle.

The link shall not issue an isochronous request 
if it intends to concatenate a packet after the 
current transmission.

Register read Any Yes Shall not be issued while there are pending reg-
ister read requests.

Register write Any Yes

Decelerate Any Yes Decelerate is issued by cycle slaves if 
enab_accel is TRUE and shall be issued 
once every isochronous period, as soon as pos-
sible after the local clock indicates the start of a 
new isochronous period.

Accelerate Any Yes Accelerate may only be issued by cycle slaves 
once every isochronous period, after a incom-
ing cycle start packet has been recognized and 
after all of the link’s isochronous requests (if 
any).
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The link may determine the PHY treatment of the LReq by monitoring the value of Ctl[0:1] from CB onwards, as shown
in the following table:

Table 5-16 — PHY disposition of link request

Request
Ctl[0:1]

(at CB or later) PHY behavior Link action

Fair, Priority Receive If arbitration acceleration is enabled, and the 
incoming packet transferred by the PHY is 
exactly 8 bits, then request retained, otherwise 
request discarded as soon as the PHY deter-
mines that the incoming packet has other than 8 
bits. Request always discarded if arbitration 
acceleration is not enabled.

Continue to monitor for the next change on 
Ctl[0:1] if request retained

Once the LINK starts shifting out the fair or pri-
ority LReq, both the LINK and the PHY moni-
tor the Ctl[0:1] lines to determine if the LReq is 
to be cancelled. On every rising edge of SCLK 
from CB onwards, if Receive is asserted on 
Ctl[0:1] and enab_accel is FALSE, the request 
is cancelled. Otherwise, if arbitration accelera-
tions are globally enabled for the PHY the 
request is cancelled only if the received packet 
is not 8 bits in length.

Grant Arbitration won Transmit packet

Idle, Status Retain the request unless a bus reset was 
reported in the status.

Unless there was a bus reset, monitor Ctl[0:1] in 
anticipation of Grant.

Immediate Grant Transmit the acknowledge packet

Receive PHY is still transferring a packet; the request is 
retained

Continue to receive packet, then monitor 
Ctl[0:1] in anticipation of Grant.

Idle, Status Retain the request unless a bus reset was 
reported in the status.

Unless there was a bus reset, monitor Ctl[0:1] in 
anticipation of Grant.

Isochronous Transmit, Idle
(driven by link)

Request retained by PHY Monitor Ctl[0:1] after releasing the interface.

Grant Arbitration won Transmit packet

Receive Request retained by PHY Monitor Ctl[0:1]

Status Request discarded if status indicates subaction 
gap (this is an error condition and should not 
occur), otherwise request retained unless status 
reports a bus reset

Continue to monitor for the next change on 
Ctl[0:1] if request retained

Idle Continue to monitor for the next change on 
Ctl[0:1]

Register read Any
(driven by link)

Wait until link releases the interface then moni-
tor for the next change on Ctl[0:1]

Grant Request retained. Bus request LReq was previ-
ously issued, and now takes priority.

Service previous bus request, then monitor for 
next change on Ctl[0:1]

Receive Request retained. Receive packet, then monitor for next change 
on Ctl [0:1]

Status Request is retained by the PHY until corre-
sponding register data is returned.

If unrelated status is received or the desired 
status is interrupted, monitor Ctl[0:1] for 
desired status.

Idle Monitor Ctl[0:1]

Register write,
Acceleration 

control

Any Request completed
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In addition to the preceding rules for the use of the PHY/link interface, the timing constants, in units of SClk cycles, of
table 5-17 shall apply. Measurements of Serial Bus arbitration line states are taken at the cable connector.

5.4.2 Acceleration control

The ack-accelerated and fly-by arbitration enhancements specified in clause 7.10 can have adverse effects on the isochro-
nous period if continuously enabled. Serial Bus relies upon the natural priority of the cycle master (root) to win arbitra-
tion and transmit the cycle start packet as soon as possible after cycle synchronization. Ack-accelerated arbitration or fly-
by acceleration concatenation by node(s) other than the root can prolong asynchronous traffic on the bus indefinitely and
disrupt isochronous operations.

The link avoids this problem by selectively disabling and enabling these arbitration enhancements. The acceleration con-
trol request permits the link to disable and enable ack-accelerated and fly-by arbitration enhancements while leaving the
other arbitration enhancements unaffected. The cycle master does not issue the acceleration control request.

The time period in which ack-accelerated and fly-by accelerations shall not be used extends from the time of the local
cycle synchronization event until a cycle start packet is observed. During this period, the link at any node that is not the
cycle master shall use the acceleration control request as follows:

a) The link shall not make a fair or priority request unless an acceleration control request with a zero Accelerate bit
has been transmitted since the most recent local cycle synchronization event;

b) The link shall not use the Hold protocol to concatenate an asynchronous primary packet after an acknowledge
packet except after its own ack_pending in order to complete a split transaction with a concatenated subaction;

c) Upon conclusion of this time period, the link may reenable ack-accelerated and fly-by acceleration by transmitting
an acceleration control request whose Accelerate bit is set to one.

A link that makes one or more bus requests to transmit an isochronous packet need not use the acceleration control
request to reenable fly-by accelerations, since the isochronous request sets the accelerating variable to TRUE.

For a bus that does not have an active cycle master it is not necessary to use the acceleration control request. So long as
arbitration enhancements are enabled by Enab_accel in the PHY registers, the fly-by accelerations are also enabled by the
default value of accelerating after a power reset.

5.5 Status

When the PHY has status information to transfer to the link, it initiates a status transfer. The PHY waits until the interface
is idle to perform the transfer. The PHY initiates the transfer by asserting Status on Ctl[0:1], along with the first two bits
of status information on D[0:1]. The PHY asserts Status on Ctl[0:1] for the duration of the status transfer. The PHY may
prematurely end a status transfer by asserting something other than Status on Ctl[0:1]. This may be done in the event that
a packet arrives before the status transfer completes. There shall be at least one Idle cycle in between consecutive status
transfers.

Table 5-17 — PHY/link interface timing constants

Timing constant Minimum Maximum Comment

BUS_TO_LINK_DELAY 2 9 Time from the start of RX_DATA_PREFIX to the asser-
tion of Receive on Ctl[0:1]

DATA_PREFIX_TO_GRANT 25 Time from the start of TX_DATA_PREFIX at any port to 
the PHY’s assertion of Grant on Ctl[0:1]

LINK_TO_BUS_DELAY 2 5 At the end of packet transmission by the link, the time 
from the assertion of Idle on Ctl[0:1] to the start of 
TX_DATA_END on all transmitting ports

MAX_HOLD 47 Maximum time that the link may continuously assert 
Hold on Ctl[0:1] after observing Grant.
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The PHY sends 16 bits of status in two cases: a) in response to a register read request or b) after a bus reset, to indicate
the node’s new physical ID. The latter is the only condition for which the PHY sends a register to the link without a cor-
responding register read request. In the case of event indications initiated by the PHY, four bits of status are sent to the
link. The timing for a status transfer is shown in figure 5-7.

The structure of the status data is specified by table 5-18 below.

Upon successful completion of status transfer to the link, status bits S[0:3] shall be zeroed. The PHY shall also clear
ARB_RESET_GAP and SUBACTION_GAP whenever it asserts Grant or Receive on Ctl[0:1] whether or not this status information
has been successfully transferred to the link.

NOTE—The PHY clears ARB_RESET_GAP and SUBACTION_GAP upon any transition out of state A0: Idle (see figure 7-19)—
whether or not this status information has been successfully transferred to the link.

The PHY may truncate a status transfer by removing the status indication on Ctl[0:1]. In this event, the PHY shall zero
whichever of the four status bits have been successfully transferred to the link. That is, if only S[0:1] have been trans-
ferred only S[0:1] shall be zeroed while if S[0:3] have been transferred all of S[0:3] shall be zeroed. The PHY shall rein-
itiate the status transfer at the earliest opportunity if either a) at least one of the four status bits S[0:3] is nonzero or b) the
truncated status transfer was intended to include PHY register data. Status transfers shall commence with S[0:1] in all
cases.

The PHY shall guarantee that neither subaction nor arbitration reset gap status information is lost because of a response
to a register read request. During some period prior to the anticipated detection of a gap, it may be necessary for the PHY
to defer completion of a register read request in order to avoid the loss of status information.

Figure 5-7 — Status timing

Table 5-18 — Status bits

Bit(s) Name Description

0 ARB_RESET_GAP The PHY has detected that Serial Bus has been idle for an arbitration reset gap time.

1 SUBACTION_GAP The PHY has detected that Serial Bus has been idle for a subaction gap time.

2 BUS_RESET_START The PHY has entered bus reset state.

3 PHY_interrupt This indicates one or more of the following interrupt conditions:

- Loop detect interrupt

- Cable power fail interrupt

- Arbitration state machine time-out

- Bias change detect (only on a disabled port) interrupt

- Port_event interrupt

4-7 Address Register number

8-15 Data Register contents

00 01 01 01 00 00

00 S[0,1] S[2,3] S[14,15] 00 00

PHY Ctl[0:1]

PHY D[0:1]
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5.6 Transmit

When the link requests access to Serial Bus through the LReq signal, the PHY arbitrates for access to Serial Bus. If the
PHY wins the arbitration, it grants the bus to the link by asserting Grant on Ctl[0:1] for one SClk cycle, followed by Idle
for one cycle. After observing Grant on Ctl[0:1], the link takes control of the interface by asserting Idle, Hold or Transmit
on Ctl[0:1] one cycle after sampling Grant from the PHY. The link should assert Idle for one cycle before changing the
state of Ctl[0:1] to either Hold or Transmit but shall not assert Idle for more than one cycle. PHY implementations shall
tolerate Idle for one cycle prior to Hold or Transmit. The link asserts Hold to keep ownership of the bus while preparing
data but shall not assert Hold on Ctl[0:1] for more than MAX_HOLD cycles subsequent to observing Grant on Ctl[0:1].
The PHY asserts DATA_PREFIX on Serial Bus during this time. When it is ready to begin transmitting a packet, the link
asserts Transmit on Ctl[0:1] along with the first bits of the packet. After sending the last bits of the packet, the link asserts
either Idle or Hold on Ctl[0:1] for one cycle and then it asserts Idle for one additional cycle before placing those signals
in a high-impedance state.

Whenever control of the bidirectional signals is transferred between the PHY and link, the device relinquishing control
shall drive Ctl[0:1] and D[0:n] to logic zero levels for one clock before releasing the interface. This permits both devices
to act upon registered versions of the interface signals while allowing the new owner a clock cycle in which to sample and
respond. Note that when the link transfers control to the PHY without a Hold request, an additional clock with logic zero
on the control and data signals is necessary so as not to place the signal lines in a high impedance state before the PHY
takes control.

An assertion of Hold after the last bits of a packet indicates to the PHY that the link needs to send another packet without
releasing the bus. This function is used by the link to concatenate a packet after an acknowledge or to concatenate isoch-
ronous packets. With this assertion of Hold the link simultaneously signals the speed of the next packet on the data lines,
as encoded by table 5-19. Once Hold is asserted, the PHY waits a MIN_PACKET_SEPARATION time and then asserts
Grant as before. After observing Grant on Ctl[0:1], the link resumes control of the interface by asserting Idle, Hold or
Transmit on Ctl[0:1]. The link should assert Idle for one SClk cycle, but shall not assert Idle for more than one cycle,
before changing Ctl[0:1] to Hold or Transmit. In preparation for transmission of a concatenated packet, the link shall not
assert Hold on Ctl[0:1] for more than MAX_HOLD cycles subsequent to observing Grant on Ctl[0:1].

The link may transmit concatenated packets at a different speeds, with one exception: the link shall not concatenate an
S100 packet after any packet of a higher speed. When the link wishes to send an S100 packet after any packet of a higher
speed, it shall make a separate request.

NOTE—If the multi-speed capabilities of the PHY have not been enabled (see clause 6.1), all concatenated packets shall be transmitted
at the speed originally specified as part of the bus request. This requirement provides for backward compatibility when a PHY
compliant with this specification is interfaced to a link that is not aware of the necessity to signal speed for each packet.

As noted above, when the link has finished sending the last packet, it releases the bus by asserting Idle on Ctl[0:1] for two
SClk cycles. The PHY begins asserting Idle on Ctl[0:1] one cycle after sampling Idle from the link.
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The timings for both a single and a concatenated packet transmit operation are illustrated in figure 5-8. In the diagram, D0
through Dn are the data symbols of the packet, SP represents the speed code for the packet (encoded according to the
values specified in table 5-19) and ZZ represents high impedance state. The link should assert the signals indicated by the
shaded SClk cycles (this may be necessary in the presence of an isolation barrier).

NOTE—It is not required that the link assert Hold on Ctl[0:1] before sending a packet if the implementation permits the link to be
ready to transmit as soon as bus ownership is granted.

5.7 Cancel

The link may relinquish control of the PHY/link interface after a bus requested has been granted if data is not to be trans-
mitted. This causes a null packet to appear on Serial Bus and effectively cancels the bus request. If the link cancels a
request prior to the transmission of data, it shall use one of the two protocols described below.

Figure 5-8 — Transmit timing
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After observing Grant on Ctl[0:1], the link takes control of the interface by asserting Idle, Hold or Transmit on Ctl[0:1]
one cycle after sampling Grant from the PHY (as already described in clause 5.6). If the link asserts Idle on Ctl[0:1], it
shall continue to assert Idle for two additional cycles before placing those signals in a high-impedance state. This is illus-
trated by figure 5-9 below.

The PHY shall recognize the cancel on the second Idle cycle; the additional assertion of Idle by the link guarantees that
Ctl[0:1] are not left in a high impedance state before the PHY takes control of the interface.

Otherwise, if the link had assumed or maintained control of the interface by asserting Hold on Ctl[0:1] and wishes to
relinquish control of the interface, subsequent to the last Hold cycle it shall assert Idle on Ctl[0:1] for two cycles before
placing those signals in a high-impedance state. This method may be used either after the initial Grant or to cancel the
transmission of concatenated packet. The interface signalling is illustrated by figure 5-10; the link should assert the sig-
nals indicated by the shaded SClk cycles (this may be necessary in the presence of an isolation barrier).

The PHY shall recognize the cancel on the first Idle cycle subsequent to Hold. The extra Idle cycle provided by the link
avoids the problem of a high impedance state on Ctl[0:1].

5.8 Receive

Whenever the PHY sees data prefix on Serial Bus, it initiates a receive operation by asserting Receive on Ctl[0:1] and 1’s
on D[0:n]. The PHY indicates the start of a packet by placing the speed code (encoding shown in table 5-19) on D[0:n],
followed by the contents of the packet. The PHY holds Ctl[0:1] in Receive until the last symbol of the packet has been
transferred. The PHY indicates the end of the packet by asserting Idle on Ctl[0:1]. Note that signaling the speed code is a
PHY/link protocol and not a data symbol to be included in the calculation of the CRC.

Figure 5-9 — Link cancel timing (after Grant)

Figure 5-10 — Link cancel timing (after Hold)
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It is possible that a PHY can see data prefix appear and then disappear on Serial Bus without seeing a packet. This is the
case when a packet of a higher speed than the PHY can receive is being transmitted. In this case, the PHY will end the
packet by asserting Idle when data prefix goes away. 

If the PHY is capable of a higher data rate than the link, the link detects the speed code as such and ignores the packet
until it sees the Idle state again.

The timing for the receive operation is shown in figure 5-11. In the diagram, SP refers to the speed code and D0 through
Dn are the data symbols of the packet.

The speed code for the receive operation is defined as shown in table 5-19. This is also the same speed encoding used by
the link to signal speed to the PHY during concatenated packet transmission.

NOTE—The speed code is only applicable for cable applications. For backplane applications, the speed code is set to 00xxxxxx.

5.9 Electrical characteristics

This clause specifies the signal and timing characteristics of the interface between a discrete PHY and link.

Figure 5-11 — Receive timing

Table 5-19 — Speed code signaling

D[0:n]
Data rate

Transmitted Observed

000000002 00xxxxxx2
a

a. An “x” indicates ignored on receive.

S100

010000002 0100xxxx2 S200

010100002 010100002 S400

010100012 010100012 S800

010100102 010100102 S1600

010100112 010100112 S3200

111111112 11xxxxxx2 Data prefix indication

Phy Ctl[0:1] (binary)

Phy D[0:7](hex)

00 10 10 00 00

00 FF D0 D1 Dn 00 00

10 1010

SP

10

FF
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5.9.1 DC signal levels and waveforms

DC parametric attributes of the PHY/link interface signals are specified by table 5-20. Input levels may be greater than
the power supply level (e.g., a 5 V output driving VOH into a 3.3 V input); tolerance of mismatched input levels is
optional. Devices not tolerant of mismatched input levels but which otherwise meet the requirements below are compliant
with this standard. VDD is obtained from the vendor’s specifications.

Table 5-20 — DC specifications for PHY/link interface

Name Description Conditions Unit Minimum Maximum

VOH Output high voltage
(undifferentiated)

IOH = -4 mA V 2.8

VOHD Output high voltage
(differentiated)

IOH = -9 mA at VDD = 3 V

IOH = -11 mA at VDD = 4.5 V

V VDD - 0.4

VOL Output low voltage
(undifferentiated)

IOL = 4 mA V 0.4

VOLD Output low voltage
(differentiated)

IOL = 9 mA at VDD = 3 V

IOL = 11 mA at VDD = 4.5 V

V 0.4

VIH Input high voltage
(undifferentiated)

V 2.6 VDD
a+10%

a. Refers to driving device’s power supply

VIL Input low voltage
(undifferentiated)

V 0.7

VLIT+ Input high voltage
Input rising threshold
(LinkOn and LPS)

V VLREF + 1b

b. The LinkOn and LPS receiver parameters are based on a swing of 2.4 V for the received 
signal. Links which only depend on receiving the initial edge of LinkOn may be capable 
of operating with less constrained values.

VLIT- Input low voltage
Input falling threshold
(LinkOn and LPS)

V VLREF + 0.2b

VIT+ Hysteresis input rising 
threshold (differentiated)c

c. When the PHY/link interface is in differentiated mode, the SClk input shall meet the 
VIT+ and VIT- requirements.

V VREF + 0.3 VREF + 0.9d

d. When designing a device capable of both undifferentiated and differentiated operation, 
VIH and VIL effectively constrain these VIT+ and VIT- values to VREF + 0.8 V and 

VREF - 0.8 V, respectively.

VIT- Hysteresis input falling 
threshold (differentiated)c

V VREF - 0.9c VREF - 0.3

VREF Reference voltagee

e. For some applications, a device can be compliant with these DC specifications even if a 
different VREF is chosen.

V VDD/2 ± 1%

VLREF Reference voltagef

(LinkOn and LPS inputs)
V 0.5 1.6

CIN Input capacitance pF 7.5
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5.9.2 AC timing

The rise and fall time measurement definitions, tR and tF, for SClk, Ctl[0:1], D[0:n] and LReq are shown in figure 5-12. 

Other signal characteristics of the PHY/link interface are specified by table 5-21. If an isolation barrier is implemented it
shall cause neither delay nor skew in excess of the values specified. AC measurements shall be taken from the 1.575 V
level of SClk to the input or output Ctl[0:1], D[0:n] or LReq levels and shall assume an output load of 10 pF.

Figures 5-13 and 5-14 below illustrate the transfer waveforms as observed at the PHY. A PHY shall implement values for
tpd1, tpd2 and tpd3 within the limits specified in table 5-22 and shall not depend upon values for tpsu and tph greater than
the minimums specified.

f. For a particular application, there is a single value for each device’s nominal bias point, 
VLREF, which shall be within the range specified. VLREF should be chosen in 
conjunction with the receiver parameters so that a loss of power by the transmitting 
device is perceived as zero by the receiving device.

Figure 5-12 — Signal levels for rise and fall times

Table 5-21 — AC timing parameters

Name Description Unit Minimum Maximum

SClk frequency MHz 49.152 ± 100 ppm

SClk duty cycle % 45 55

tR Rise time ns 0.7 2.4

tF Fall time ns 0.7 2.4

idel Delay through isolation barrier ns 0 2

Skew through isolation barrier ns 0 0.5

Isolation barrier recovery time µs 0 10

Figure 5-13 — PHY to link transfer waveform at the PHY

90%90%

10%10%

tR tF

SClk

D[0:n]
Ctl[0:1]

tpd1 tpd2 tpd3
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The values for the timing parameters illustrated above are specified below.

Figures 5-15 and 5-16 below illustrate the transfer waveforms as observed at the link. A link shall implement values for
tld1, tld2 and tld3 within the limits specified in table 5-23 and shall not depend upon values for tlsu and tlh greater than
the minimums specified.

Figure 5-14 — Link to PHY transfer waveform at the PHY

Table 5-22 — AC timing parameters at the PHY

Name Description Unit Minimum Maximum

tpd1 Delay time,
SClk input high to initial instance of D[0:n] 
and Ctl[0:1] outputs valid

ns 0.5 13.5

tpd2 Delay time,
SClk input high to subsequent instance(s) of 
D[0:n] and Ctl[0:1] outputs valid

ns 0.5 13.5

tpd3 Delay time,
SClk input high to D[0:n]] and Ctl[0:1] invalid 
(high-impedance)

ns 0.5 13.5

tpsu Setup time
D[0:n], Ctl[0:1] and LReq inputs before SClk

ns 6

tph Hold time
D[0:n], Ctl[0:1] and LReq inputs after SClk

ns 0

Figure 5-15 — PHY to link transfer waveform at the link

Figure 5-16 — Link to PHY transfer waveform at the link
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The values for the timing parameters illustrated above are specified below.

.

5.9.3 AC timing (informative)

The protocol of this interface is designed such that all inputs and outputs at this interface can be registered immediately
before or after the I/O pad and buffer. No state transitions need be made that depend directly on the chip inputs; chip out-
puts can come directly from registers without combinational delay or additional loading. This configuration provides gen-
erous margins on setup and hold time.

In the direction from the PHY to the link, timing follows normal source-clocked signal conventions. A 0.5 ns allowance
is made for skew through an (optional) isolation barrier.

In the direction from the link to the PHY, the data is timed at the PHY in reference to SClk, whose frequency allows a
nominal budget of 20 ns for delay, inclusive of the PHY input setup time. Possible sources of delay are an isolation bar-
rier or internal SClk delay at the link caused by a clock tree. Figure 5-17 illustrates the relationship of these delays. Note
that the maximum round-trip delay of 14 ns (calculated as tdrt1max = idelmax + tld1max + idelmax) provides generous
delays for both the link and the PHY. The link, after the receipt of SClk, has 10ns to assert valid data while at the PHY
the minimum input setup for the subsequent SClk cycle is 6 ns (calculated as tpsumin = 20 ns - tdrt1max). Also note that

Table 5-23 — AC timing parameters at the link

Name Description Unit Minimum Maximum

tld1 Delay time,
SClk input high to initial instance of D[0:n], 
Ctl[0:1] and LReq outputs valid

ns 1 10

tld2 Delay time,
SClk input high to subsequent instance(s) of 
D[0:n], Ctl[0:1] and LReq outputs valid

ns 1 10

tld3 Delay time,
SClk input high to D[0:n], Ctl[0:1] and LReq 
invalid (high-impedance)

ns 1 10

tlsu Setup time,
D[0:n] and Ctl[0:1] inputs before SClk

ns 6

tlh Hold time,
D[0:n] and Ctl[0:1] inputs after SClk

ns 0



P1394a Draft 1.5 High Performance Serial Bus (Supplement)
February 28, 1998

© 1997, 1998 IEEE This is an unapproved standards draft, subject to change 65

the minimum round-trip delay until the next change in data of 21 ns (calculated as
tdrt2min = 20 ns + idelmin + tld2min + idelmin) limits the hold time at the PHY to 1 ns (calculated as tlhmin = tdrt2min -
20 ns); the hold time is further reduced to zero to provide a guard band of 1 ns.

The values for the delays illustrated above are given by table 5-24 below.

Figure 5-17 — Link to PHY delay timing

Table 5-24 — Link to PHY delay timing parameters

Name Description Unit Minimum Maximum

tdrt1 Round-trip delay from SClk output at the PHY 
to valid Ctl[0:1], D:[0:7] and LReq at the PHY

ns 1 14

tdrt2 Round-trip delay from SClk output at the PHY 
to changed or invalid Ctl[0:1], D:[0:7] and 
LReq at the PHY

ns 21 34

SClk out
from PHY

SClk in
to link

C, D, LReq
out from link

C, D, LReq
in to PHY

20 ns

idel

tld1

tdrt1

idel

tpsu tph

tld2

idel

tdrt2
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5.9.4 Isolation barrier (informative)

The example circuits shown in this clause demonstrate how to achieve galvanic isolation between a discrete PHY and link
by means of a capacitive isolation barrier. For applications that require isolation, other methods may be used. When
capacitive isolation is used between the PHY and the link, the grounds of both devices must be coupled as shown in
figure 5-18. The details of this ground coupling are omitted from figures 5-19 through 5-23.

The example circuits that follow illustrate different requirements of the various signals of the PHY/link interface.

Figure 5-18 — Ground coupling circuit example

Figure 5-19 — Capacitive isolation barrier circuit example for Ctl[0:1] and D[0: n]

PHY ground Link ground 

0.1µF

0.01µF

1MΩ

5KΩ

5KΩ

5KΩ

5KΩ

100Ω

300Ω

0.001µF 0.001µF

Device A Device B

Device A ground Device B ground Device B ground 

Device A power Device B power 

Optional: This resistor is necessary only 
when Device A is 5 V nominal and 
Device B is 3.3 V nominal 
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NOTE—In figures 5-20 and 5-21, the values of the resistors between signal and ground or signal and power should be chosen to suit
the implemented value of VLREF. The values shown are appropriate when VLREF is nominally 0.8 V.

Figure 5-20 — Capacitive isolation barrier circuit example for LinkOn

Figure 5-21 — Capacitive isolation barrier circuit example for LPS

Figure 5-22 — Capacitive isolation barrier circuit example for LReq
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Link PHY

Link ground PHY ground PHY ground 

Link power PHY power 
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Optional: This resistor is necessary only 
when the link is 5 V nominal and 
the PHY is 3.3 V nominal 
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Figure 5-23 — Capacitive isolation barrier circuit example for SClk
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6. PHY register map

Although Annex J of IEEE Std 1394-1995, from which this section is derived, originally described an interface to a dis-
crete PHY, the material that follows is normative for both discrete and integrated PHY and link implementations. In addi-
tion, link implementations shall provide a means for software or firmware to access the PHY registers defined in the
clauses that follow.

6.1 PHY register map (cable environment)

In the cable environment, the extended PHY register map illustrated by figure 6-1 shall be implemented by all designs
compliant with this supplement. Reserved fields are shown shaded in grey.

The meaning, encoding and usage of all the fields in the extended PHY register map are summarized by table 6-1. Power
reset values not specified are resolved by the operation of the PHY state machines subsequent to a power reset.

Figure 6-1 — Extended PHY register map for the cable environment

Table 6-1 — PHY register fields for the cable environment

Field Size Type Power reset value Description

Physical_ID 6 r The address of this node determined during self-identification. A value of 63 
indicates a malconfigured bus; the link shall not transmit any packets.

R 1 r When set to one, indicates that this node is the root.

PS 1 r Cable power active (see clause 7.3).

RHB 1 rw 0 Root hold-off bit. When one the force_root variable is TRUE, which instructs 
the PHY to attempt to become the root during the next tree identify process.

Physical_ID PSR

RHB IBR Gap_count

Max_speed

Page_select

Extended (7) Total_ports

Link_active Pwr_classContender

Port_select

Contents

0 1 2 3 4 5 6 7Address

00002

00012

00102

00112

01002

01012

01102

01112

Resume_int ISBR Loop Pwr_fail Enab_accel Enab_multi

Register0Page_select

Register7Page_select

… …

10002

11112

…

Timeout Port_event

Delay

Jitter
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IBR 1 rw 0 Initiate bus reset. When set to one, instructs the PHY to set ibr TRUE and 
reset_time to RESET_TIME. Unless suspend or resume is in progress for 
any of the PHY’s ports, these values in turn cause the PHY to initiate a bus reset 
without arbitration; the reset signal is asserted for 166 µs. This bit is self-clear-
ing.

Gap_count 6 rw 3F16 Used to configure the arbitration timer setting in order to optimize gap times 
according to the topology of the bus. See 4.3.6 of IEEE Std 1394-1995 for the 
encoding of this field.

Extended 3 r 7 This field shall have a constant value of seven, which indicates the extended 
PHY register map.

Total_ports 4 r vendor-dependent The number of ports implemented by this PHY. This count reflects the number 

Max_speed 3 r vendor-dependent Indicates the speed(s) this PHY supports:
0002 98.304 Mbit/s
0012 98.304 and 196.608 Mbit/s
0102 98.304, 196.608 and 393.216 Mbit/s
0112 98.304, 196.608, 393.216 and 786.43 Mbit/s
1002 98.304, 196.608, 393.216, 786.432 and 1,572.864 Mbit/s
1012 98.304, 196.608, 393.216, 786.432, 1,572.864 and 3,145.728 Mbit/s

All other values are reserved for future definition

Delay 4 r vendor-dependent Worst-case repeater delay, expressed as 144 + (delay * 20) ns.

Link_active 1 rw See description Link active. Cleared or set by software to control the value of the L bit trans-
mitted in the node’s self-ID packet 0, which shall be the logical AND of this bit 
and LPS active. If hardware implementation-dependent means are not available 
to configure the power reset value of the Link_active bit, the power reset value 
shall be one.

Contender 1 rw See description Cleared or set by software to control the value of the C bit transmitted in the 
self-ID packet. If hardware implementation-dependent means are not available 
to configure the power reset value of this bit, the power reset value shall be 
zero.

Jitter 3 r vendor-dependent The difference between the fastest and slowest repeater data delay, expressed 
as (jitter + 1) * 20 ns.

Pwr_class 3 rw vendor-dependent Power class. Controls the value of the pwr field transmitted in the self-ID 
packet. See 4.3.4.1 of IEEE Std 1394-1995 for the encoding of this field.

Resume_int 1 rw 0 Resume interrupt enable notification. When set to one, the PHY shall set 
Port_event to one if resume operations commence for any port. This causes an 
interrupt to the link whther or not interrupts are enabled for Connected, Bias, 
Disabled or Fault.

ISBR 1 rw 0 Initiate short (arbitrated) bus reset. A write of one to this bit instructs the PHY 
to set isbr TRUE and reset_time to SHORT_RESET_TIME. Unless sus-
pend or resume is in progress for any of the PHY’s ports, these values in turn 
cause the PHY to arbitrate and issue a short bus reset. This bit is self-clearing.

Loop 1 rw 0 Loop detect. A write of one to this bit clears it to zero.

Pwr_fail 1 rw 0 Cable power failure detect. Set to one when the PS bit changes from one to 
zero. A write of one to this bit clears it to zero.

Timeout 1 rw 0 Arbitration state machine timeout (see MAX_ARB_STATE_TIME). A write of 
one to this bit clears it to zero.

Port_event 1 rw 0 Port event detect. The PHY sets this bit to one if any of Connected, Bias, Dis-
abled or Fault change for a port whose Int_enable bit is one. The PHY also sets 
this bit to one if resume operations commence for any port and Resume_int is 
one. A write of one to this bit clears it to zero.

Enab_accel 1 rw See descriptiona Enable arbitration acceleration. When set to one, the PHY shall use the 
enhancements specified in clause 7.10. PHY behavior is unspecified if the 
value of Enab_accel is changed while a bus request is pending.

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description
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The RHB bit should be zero unless it is necessary to establish a particular node as the cycle master. In particular, bus man-
ager- and isochronous resource manager-capable nodes should not set their RHB bit(s) to one and should not attempt to
become the root unless there is no cycle master. This recommendation is made in anticipation of a requirement for Serial
Bus to Serial Bus bridges to become root to distribute the cycle clock.

When any one of the Loop, Pwr_fail, Timeout or Port_event bits transitions from zero to one, PHY_interrupt shall be set
to one. If the link is active, PHY_interrupt is reported as S[3] in a PHY status transfer, as specified by clause 5.5; other-
wise a PHY interrupt shall cause LinkOn to tbe asserted. These bits in PHY register five are unaffected by writes to the
register if the corresponding bit position is zero. When the bit written to the PHY register is one, the corresponding bit is
zeroed.

The upper half of the PHY register space, addresses 10002 through 11112, inclusive, provides a windows through which
additional pages of PHY registers may be accessed. This supplement defines pages zero, one and seven: the Port Status
page, the Vendor Identification page and a vendor-dependent page. Other pages are reserved.

Enab_multi 1 rw See descriptiona Enable multi-speed packet concatenation. When set to one, the link shall signal 
the speed of all packets to the PHY.

Page_select 3 rw vendor-dependent Selects which of eight possible PHY register pages are accessible through the 
window at PHY register addresses 10002 through 11112, inclusive.

Port_select 4 rw vendor-dependent If the page selected by Page_select presents per port information, this field 
selects which port’s registers are accessible through the window at PHY regis-
ter addresses 10002 through 11112, inclusive. Ports are numbered monotoni-
cally starting at zero, p0.

a. For a discrete PHY, the power reset value of the these bits shall be zero unless hardware implementation-dependent 
means are available to configure the power reset value. Integrated PHY/link implementations may implement either bit 
as read-only, in which case the power reset value shall be one.

Table 6-1 — PHY register fields for the cable environment (Continued)

Field Size Type Power reset value Description
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The Port Status page is used to access configuration and status information for each of the PHY’s ports. The port is
selected by writing zero to Page_select and the desired port number to Port_select in the PHY register at address 01112.
The format of the Port Status page is illustrated by figure 6-2 below; reserved fields are shown shaded in grey.

The meanings of the register fields with the Port Status page are defined by the table below.

Figure 6-2 — PHY register page 0: Port Status page

Table 6-2 — PHY register Port Status page fields

Field Size Type Power reset 
value Description

AStat 2 r TPA line state for the port:

002 = invalid
012 = 1
102 = 0
112 = Z

BStat 2 r TPB line state for the port (same encoding as AStat)

Child 1 r If equal to one, the port is a child, else a parent. The meaning of this bit is 
undefined from the time a bus reset is detected until the PHY transitions to 
state T1: Child Handshake during the tree identify process (see 4.4.2.2 in 
IEEE Std 1394-1995).

Connected 1 r 0 If equal to one, the port is connected.

Bias 1 r If equal to one, incoming TpBias is detected.

Disabled 1 rw See description If equal to one, the port is disabled. The value of this bit subsequent to a 
power reset is implementation-dependent. If a hardware configuration option 
is provided, a single option may control the power reset value for all ports.

Negotiated_speed 3 r Indicates the maximum speed negotiated between this PHY port and its 
immediately connected port; the encoding is the same as for they PHY regis-
ter Max_speed field.

Int_Enable 1 rw 0 Enable port event interrupts. When set to one, the PHY shall set Port_event 
to one if any of Connected, Bias, Disabled or Fault (for this port) change state.

Fault 1 rw 0 Set to one if an error is detected during a suspend or resume operation. A write 
of one to this bit clears it to zero.

AStat BStat Child Connected

Contents

0 1 2 3 4 5 6 7Address

10002

10012
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11002
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Bias
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Disabled
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The AStat, BStat fields and Child bit are present in both the legacy and extended PHY registers and have identical mean-
ings, defined by table 6-2 above, in both cases. The Connected field replaces the legacy PHY Con field and has a slightly
altered meaning. For a legacy PHY, Con indicates a connected and active PHY port while Connected indicates a port with
a physical connection to a peer PHY—but the port is not necessarily active.

The Vendor Identification page is used to identify the PHY’s vendor and compliance level. The page is selected by writ-
ing one to Page_select in the PHY register at address 01112. The format of the Vendor Identification page is illustrated by
figure 6-3 below; reserved fields are shown shaded in grey.

The meanings of the register fields within the Vendor Identification page are defined by the table below.

The vendor-dependent page provides registers set aside for use by the PHY’s vendor. The page is selected by writing
seven to Page_select in the PHY register at address 01112. The PHY vendor shall determine the meaning of Port_select
when Page_select equals seven. PHY vendors may implement and specify the format of up to eight vendor-dependent
registers, at addresses 10002 through 11112, inclusive.

Figure 6-3 — PHY register page 1: Vendor Identification page

Table 6-3 — PHY register Vendor Identification page fields

Field Size Type Description

Compliance_level 8 r Standard to which the PHY implementation complies:

0 = not specified
1 = IEEE P1394a
All other values reserved for future standardization

Vendor_ID 24 r The company ID or Organizationally Unique Identifier (OUI) of the manufacturer 
of the PHY. This number is obtained from the IEEE Registration Authority Commit-
tee (RAC). The most significant byte of Vendor_ID appears at PHY register location 
10102 and the least significant at 11002.

Product_ID 24 r The meaning of this number is determined by the company or organization that has 
been granted Vendor_ID. The most significant byte of Product_ID appears at PHY 
register location 11012 and the least significant at 11112.
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6.2 PHY register map (backplane environment)

The backplane environment has a PHY register map similar to that of the cable environment, except that certain fields are
not used and that other fields shall always be set to a particular value. In addition, the backplane environment may make
use of the enhanced register map to indicate an enhanced register that contains the transceiver disable (TD) and Priority
fields.

With the exception of the fields specified by the table below, the meaning of the backplane PHY register fields is the
same as for the cable environment (see table 6-1).

Figure 6-4 — PHY register map for the backplane environment

Table 6-4 — PHY register fields for the backplane environment

Field Size Type Description

Physical_ID 6 rw The address of this node; unlike the equivalent field in the cable environment, 
the physical ID in the backplane environment is writable.

IBR 1 rw Initiate bus reset. When set to one, instructs the PHY to initiate a bus reset 
immediately (without arbitration). This bit causes assertion of the reset signal 
for approximately 8 µs and is self-clearing.

E 1 r If equal to zero, no enhanced registers are used.
If equal to one, enhanced registers at address 01002 and 01012 are present.

Total_ports 5 r The number of ports on this PHY. In the backplane environment there is one 
port per PHY.

AStat0 2 r Data line state (uses the same encoding as for cable).

BStat0 2 r Strobe line state (uses the same encoding as for cable).

ENV 2 r Present if the E bit is one. ENV shall be equal to zero in the backplane envi-
ronment; other values are reserved.

Reg_count 6 r Present if the E bit is one, in which case it shall be greater than or equal to 
one. When Reg_count is greater than one, the format of additional enhanced 
registers at addresses 01102 and above are vendor-dependent.

TD 1 rw Transceiver disable. When set to one the PHY shall set all bus outputs to a 
high-impedance state and ignore any link layer service actions that would 
require a change to this bus output state.

Priority 4 rw This field shall contain the priority used in the urgent arbitration process and 
shall be transmitted as the pri field in the packet header.
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6.3 Integrated link and PHY

The register map described in the preceding clauses is specified to assure interoperability between discrete link and PHY
implementations offered by different vendors. Because the PHY registers are the only means available to software to con-
trol or query the state of the PHY, these register definitions are also critical to software.

An integrated link and PHY implementation shall present the appropriate register map standardized in the preceding
clauses. The status that may be read from the registers and the behavior caused by a write to the registers shall be identi-
cal with that of a discrete link and PHY combination.
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7. Cable physical layer performance enhancement specifications

This section of the supplement specifies a set of related enhancements to the physical layer of Serial Bus. When imple-
mented as a group they can significantly increase both the efficiency and robustness of Serial Bus. The enhancements
address the following:

— Connection hysteresis (debounce). When a connector is inserted or removed from a socket, electrical contact is
made and broken countless times in a short interval. The existing standard does not take this into account and as
a consequence a storm of bus resets occurs when a connection is made or broken. These resets are highly disrup-
tive to isochronous traffic on the bus. This supplement specifies a connection time-out to avoid the problem;

— Arbitrated (short) bus reset. The current definition of bus reset assumes that the state of the bus is not known
when a reset is initiated. The minimum reset assertion time must be long enough to complete any packet transmis-
sion that may have been in progress. However, if reset is asserted after first arbitrating for the bus the minimum
reset time can be significantly reduced;

— Multiple-speed packet concatenation. There is a defect in IEEE Std 1394-1995 in that PHYs are required to trans-
mit a speed signal only for the first packet of a multiple packet sequence yet they are expected to receive a sepa-
rate speed signal for each packet. Faced with this contradiction, different vendors have attempted sensible
interpretations; the interpretations have not been uniform and this has already resulted in observed interoperability
problems with PHYs from different vendors. New requirements for PHYs in this supplement correct the defect
and promote interoperability between existing PHYs and those that conform to this supplement;

— Arbitration improvements. There are two circumstances identified in which a node may arbitrate for the bus with-
out first observing a subaction gap. One occurs when an isochronous or acknowledge packet is received from a
child port: fly-by concatenation. The other occurs subsequent to the observation of an acknowledge packet: ack-
accelerated arbitration;

— Transmission delay calculation (PHY pinging). The ability to transmit a “ping” packet to a PHY and time its re-
turn permits the inclusion of cables longer than 4.5 meters or PHYs with delays longer than 144 ns into Serial Bus
topologies;

— Remote PHY register read. The ability to interrogate another PHY’s registers; the response to a remote register
read may be used to time round-trip delay in the same fashion as a “ping” packet;

— Extended speed encoding. Although speeds in excess of S400 are not specified by this supplement, the coding in-
frastructure in the PHY registers and self-ID packets is established for future use; and

— Per port disable, suspend and resume. The model of PHY behavior is extended to recognize that the arbitration
state machines defined by this supplement are applicable to active, connected ports. Inactive ports may be in other
states, disabled, disconnected or suspended, in which the PHY may reduce its power consumption.

These enhancements affect virtually all characteristics of the PHY, from reset detection to the normal arbitration state
machines. As a consequence they are difficult to specify in isolation; the clauses that follow replace existing clauses of
IEEE Std 1394-1995 in their entirety and are so identified.

7.1 Cable topology

Informative sections of IEEE Std 1394-1995 assume that Serial Bus cable topologies are limited by individual cable
lengths less than or equal to 4.5 meters and a maximum hop count (between the two most distant leaf nodes) of 16. There
are no normative statements in IEEE Std 1394-1995 that mandate either of these requirements.

New facilities specified by this supplement, the ping packet and the self-ID packet(s) sent in response, permit the config-
uration of usable Serial Bus topologies with longer cables or greater hop counts. Any topology whose arbitration behavior
can be characterized by a gap count less than or equal to 3F16 is permitted.

NOTE—In the absence of a bus manager to time the worst-case Serial Bus round trip delay, cable lengths less than or equal to 4.5
meters and a maximum hop count of 16 are recommended.
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7.2 Port interface

This clause replaces the introductory material in clause 4.2.2 of IEEE Std 1394-1995, “Media signal interface,” in its
entirety but does not replace any of the other dependent clauses, 4.2.2.1 through 4.2.2.8, inclusive. The text replaced spec-
ifies requirements for the circuits of each port of a PHY. This supplement adds additional requirements for a current
source and connect detect circuit; these facilities permit the detection of a connection with a peer PHY while this PHY is
in a low power state.

A port (formally named the cable media signal interface by IEEE Std 1394-1995) consists of two twisted pair interfaces,
TPA/TPA* and TPB/TPB*, and an optional power distribution pair, VP/VG. A node may have from one to sixteen such
ports. Each port has associated circuitry that provides separate signals for arbitration or for packet data reception and
transmission, as shown in figure 7-1.

Figure 7-1 — Port interface
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The TPA/TPA* pair transmit the Strb_Tx signal and receive the Data_Rx, Arb_A_Rx and Speed_Rx signals. The
TPB/TPB* pair transmits the Data_Tx and Speed_Tx signals and receives the Strb_Rx, Arb_B_Rx and Bias_Detect sig-
nals. The Strb_Tx, Data_Tx, Strb_Enable and Data_Enable signals are used together to generate the arbitration signals.
The Arb_A_Rx and Arb_B_Rx signals are each generated by two comparators since they have three states: zero, one or
high-impedance.

When enabled, the TPA/TPA* pair transmit TpBias while the TPB/TPB* pair receive the TpBias signal (this is used by
the Bias_Detect comparator to determine presence or absence of TpBias). When TpBias is not generated, the connect
detect circuit can detect the presence or absence of a peer PHY at the other end of a cable connection.

The bias generation circuit (including the external capacitor) shall be designed so that when TpBias is driven low, within
0.5 ms the capacitor shall be discharged and output bias shall be less than 0.1 V relative to VG. Contrariwise, when
TpBias is generated the capacitor shall be recharged and the TPA/TPA* signals shall be within the specifications of table
4-14 of IEEE Std 1394-1995 within 1.0 ms.

NOTE—The current source used by the connect detect circuit, ICD, shall not exceed 76µA. This guarantees that the input to the peer
PHY’s bias detection circuit does not exceed 0.4 V.

7.3 Cable power and ground

This clause replaces 4.2.2.7 of IEEE Std 1394-1995, “Power and ground,” in its entirety.

A node may be a power source, a power sink or neither and may assume different roles at different times. The principal
method by which a node identifies its power class is the self-ID packet transmitted subsequent to a bus reset (see
clause 7.5.1). There may be other facilities, for example in a node’s configuration ROM, that identify the power charac-
teristics of a node in more detail than is possible in the self-ID packet; these are beyond the scope of this standard.

Serial Bus may be unpowered or powered; in the latter case, there may be more than one power source. The possibility of
multiple sources requires that power sources be manufactured such that current from a node providing higher voltage does
not flow into sources of lower output voltage. Power sources that identify themselves with POWER_CLASS one, two or
three in their self-ID packet(s) shall implement, for each of their ports, the diode and current limiting scheme illustrated
by figure 7-2.

Figure 7-2 — Node power interface for POWER_CLASS one, two or three
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Cable power sources that do not identify themselves as such in their self-ID packets shall not permit the inflow of power
from a higher voltage power source, but the implementation details may differ from figure 7-2. All cable power sources
shall meet the following requirements (which shall be measured at the printed circuit board side of the connector socket):

In addition, cable power sources shall provide over-voltage and short-circuit protection.

When cable power is available, it is in the nominal range 7.5 V to 33 V. A PHY that detects cable power at the connector
of at least 7.5 V shall set the PS bit (cable power active) in its registers to one. The PS bit shall be cleared to zero when
detectable voltage is below this value. When the PS bit transitions from one to zero the PHY shall generate a
PH_EVENT.indication of CABLE_POWER_FAIL.

NOTE—A cable powered PHY may not be operational if the voltage falls below 7.5 V. If a cable PHY remains operational at the
reduced voltage it shall report the loss of cable power as specified above.

If a node uses cable power, it shall meet the following requirements:

— It shall consume no more than 3 W of power after a power reset or after being initially connected to the bus (tran-
sition from all ports unconnected to any port connected). The receipt of a PHY link-on packet enables the node to
consume additional power up to the limit specified by the node’s self-ID packet(s);

— Inrush energy shall not exceed 18 mJ in 3 ms; and

— The node’s current consumption, expressed as a function of the node’s maximum current requirements, Iload in
A(s), shall meet the following requirements:

1) The peak-to-peak ripple shall be les than or equal to (Iload / 1.5 A) * 100 mA; and

2) The slew rate (change in load current) shall be less than Iload in any 100 µs period.

The sum of the DC currents on VG and VP, for any node that consumes cable power, shall be less than 50µA.

When power is available from electric mains or from batteries, all nodes with two or more ports shall repeat bus signals
on all ports that are both connected and enabled. When power is not available the node shall either:

— power its PHY from cable power, if available, and repeat bus signals on all ports that are both connected and en-
abled; or

— in the case where the PHY is off, prevent cable power from flowing from any port to any other port.

Nodes may be part of a module that implements a “soft” power switch. When the module connected to the electric mains
is powered off, the preferred method to power the PHY is a trickle source from the electric mains. For battery powered
modules that are powered off or for other modules when trickle power is not feasible, the preferred alternative is to power
the PHY from the cable. The last alternative, an inactive PHY and a break in the bus power distribution, is not recom-
mended.

A node that repeats cable power shall have a maximum resistance between any two connector sockets of 0.5Ω. The mea-
surement shall be made at the printed circuit board side of the connector socket.

Table 7-1 — Cable power source requirements

Condition Limit Units

Maximum output current per port 1.5 Amp

Minimum output voltage (POWER_CLASS one, two or three) 20 Vdc

Minimum output voltage (all other POWER_CLASS values) 8 Vdc

Maximum output voltage 33 Vdc

Maximum output ripple (1 kHz to 400 MHz) 100 mV
(peak-to-peak)
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7.4 Data signal rise and fall times

Table 7-2 below replaces table 4-22 in IEEE Std 1394-1995. The output rise and fall times for data signals are measured
from 10% to 90% at the connector and are dependent on the data rate. This supplement adds minimum rise and fall times
to the specification.

NOTE—The differential received signal amplitude specification in table 4-13 of IEEE Std 1394-1995 is not a receiver sensitivity
specification for PHY inputs. Designers should consider factors such as the worst-case received waveform (e.g., slow rise or fall times
near the signal thresholds) and board design characteristics when choosing receiver sensitivity.

7.5 Cable PHY packets

This clause extends the definition of PHY packets and completely replaces IEEE Std 1394-1995 clause 4.3.4, “Cable PHY
packets.” For convenience of reference and to correct typographical errors, all of the existing PHY packet definitions are
reproduced followed by the new definitions.

Nodes send and receive a small number of short packets which are used for bus management. These PHY packets all con-
sist of 64 bits, with the second 32 bits being the logical inverse of the first 32 bits; they are all sent at the S100 speed. If
the first 32 bits of a received PHY packet do not match the complement of the second 32 bits, the PHY packet shall be
ignored. All received PHY packets are transferred to the link; all transmitted PHY packets, except those originated by the
link, are also transferred to the link.

The cable physical layer packet types are

a) The self-ID packet

b) The link on packet

c) The PHY configuration packet

d) The extended PHY packets

NOTE—The PHY packets can be distinguished from the null-data isochronous packet (the only link packet with exactly two quadlets)
since the latter uses a 32-bit CRC as the second quadlet, while the PHY packets use the bit inverse of the first quadlet as the second.

Self-ID packets autonomously generated by the PHY shall also be transferred to the attached link. This differs from the
behavior of PHYs compliant with IEEE Std 1394-1995.

PHY packets originated by the attached link shall be processed by the PHY as if they were received from Serial Bus.

Table 7-2 — Output rise and fall times

Speed
Rise or fall time

Minimum Maximum

S100 0.5 ns 3.2 ns

S200 0.5 ns 2.2 ns

S400 0.5 ns 1.2 ns
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7.5.1 Self-ID packets

The cable PHY sends one to three self-ID packets at the base rate during the self-ID phase of arbitration or in response to
a “ping” packet. The number of self-ID packets sent depends on the maximum number of ports implemented. The cable
PHY self-ID packets have the following format:

Self-ID packets with sequence numbers, n, between 2 and 7, inclusive, are reserved for future standardization.

NOTE—IEEE Std 1394-1995 defines self-ID packet formats that permit a maximum of four self-ID packets to be generated by a PHY.
Although this supplement defines only three self-ID packets, link designers should accommodate the reception of up to 252 self-ID
packets during the self-identify process. Such a link design both supports IEEE Std 1394-1995 and permits future Serial Bus standards
to define an additional self-ID packet without adverse impact on contemporary links.

Figure 7-3 — Self-ID packet formats

Table 7-3 — Self-ID packet fields

Field Derived from Comment

phy_ID physical_ID Physical node identifier of the sender of this packet

L LPS
Link_active

If set, this node has active link and transaction layers. In discrete PHY implementations, 
this shall be the logical AND of Link_active and LPS active.

gap_cnt gap_count Current value for this nodes’ PHY_CONFIGURATION.gap_count field.

sp PHY_SPEED Speed capabilities:
002 98.304 Mbit/s
012 98.304 and 196.608 Mbit/s
102 98.304, 196.608 and 393.216 Mbit/s
112 Extended speed capabilities reported in PHY register 3

c CONTENDER If set and the link_active flag is set, this node is a contender for the bus or isochronous 
resource manager as described in clause 8.4.2 of IEEE Std 1394-1995.
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Some of the information in the self-ID packets changes in accordance with the node’s operating mode. For example a
node that is initially a power consumer but subsequently supplies power would report a different value for the pwr field.
Whenever any part of the node’s configuration described by the self-ID packets changes and there is no expectation that
interested parties would otherwise discover the change(s), the node should initiate a bus reset in order to transmit updated
self-ID packets.

7.5.2 Link-on packet

Reception of the following cable PHY packet shall cause a PH_EVENT.indication of LINK_ON. (See clause 8.4.4 of
IEEE Std 1394-1995, “Power management (cable environment),” for more information.)

pwr POWER_CLASS Power consumption and source characteristics:
0002 Node does not need power and does not repeat power.
0012 Node is self-powered and provides a minimum of 15 W to the bus.
0102 Node is self-powered and provides a minimum of 30 W to the bus.
0112 Node is self-powered and provides a minimum of 45 W to the bus.
1002 Node may be powered from the bus and is using up to 3 W. No additional power 

is needed to enable the linka.
1012 Reserved for future standardization.
1102 Node is powered from the bus and is using up to 3 W. An additional 3 W is 

needed to enable the linka.
1112 Node is powered from the bus and is using up to 3 W. An additional 7 W is 

needed to enable the linka.

p0 … p15 NPORT,
child[n],
connected[n]

Port connection status:
112 Active and connected to child node
102 Active and connected to parent node
012 Not active (may be disabled, disconnected or suspended)
002 Not present on this PHY

i initiated_reset If set, this node initiated the current bus reset (i.e., it started sending a bus_reset signal 
before it received one)b (Optional. If not implemented, this bit shall be zero)

m more_packets If set, another self-ID packet for this node will immediately follow (i.e., if this bit is set and 
the next self-ID packet received has a different phy_ID, then a self-ID packet was lost)

n Extended self-ID packet sequence number 

rsv Reserved for future standardization, set to zeros

a. The link is enabled by the link-on PHY packet described in clause 7.5.2; this packet may also enable 
application layers.

b. There is no guarantee that exactly one node will have this bit set. More than one node may request a bus 
reset at the same time. 

Figure 7-4 — Link-on packet format

Table 7-4 — Link-on packet fields

Field Derived from Comment

phy_ID physical_ID Physical node identifier of the destination of this packet

Table 7-3 — Self-ID packet fields (Continued)

Field Derived from Comment
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0000 0000 0000 0000 0000 0000
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NOTE—A link-on packet is advisory. A PHY that receives a link-on packet shall provide a PH_EVENT.indication of LINK_ON to its
associated link but the link is not required to take any action. If a link does become functional in response to a link-on packet there is
no maximum time requirement.

7.5.3 PHY configuration packet

It is possible to configure Serial Bus performance in the following ways:

a) Optimize the gap_count used by all nodes to a smaller value (appropriate to the actual worst case round-trip delay
between any two nodes); and

b) Force a particular node to be the root after the next bus initialization (for instance, to insure that the root is cycle
master capable).

Both of these actions shall be effected for all nodes (including the originator) by means of the PHY configuration packet
shown below. The PH_CONTROL.request service affects only the local node and is not recommended for changes to
either gap_count or force_root. The procedures for using this PHY packet are described in section 8 of IEEE Std 1394-
1995 and in clause 9.21 of this supplement.

It is not valid to transmit a PHY configuration packet with both R and T bits zero. This would cause the packet to be
interpreted as an extended PHY packet.

7.5.4 Extended PHY packets

A PHY configuration packet with R=0 and T=0 is utilized to define extended PHY packets according to the value in the
gap_cnt field (this is renamed the type field in the figures that follow). The extended PHY packets have no effect upon
either the force_root bit or gap_count field of any node.

Figure 7-5 — PHY configuration packet format

Table 7-5 — PHY configuration packet fields

Field Affects Comment

root_ID Physical_ID of node to have its force_root bit set (only meaningful if R bit set)

R force_root If one, then the node with its physical_ID equal to this packet’s root_ID shall have 
its force_root bit set, all other nodes shall clear their force_root bit. If cleared, the 
root_ID field shall be ignored.

T gap_count_reset_disable If one, all nodes shall set their gap_count variable to the value in this packet’s 
gap_cnt field and set the gap_count_reset_disable variable to TRUE.

gap_cnt gap_count New value for all nodes’ gap_count variable. This value goes into effect 
immediately on receipt and remains valid through the next bus reset. A second bus 
reset without an intervening PHY configuration packet resets gap_count to 3F16, as 
described in reset_start_actions() in clause 7.10.3.1.2)
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7.5.4.1 Ping packet

The reception of the cable PHY packet shown in figure 7-5 shall cause the node identified by phy_ID to transmit self-ID
packet(s) that reflect the current configuration and status of the PHY. Because of other actions, such as the receipt of a
PHY configuration packet, the self-ID packet transmitted may differ from that of the most recent self-identify process.

A PHY shall transmit a self-ID packet within RESPONSE_TIME after the receipt of a ping packet.

7.5.4.2 Remote access packet

The reception of the cable PHY packet shown in figure 7-6 shall cause the node identified by phy_ID to read the selected
PHY register and subsequently return a remote reply packet that contains the current value of the PHY register (see
clause 7.5.4.3).

Figure 7-5 — Ping packet format

Table 7-6 — Ping packet fields

Field Comment

phy_ID Physical node identifier of the destination of this packet

type Extended PHY packet type (zero indicates ping packet)

Figure 7-6 — Remote access packet format

Table 7-7 — Remote access p acket fields

Field Comment

phy_ID Physical node identifier of the destination of this packet.

type Extended PHY packet type:
1 Register read (base registers)
5 Register read (paged registers)

page This field corresponds to the Page_select field in the PHY registers. The register read 
behaves as if Page_select was set to this value.

port This field corresponds to the Port_select field in the PHY registers. The register read 
behaves as if Port_select was set to this value.

reg This field, in combination with page and port, specifies the PHY register. If type indicates 
a read of the base PHY registers reg directly addresses one of the first eight PHY registers. 
Otherwise the PHY register address is 10002 + reg.
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7.5.4.3 Remote reply packet

Subsequent to the reception of a remote access packet, the PHY shall transmit the packet shown in figure 7-7.

A PHY shall transmit a remote reply packet within RESPONSE_TIME after the receipt of a remote access packet.

7.5.4.4 Remote command packet

The reception of the cable PHY packet shown in figure 7-8 shall request the node identified by phy_ID to perform the
operation specified and subsequently return a remote confirmation packet (see clause 7.5.4.5).

Figure 7-7 — Remote reply packet format

Table 7-8 — Remote reply packet fields

Field Comment

phy_ID Physical node identifier of the source of this packet.

type Extended PHY packet type:
3 Register contents (base registers)
7 Register contents (paged registers)

page This field corresponds to the Page_select field in the PHY registers; in conjunction with 
port and reg it identifies the register whose contents are returned in data.

port This field corresponds to the Port_select field in the PHY registers; in conjunction with 
page and reg it identifies the register whose contents are returned in data.

reg This field, in combination with page and port, identifies the register whose contents are 
returned in data. If type indicates a base PHY register, reg directly addresses one of the first 
eight PHY registers. Otherwise the PHY register address is 10002 + reg.

data The current value of the PHY register addressed by the immediately preceding remote 
access packet. If the register is reserved, data shall be zero.

Figure 7-8 — Remote command packet format

Table 7-9 — Remote command packet fields

Field Comment

phy_ID Physical node identifier of the destination of this packet.

type Extended PHY packet type (8 indicates command packet)

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type port reg data00 page

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (8) port cmnd00 000 00000000
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7.5.4.5 Remote confirmation packet

Subsequent to the reception of a remote command packet, the PHY shall transmit the packet shown in figure 7-9; it
reports current status for the port and confirms whether or not the PHY initiated the requested action.

A PHY shall transmit a remote confirmation packet within RESPONSE_TIME after the receipt of a remote command
packet.

port This field selects one of the PHY’s ports.

cmnd Command:
0 NOP
1 Transmit TX_DISABLE_NOTIFY then disable port
2 Initiate suspend (i.e., become a suspend initiator)
4 Clear the port’s Fault bit to zero
5 Enable port
6 Resume port

Figure 7-9 — Remote confirmation packet format

Table 7-10 — Remote confirmation packet fields

Field Comment

phy_ID Physical node identifier of the source of this packet.

type Extended PHY packet type (A16 indicates remote confirmation packet)

port This field shall specify the PHY port to which this packet pertains.

fault Abbreviated as f in the figure above, this bit is the current value of the Fault bit from PHY 
register 10012 for the addressed port.

connected Abbreviated as c in the figure above, this bit is the current value of the Connected bit from 
PHY register 10002 for the addressed port.

bias Abbreviated as b in the figure above, this bit is the current value of the Bias bit from PHY 
register 10002 for the addressed port.

disabled Abbreviated as d in the figure above, this bit is the current value of the Disabled bit from 
PHY register 10002 for the addressed port.

ok One if the command was accepted by the PHY and zero otherwise.

cmnd The cmnd value (from the preceding remote command packet) with which this 
confirmation packet is associated.

Table 7-9 — Remote command packet fields (Continued)

Field Comment

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (A16) port 000 cmnd00 000 f okdbc



High Performance Serial Bus (Supplement) P1394a Draft 1.5
February 28, 1998

88 This is an unapproved standards draft, subject to change © 1997, 1998 IEEE

7.5.4.6 Resume packet

The reception of the cable PHY packet shown in figure 7-10 shall cause any node to commence resume operations for all
PHY ports that are both connected and suspended. This is equivalent to setting the resume variable TRUE for each of
these ports. The resume packet is broadcast; there is no reply.

7.6 Cable PHY line states

This clause defines new rules by which a PHY encodes arbitration line states on the two transmit arbitration signals,
Arb_A_Tx and Arb_B_Tx, as specified by table 7-12.

This clause also defines new rules by which a PHY decodes the interpreted arbitration signals, Arb_A and Arb_B, into a
line state according to table 7-13.

These rules are in addition to those specified by IEEE Std 1394-1995 clause 4.3.3, “Cable PHY line states.”

Figure 7-10 — Resume packet format

Table 7-11 — Resume packet fields

Field Comment

phy_ID Physical node identifier of the source of this packet

type Extended PHY packet type (F16 indicates resume packet)

Table 7-12 — Cable PHY transmitted arbitration line states

Arbitration transmit
Line state name Comment

Arb_A_Tx Arb_B_Tx

Z 1 TX_DISABLE_NOTIFY Request the peer PHY port to enter the suspended 
state. The transmitting port will be disabled.

0 0 TX_SUSPEND Request the peer PHY to handshake TpBias and 
enter the suspended state. The request is also prop-
agated by the peer PHY to its other active ports.

Table 7-13 — Cable PHY received arbitration line states

Interpreted arbitration signals

Arb_A Arb_B Line state name Comment

0 0 RX_SUSPEND Exchange TpBias handshake with the peer PHY 
and place the port into the suspended state. Also 
initiate suspend (i.e., propagate TX_SUSPEND) 
on all other active ports.

1 Z RX_DISABLE_NOTIFY Enter the suspended state and initiate short bus 
reset on all other active ports. The peer PHY port 
will be disabled.

transmitted last

phy_ID00
transmitted first

logical inverse of first quadlet

type (F16) 0000 0000 0000 000000 00
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7.7 Cable interface timing constants

This clause defines new values and changes some existing constants from which the configuration and timing of the phys-
ical layer in the cable environment may be derived; it replaces IEEE Std 1394-1995 clause 4.3.5, “Cable PHY timing con-
stants,” in its entirety.

Table 7-14 — Cable interface timing constants

Timing constant Minimum Maximum Comment

ACK_RESPONSE_TIME This timing constant is no longer defined; see 
RESPONSE_TIME.

ARB_RESPONSE_DELAY 0.03 µs PHY_DELAY Delay through a PHY from the start of reception of an 
arbitration line state to the start of transmission of the 
associated arbitration line state at all transmitting ports.

Arbitration line states shall be repeated by the PHY at 
least as fast as clocked data.

ARB_SPEED_SIGNAL_START -0.02 µs Time delay between a transmitting port signalling 
TX_DATA_PREFIX and the same port transmitting a 
speed signal for either an unconcatenated packet or the 
first packet in a concatenated sequence.

BASE_RATE 98.294 Mbit/s 98.314 Mbit/s Base bit rate (98.304 Mbit/s ± 100 ppm)

BIAS_DEBOUNCE 5.3 ms 10.7 ms Bias debounce time for unexpected loss of bias

BIAS_FILTER_TIME 41.6 µs 52.0 µs Time to filter Bias_Detect upon the detection of TpBias 
any change before updating the PHY register Bias bit 
(~4096/BASE_RATE)

BIAS_HANDSHAKE 5.3 ms 10.7 ms Time to drive or detect TpBias low during the handhsake 
between a suspend initiator and target; also the time 
permitted a resuming port to generate TpBias after 
detecting bias (~16384/BASE_RATE)

CONCATENATION_PREFIX_TIME 0.16 µs For concatenated packets, the time a transmitting port 
shall signal TX_DATA_PREFIX between the end of 
clocked data for one packet and the start of speed 
signaling time for the next.

CONFIG_TIMEOUT 166.6 µs 166.9 µs Loop detect time (~16384/BASE_RATE)

CONNECT_TIMEOUT 336.0 330 ms 341.3 350 ms Connection debounce time

DATA_END_TIME 0.24 µs 0.26 µs End of packet signal time (~24/BASE_RATE)

DATA_PREFIX_HOLD 0.04 µs At a transmitting port, the time between the end of speed 
signalling (when present) and the start of clocked data.

DATA_PREFIX_TIME This timing constant is no longer defined; see 
CONCATENATION_PREFIX_TIME, 
DATA_PREFIX_HOLD and MIN_DATA_PREFIX.

FORCE_ROOT_TIMEOUT 83.3 µs CONFIG_TIMEOUT Time to wait in state T0: Tree-ID Start (see 
clause 7.10.3.2) before acknowledging 
RX_PARENT_NOTIFY. (between ~8192/BASE_RATE 
and ~16384/BASE_RATE)

NOTE—Designers are encouraged to use 162.0 µs as the 
maximum; this value prevents false detection of a loop in 
cases where more than one node has its force_root 
variable set TRUE.

MAX_ARB_STATE_TIME 200 µs 400 µs Maximum time in any state (before a bus reset shall be 
initiated) except A0: Idle, T0: Tree-ID Start or a state that 
exits after an explicit time-out.

MAX_BUS_HOLD 1.63 µs Maximum time an originating node may transmit 
TX_DATA_PREFIX between concatenated packets. The 
link shall ensure that this time is not exceeded.
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Note that the constant RESET_WAIT is redefined by this supplement as a delta to be applied to the reset time in order to
derive a reset time. The reset wait time specified by IEEE Std 1394-1995 is now expressed as RESET_TIME +
RESET_WAIT; the corresponding arbitrated (short) reset wait time is SHORT_RESET_TIME + RESET_WAIT.

MAX_BUS_OCCUPANCY This timing constant is no longer defined; see 
MAX_DATA_TIME.

MAX_DATA_PREFIX_DELAY This timing constant is no longer defined; see 
ARB_RESPONSE_DELAY.

MAX_DATA_TIME 84.31 µs The maximum time that clocked data may be transmitted 
continuously. If this limit is exceeded, unpredictable 
behavior may result.

MAX_RESPONSE_TIME

RESPONSE_TIME

0.04 µs 0.24 µs

PHY_DELAY
+ 0.1 µs

Idle time at all ports of the responding node, measured at 
the cable connector, from the end of RX_DATA_END or 
TX_DATA_END that follows a PHY packet or primary 
packet to the start of the next arbitration line state, 
TX_DATA_PREFIX, TX_DISABLE_NOTIFY or 
TX_SUSPEND. Applies to responding node

MIN_DATA_PREFIX 0.14 µs The time a transmitting port shall signal 
TX_DATA_PREFIX prior to clocked data for either an 
unconcatenated packet or the first packet in a 
concatenated sequence..

MIN_IDLE_TIME 0.04 µs Minimum idle time between packets at either an 
originating or repeating port (~40/BASE_RATE)

MIN_PACKET_SEPARATION 0.34 µs Minimum time that an originating port shall signal 
TX_DATA_PREFIX between concatenated packets 
(~34/BASE_RATE)

NOMINAL_CYCLE_TIME 124.988 µs 125.013 µs Average time between the start of one isochronous period 
and the next (125 µs ± 100 ppm)

PHY_DELAY 0.06 µs See PHY 
registers

Best-case repeater data delay has a fixed minimum.

RESET_DETECT 80.0 ms 85.3 ms Time for an active port to confirm a reset signal

RESET_TIME 166.6 µs 166.7 µs Reset hold time. (~16384/BASE_RATE)

RESET_WAIT 0.16 µs Reset wait delta time. (~16/BASE_RATE)

ROOT_CONTEND_FAST 0.76 µs 0.80 µs Time to wait in state T3: Root Contention if the random 
bit is zero, as described in clause 7.10.3.2. 
(~80/BASE_RATE)

ROOT_CONTEND_SLOW 1.60 µs 1.64 µs Time to wait in state T3: Root Contention if the random 
bit is one, as described in clause 7.10.3.2. 
(~160/BASE_RATE)

SHORT_RESET_TIME 1.30 µs 1.40 µs Short reset hold time. (~128/BASE_RATE)

SID_SPEED_SIGNAL_START -0.02 µs 0.02 µs Time between a child port signalling TX_IDENT_DONE 
and the same port sending its speed capability signal.

SPEED_SIGNAL_LENGTH 0.10 µs 0.12 µs Duration of a valid speed signal (~10/BASE_RATE)

Table 7-14 — Cable interface timing constants (Continued)

Timing constant Minimum Maximum Comment
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Some of the cable interface timing constants are more easily understood with the aid of diagrams. Figure 7-11 illustrates
the relationship between data prefix and the concurrent speed signal at the start of packet transmission. The packet may
be either an unconcatenated packet or the first packet of a concatenated sequence.

Whether or not speed is explicitly signaled, TX_DATA_PREFIX shall be signaled by any transmitting port for at least the
minimum time shown before clocked data is transmitted. For improved interoperability with legacy devices,
TX_DATA_PREFIX should be signaled by the originating port(s) for a minimum of 180 ns prior to clocked data. Speed
signalling occurs concurrently with data prefix but may commence up to 20 ns before the start of data prefix. This is dif-
ficult to show graphically and is represented by a negative value for ARB_SPEED_SIGNAL_START. Once speed signal-
ling is initiated by a transmitting port it shall be continued for SPEED_SIGNAL_LENGTH time. Speed signalling shall
complete no less than DATA_PREFIX_HOLD time before the start of clocked data.

Data prefix and speed signalling between two concatenated packets is similar to that for the first packet, but the speed
signal is shifted later into the data prefix time as illustrated by figure 7-12.

Originating ports shall guarantee MIN_PACKET_SEPARATION time between the clocked data of any two concatenated
packets. Clock frequency and phase differences may cause a smaller separation at repeating ports, but in no case shall the
minimum packet separation be less than the sum of CONCATENATION_PREFIX_TIME, SPEED_SIGNAL_LENGTH
and DATA_PREFIX_HOLD. After the end of clocked data for the previous packet, a transmitting port shall guarantee a
delay of CONCATENATION_PREFIX_TIME before signalling the speed of the next packet. The requirements for
SPEED_SIGNAL_LENGTH and DATA_PREFIX_HOLD are the same as for start of packet transmission.

Figure 7-11 — Start of packet transmission

Figure 7-12 — Concatenated packet transmission

TX_DATA_PREFIX
Arbitration or
Clocked data

Speed signal

MIN_DATA_PREFIX

ARB_SPEED_SIGNAL_START DATA_PREFIX_HOLD

SPEED_SIGNAL_LENGTH

TX_DATA_PREFIX
Arbitration or
Clocked data

Speed signal

MIN_PACKET_SEPARATION

CONCATENTATION_PREFIX_TIME DATA_PREFIX_HOLD

SPEED_SIGNAL_LENGTH
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When a packet ends and Serial Bus returns to the idle state prior to the next subaction, the relevant timings are illustrated
by figure 7-13.

A transmitting port shall transmit the data end indication at least DATA_END_TIME after either an unconcatentated
packed or the last packet of a concatenated sequence. TX_DATA_END shall be followed by a minimum idle gap, as
shown. Repeating ports shall be designed to account for clock frequency and phase differences and still guarantee
MIN_IDLE_TIME.

When a subaction requires a response, the responding node shall guarantee the timings shown by figure 7-14. The upper
bound on the idle gap prevents other nodes from erroneously observing a subaction gap.

The packets that require a response are any primary packet (except broadcast and stream packets), a “ping” packet or a
PHY remote access or remote command packet. The timing requirements are identical for all of these packets; only the
data end arbitration line state that follows the packet is shown at the left of figure 7-14. The arbitration line state that fol-
lows idle (shown at the right of the figure) shall be TX_DATA_PREFIX, TX_DISABLE_NOTIFY or TX_SUSPEND.
The responding node shall guarantee that the idle gap does not exceed RESPONSE_TIME at any transmitting port, not
solely the port that received the packet that required the response.

NOTE—For some subactions the link is responsible to guarantee RESPONSE_TIME while the PHY is responsible for others.

7.8 Node variables

Each node’s PHY has a set of variables that are referenced in the C code and state machines in clause 7.10. The values of
these variables may be affected by writes to PHY registers, the transmission or reception of PHY configuration packets or
by arbitration state actions—including bus reset. A reset of the PHY/link interface affects none of these variables. The
definitions in table 7-15 entirely replace clause 4.3.8 of IEEE Std 1394-1995, “Node variables.”

Figure 7-13 — End of packet transmission

Figure 7-14 — Subaction response

Table 7-15 — Node variables

Variable name Power reset
value Comment

accelerating TRUE Set TRUE or FALSE by accelerate or decelerate requests issued by the link via LReq 
(see clause 5.4) and used by the arbitration state machines. See also enab_accel below.

arb_enable — TRUE if the PHY may arbitrate on behalf of a fair request within the current fairness 
interval.

TX_DATA_END
Arbitration or
Clocked data

MIN_IDLE_TIME

DATA_END_TIME

RESPONSE_TIME

RX_DATA_END
Arbitration or
Clocked data
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7.9 Port variables

In addition to the variables described in the preceding clause, each node’s PHY has a set of variables replicated for each
port. A reset of the PHY/link interface affects none of these variables. The definitions in table 7-16 entirely replace clause
4.3.9 of IEEE Std 1394-1995, “Port variables.”

7.10 Cable physical layer operation

This clause replaces 4.4 of IEEE Std 1394-1995, “Cable PHY operation,” in its entirety.

cable_power_active — TRUE if cable power is within normal operating range (see clause 7.3).

enab_accel FALSE Globally enables or disables all PHY accelerations specified by clause 7.10. This 
variable is visible as the PHY register bit Enab_accel.

force_root FALSE When TRUE, this modifies the PHY’s tree identification behavior and increases the 
likelihood that the node becomes root (see clause 4.4.2.2 of IEEE Std 1394-1995). 
If only one node on a bus has force_root set TRUE, that node is guaranteed to become 
the root.

gap_count 3F16 This value determines the length of arbitration reset and subaction gaps and may be 
used to optimize bus performance. All nodes on the bus should have the same 
gap_count value else unpredictable arbitration behavior may occur.

initiated_reset TRUE TRUE if this node initiated the bus reset in progress. Cleared to FALSE upon 
completion of the self-identify process.

link_active TRUE TRUE if the node’s link is present and enabled.

more_packets — Flag which indicates whether or not additional self-ID packets are to be sent.

parent_port — The port number that is connected to the parent node; this variable is meaningless if the 
node is root.

physical_ID — The node’s 6-bit physical ID established by the self-identify process.

receive_port — The port number that is receiving encoded data (determined by the arbitration states).

root — TRUE if the node is the root, as determined by tree-ID.

Table 7-16 — Port variables

Variable name Power reset
value Comment

child — TRUE if this port is connected to a child node.

connected FALSE TRUE if there is a peer PHY connected to this port.

child_ID_complete — TRUE when the child node connected to this port has finished its self-ID.

max_peer_speed — Maximum speed capability of the peer PHY connected to this port.

bias — TRUE if TpBias is present.

speed_OK — The connected port can accept a packet at the requested speed.

Table 7-15 — Node variables (Continued)

Variable name Power reset
value Comment
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The operation of the cable physical layer can best be understood with reference to the architectural diagram shown in
figure 7-15:

The main controller of the cable physical layer is the block labeled “arbitration control,” which responds to arbitration
requests from the link layer (PH_ARB.request) and changes in the state of its ports. It provides the management and
timing signals for transmitting, receiving and repeating packets. It also provides the bus reset and configuration functions.
The operation of this block is described in clause 7.10.3

The “data resynch” block decodes the data-strobe signal and retimes the received data to a local fixed frequency clock
provided by the “local clock” block. Since the clocks of receiving and transmitting nodes can be up to 100 ppm different
from the nominal, the data resynch function must be able to compensate for a difference of 200 ppm over the maximum
packet length of 84.31 µs (1024 byte isochronous packet at 98.304 Mbit/s). The operation of this block is described in
clause 4.4.1.2 of IEEE Std 1394-1995.

Figure 7-15 — Cable physical layer architecture
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The “data & signal decode” block provides a common interface to the link layer for both packet data and arbitration sig-
nals (gaps and bus reset indicators).

The “xmit selection & encode” block is the selector between repeated data and data sent by the link layer. It also gener-
ates the strobe signal for the transmitted data. Its operation is described in clause 4.4.1.1 of IEEE Std 1394-1995.

Each port has an associated “port output control” that selects either the arbitration control signals or the data-strobe pair
for transmission.

All of the procedures in this clause use the syntax specified in clause 1.6.7 and the definitions in tables 7-15, 7-16, 7-17
and 7-18.

NOTE—Although not part of the C language, the type dataBit is used to represent a bit of information, 0 or 1.

The C language code and state machines are not normative descriptions of implementations; they are normative descrip-
tions of externally apparent PHY behaviors. Different implementations are possible. In particular, the C language code
and state machines do not contain provisions to enforce the LReq rules specified by clause 5.4.1; if the link issues bus
requests that do not follow the rules the PHY behavior is unspecified.

Table 7-17 — Cable PHY code definitions (Sheet 1 of 2)

const int FIFO_DEPTH = ?;           // IMPLEMENTATION-DEPENDENT! At least 6 for S100,
                                    // 12 for S200 and 24 for S400 PHYs
enum breq {NO_REQ, IMMED_REQ,       // Types of bus requests made by link across PHY/link interface
           ISOCH_REQ,               // the PHY/link interface
           PRIORITY_REQ, FAIR_REQ};
enum PHY_state {R0, R1,             // Tracks the PHY state (names per state diagrams)
                T0, T1, T2, T3,
                S0, S1, S2, S3, S4,
                A0, A1, A2, RX, TX};
enum speedCode {S100, S200, S400};  // Speed codes
enum tpSig {L, H, Z};               // Differential signal on twisted pair
struct portData {tpSig TpA; tpSig TpB;};    // Port data structure
enum phyData(portData signals);     // Encoded types DATA_ZERO, DATA_ONE, DATA_PREFIX or DATA_END

boolean ack;                        // Set if last packet observed was exactly 8 bits
boolean arb_enable;                 // Set if a node may arbitrate upon detection of a subaction gap
timer arb_timer();                  // Timer for arbitration state machines
boolean bus_initialize_active;      // Set while the PHY is initializing the bus
int children;                       // Number of child ports
int contend_time;                   // Amount of time to wait during root contention
timer connect_timer();              // Timer for connection status monitor
boolean connection_in_progress[NPORT];    // TRUE when debouncing a new connection
boolean DS_clock;                   // FALSE unless encoded DS clock available on the receive port
                                    // (data or strobe transition observed within the last 20 ns)
boolean end_of_reception;           // Set when reception of packet is complete
boolean force_root;                 // Set to delay start of tree-ID process for this node
dataBit fifo[FIFO_DEPTH];           // Data resynch buffer
unsigned fifo_rd_ptr, fifo_wr_ptr;  // Data resynch buffer pointers
boolean gap_count_reset_disable;    // If set, a bus reset will not force the gap_count to the maximum
boolean ibr;                        // Set when a long bus reset is needed
boolean isbr;                       // Set when an arbitrated (short) bus reset should be attempted
boolean isolated_node;              // Set if no ports active
boolean own_request;                // Latch the value of arb_OK() at the time it is evaluated
boolean ping_response;              // Set if self-ID packet(s) needed in response to a ping
portData portR(int port_number);    // Return current rxData signal from indicated port
speedCode portRspeed[NPORT];        // Filtered and latched receive speed for indicated port
void portT(int port_number, portData txData);   // Transmit txData on indicated port
void portTspeed(int port_number, speedCode speed); // Set transmit speed on indicated port
boolean random_bool();              // Returns a random TRUE or FALSE value
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int reset_time;                     // Duration to assert bus reset signal
int read_phy_reg(int page, int port, int reg);  // Return current value of specified PHY register
int rx_dribble_bits;                // Keep track of dribble bits in FIFO
boolean rx_S200, rx_S400;           // Outputs from speed signal comparators
speedCode rx_speed, tx_speed;       // Current packet speeds
speedCode speed;                    // Speed signaled by the link across the PHY/link interface
void signal(int event);             // Sets event status to the value specified
boolean signaled;                   // Indicate transmission of TX_DISABLE_NOTIFY or TX_SUSPEND
int test_event(int event_mask);     // Test the indicated event(s), return those signaled
int wait_event(int event_mask);     // Await the indicated event(s), return events signaled

Table 7-18 — Cable PHY packet definitions (Sheet 1 of 2)

typedef union {
   struct {
      union {
         quadlet dataQuadlet;
         dataBit dataBits[32];
         struct {           // First self-ID packet
            quadlet type:2;
            quadlet phy_ID:6;       // Physical_ID
            quadlet :1;             // Always 0 for first self-ID packet
            quadlet L:1;            // Link active
            quadlet gap_cnt:6;      // Gap count
            quadlet sp:2;           // Speed code
            quadlet :2;
            quadlet c:1;            // Isochronous resource manager contender
            quadlet pwr:3;          // Power class
            quadlet p0:2;           // Port 0 connection status
            quadlet p1:2;           // Port 1 connection status
            quadlet p2:2;           // Port 2 connection status
            quadlet i:1;            // Initiated reset
            quadlet m:1;            // More self-ID packets...
         };
         struct {           // Subsequent self-ID packets
            quadlet :8;
            quadlet ext:1;          // Nonzero for second and subsequent self-ID packets
            quadlet n:3;            // Sequence number
            quadlet :2;
            quadlet pa:2;           // Port connection status...
            quadlet pb:2;           //                   pa  pb  pc  pd  pe  pf  pg  ph
            quadlet pc:2;           // Self-ID packet 2  P3  P4  P5  P6  P7  P8  P9 P10
            quadlet pd:2;           // Self-ID packet 3 P11 P12 P13 P14 P15 --- --- ---
            quadlet pe:2;
            quadlet pf:2;
            quadlet pg:2;
            quadlet ph:2;
            quadlet :2;
         };
         struct {           // PHY configuration packet
            quadlet :2;
            quadlet root_ID:6;      // Intended root
            quadlet R:1;            // If set, root_ID field is valid
            quadlet T:1;            // If set, gap_cnt field is valid
            quadlet gap_cnt:6;      // Gap count
            quadlet :16;
         };
         struct {           // Extended PHY packets (ping and other remote packets)
            quadlet :2;
            quadlet :6;             // Physical_ID
            quadlet ext_type:4;     // Extended type
            quadlet page:3;         // Page_select
            quadlet port:4;         // Port_select
            quadlet reg:3;          // Register address (add 0b1000 if paged register)
            union {

Table 7-17 — Cable PHY code definitions (Sheet 2 of 2)
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7.10.1 Speed signal sampling and filtering

Speed signaling in the cable environment occurs during the self-ID phase of bus initialization and during packet transmis-
sion in the normal arbitration phase. In the self-ID phase, connected peer PHYs exchange speed signals to configure their
maximum speed capabilities. In the normal arbitration phases, the speed of an acknowledge, PHY or primary packet is
signalled concurrently with the data prefix that precedes the packet. In either case, speed is signalled as common-mode
current on TPB and is observed as a common-mode voltage drop (relative to TpBias) on TPA.

A speed signal is a single-ended, common-mode signal of small amplitude that is detected on TPA by differential compar-
ator(s). An S100 PHY requires no comparators, an S200 PHY requires one comparator while an S400 PHY requires dif-
ferent comparators for the S200 and S400 signals. Each comparator has one side tied to an internally generated reference
voltage and the other to the common-mode voltage of the twisted pair (referenced at the midpoint of a resistor/divider net-
work between the twisted pair inputs).

Reliable reception and detection of a speed signal may be hampered by several factors:

— Common-mode noise. Because the speed signal is a common-mode signal, it is more susceptible to noise than the
differential arbitration and data signals. Spurious speed-signals may be observed because of cross-talk, mismatch-
es in differential signal transition times or common-mode ground noise.

— Receive comparator delay mismatch. The two sets of speed signal comparators may have different delays, which-
may vary with the input signal amplitude. For example, when receiving the leading edge of an S400 speed-signal,
the S200 comparator typically switches before the S400 comparator.

— RC effects. The speed signal rise and fall times may be degraded because of the RC filtering effects of the cable
and bias network.

For all of these reasons it is desirable to filter the outputs of the speed signal comparators to enhance the reliable detection
of a speed signal. A speed signal should be continuously present for at least 20 ns before it is considered valid.

               quadlet data:8;      // Register data (remote reply)
               struct {             // Remote confirmation
                  quadlet fault:1;  // Copies of equivalent PHY register bits...
                  quadlet connected:1;
                  quadlet bias:1;
                  quadlet disabled:1;
                  quadlet ok:1;     // Confirm command accepted or not
                  quadlet cmnd:1;   // Remote command
               };
            };
         };
      };
      union {
         quadlet checkQuadlet;
         dataBit checkBits[32];
      };
   };
} PHY_PKT;

Table 7-18 — Cable PHY packet definitions (Sheet 2 of 2)
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One method is to monitor the comparator outputs and consider the speed signal valid only if the outputs remain stable for
some number of consecutive samples. This is illustrated by the informative C code below. The sampling frequency is gov-
erned by the 50 MHz PHY clock and the code latches the fastest speed signal observed.

NOTE—The C code above is not intended to preclude other implementations. For example, some implementation may require that the
outputs remain stable for three consecutive samples. Others might implement different sampling algorithms for S200 and S400. The
behavior of any implementation shall conform to the signal and timing requirements of IEEE Std 1394-1995 and this supplement.

7.10.2 Data transmission and reception

Data transmission and reception are synchronized to a local clock that shall be accurate within 100 ppm. The nominal
data rates are powers of two multiples of 98.304 Mbit/s for the cable environment.

7.10.2.1 Data transmission

Data transmission entails sending the data bits to the connected PHY along with the appropriately encoded strobe signal
using the timing provided by the PHY transmit clock. If the connected port cannot accept data at the requested speed
(indicated by the speed_OK[i] flag being FALSE), then no data is sent, which leaves the drivers in the "01" data prefix
condition.

Table 7-19 — Digital speed filtering (informative)

void speed_filter(void) {           // Continuously sample speed signals
   int i;
   speedCode raw_speed[NPORT, 2];   // Unfiltered speed (moving window of two samples)

   wait_event(PH_CLOCK.indication);       // Wait for 50 MHz clock
   for (i = 0; i < NPORT; i++) {
      raw_speed[i, 1] = raw_speed[i, 0];  // Save prior sample
      if (rx_S400[i]) {                   // S400 observed?
         if (rx_S200[i])
            raw_speed[i, 0] = S400;
      } else if (rx_S200[i])              // S200 observed?
         raw_speed[i, 0] = S200;
      else
         raw_speed[i, 0] = S100;          // No to both: default S100
      OK_to_sample =    (PHY_state == S4)
                     || (   (PHY_state == S2 || PHY_state == S3)
                         && portR(i) == RX_IDENT_DONE)
                     || (   (PHY_state == A0 || PHY_state == A1 || PHY_state == A2 || PHY_state == RX)
                         && portR(i) == RX_DATA_PREFIX);
      if (!OK_to_sample)
         portRspeed[i] = S100;      // Reset to S100 whenever it’s not OK to sample
      else if (raw_speed[i, 0] == raw_speed[i, 1]) // Consecutive identical samples?
         if (raw_speed[i, 0] == S200 && portRspeed[i] < S400)
            portRspeed[i] = S200;   // Latch S200 only if S400 not yet confirmed
         else if (raw_speed[i] == S400)
            portRspeed[i] = S400;
   }
}

Table 7-20 — Data transmit actions (Sheet 1 of 2)

static dataBit tx_data, tx_strobe;     // Memory of last signal sent

void tx_bit(dataBit bit) {             // Transmit a bit
   int i;

   wait_event(PH_CLOCK.indication);    // Wait for clock
   if (bit == tx_data)                 // If no change in data
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The edge rates and jitter specifications for the transmitted signal are given in clause 4.2.3 of IEEE Std 1394-1995. 

Starting data transmission requires sending a special data prefix signal and a speed code. The speed_OK[i] flag for each
port is TRUE if the connected PHY has the capabilities to receive the data:

      tx_strobe = ~tx_strobe;          // Invert strobe
   tx_data = bit;
   for (i = 0; i < NPORT; i++)
      if (active[i] && i != receivePort)
         if (speed_OK[i]) {
            portData pd = {phyData(tx_strobe), phyData(tx_data)};
            portT(i, pd);
         } else
            portT(i, TX_DATA_PREFIX);
}

Table 7-21 — Start data transmit actions

void start_tx_packet(speedCode speed)            // Send data prefix and speed code
   int signal_port = NPORT, i;

   for (i = 0; i < NPORT; i++) {
      if (!active[i])
         speed_OK[i] = FALSE;
      else if (phy_response) {
         portT(i, TX_DATA_PREFIX);     // Data prefix before PHY packet
         speed_OK[i] = (speed <= max_peer_speed[i]);
         if (speed_OK[i])
            portTspeed(i, speed);      // Almost always S100
      } else if (disable_notify[i])
         portT(signal_port = i, TX_DISABLE_NOTIFY);
      else if (suspend[i])
         portT(signal_port = i, TX_SUSPEND);
      else {
         portT(i, TX_DATA_PREFIX);     // Send data prefix
         speed_OK[i] = (speed <= max_peer_speed[i]);
         if (speed_OK[i])
            portTspeed(i, speed);      // Receiver can accept, send speed intentions
      }
   }
   wait_time(SPEED_SIGNAL_LENGTH);
   for (i = 0; i < NPORT; i++)
      if (active[i])
         portTspeed(i, S100);          // Go back to normal signal levels
   wait_time(DATA_PREFIX_HOLD);        // Finish data prefix
   signaled = (signal_port != NPORT);
}

Table 7-20 — Data transmit actions (Sheet 2 of 2)
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Ending a data transmission requires sending extra bits (known as “dribble bits”) which flush the last data bit through the
receiving circuit. The number of dribble bits required varies with the transmission speed: one, three or seven extra bits for
S100, S200 and S400, respectively. An extra bit is required to put the two signals TPA and TPB into the correct state; the
value of the bit depends upon whether the bus is being held (PH_DATA.request of DATA_PREFIX) or not
(PH_DATA.request of DATA_END):

NOTE—This algorithm works to force the ending port state to TX_DATA_PREFIX or TX_DATA_END and relies on two
characteristics of packet transmission: there are an even number of bits between the beginning and the end of a packet and a packet
starts with tx_strobe at 0 and tx_data at 1. Thus, when stop_tx_packet is called the port state is either 01 or 10. If the
desired port state is 01 (TX_DATA_PREFIX), this algorithm sets port state to 11 for one bit time and then to 01. If the desired ending
state is 10 (TX_DATA_END), the port state sequence is 00 followed by 10.

7.10.2.2 Data reception and repeat

Data reception for the cable environment physical layer has three major functions: decoding the data-strobe signal to
recover a clock, synchronizing the data to a local clock for use by the link layer, and repeating the synchronized data out
all other connected ports. This process can be described as two routines communicating via a small FIFO:

Table 7-22 — Stop data transmit actions

void stop_tx_packet (phyData ending_status, speedCode speed) {
   switch (speed) {
      case S400:        // Pad with six dribble bits
         tx_bit(1);
         tx_bit(1);
         tx_bit(1);
         tx_bit(1);
      case S200:        // Pad with two dribble bits
         tx_bit(1);
         tx_bit(1);
      default:
         break;
   }
   tx_bit((ending_status == DATA_PREFIX) ? 1 : 0); // Penultimate bit...
   wait_event(PH_CLOCK.indication());              // Wait for clock
   if (ending_status == DATA_PREFIX) {
      for (i = 0; i < NPORT; i++)
         if (active[i] && i != receive_port)
            portT(i, TX_DATA_PREFIX);              // ...and the last dribble bit
      wait_time(CONCATENATION_PREFIX_TIME);        // Speed signal after this time
   } else if (ending_status == DATA_END) {
      for (i = 0; i < NPORT; i++)
         if (active[i] && i != receive_port)
            portT(i, TX_DATA_END);
      wait_time(DATA_END_TIME);
   }
}

Table 7-23 — Data reception and repeat actions (Sheet 1 of 2)

static tpSig old_data, old_strobe;           // Memory of last signal sent

// Decode data-strobe stream and load FIFO -- this routine is always running
// (speed code recording is also done here)

void decode_bit (void) {
   repeat {
      if (portRspeed(receive_port) > S100) {
         rx_speed = portRspeed(receive_port);
         signal(SPEED_SIGNAL_RECEIVED);      // Notify start_rx_packet
      }
      new_signal = tpSignals();              // Get signal
      if (new_signal == IDLE)
         signal(IDLE_DETECTED);



P1394a Draft 1.5 High Performance Serial Bus (Supplement)
February 28, 1998

© 1997, 1998 IEEE This is an unapproved standards draft, subject to change 101

Starting data reception requires initializing the data resynchronizer and doing the speed signaling with the sender of the
data. At the same time, the node must start up the transmitting ports by sending a special data prefix signal and repeating
the received speed code. As in the start_tx_packet() function, the node must do the speed signaling exchange for each
transmitting port:

      else if (new_signal == RX_DATA_END)
         signal(DATA_END_DETECTED);
      else if (new_signal == BUS_RESET)
         signal(RESET_DETECTED);
      else {
         new_data = new_signal.TPA;          // Received data is on TPA
         new_strobe = new_signal.TPB;        // Received strobe is on TPB
         if ((new_strobe != old_strobe) || (new_data != old_data)) {
                                             // Either data or strobe changed
            FIFO[fifo_wr_ptr] = new_data;    // Put data in FIFO
            fifo_wr_ptr = ++fifo_wr_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
            signal(DATA_STARTED);            // Signal rx_bit to start
         }
         old_strobe = new_strobe;
         old_data = new_data;
      }
   }
}

// Unload FIFO and repeat data (but suppress dribble bits!)

void rx_bit(dataBit *rx_data, boolean *end_of_data) {
   int i;

   wait_event(PH_CLOCK.indication);          // Wait for clock
   if ((fifo_wr_ptr + FIFO_DEPTH - fifo_rd_ptr) % FIFO_DEPTH) <= rx_dribble_bits)   // FIFO empty?
      *end_of_data = TRUE;                   // If so, set flag
   else {
      *end_of_data = FALSE;                  // If not, clear flag...
      *rx_data = FIFO[fifo_rd_ptr];          // ... and get data bit
      fifo_rd_ptr = ++fifo_rd_ptr % FIFO_DEPTH; // Advance or wrap FIFO pointer
      tx_bit(*rx_data);                      // Repeat the data bit
   }
}

Table 7-24 — Start data reception and repeat actions (Sheet 1 of 2)

void start_rx_packet () {           // Send data prefix and do speed signaling
   int event, i;

   arb_timer = 0;                            // Timer in case there’s no speed signal
   fifo_rd_ptr = fifo_wr_ptr = 0;            // Reset data resynch buffer
   portT(receive_port, IDLE);                // Turn off grant, get ready to receive
   for (i = 0; i < NPORT; i++)
      if (active[i] && i != receive_port)
         portT(i, TX_DATA_PREFIX);           // Send data prefix out repeat ports
   while (   arb_timer < SPEED_SIGNAL_LENGTH + DATA_PREFIX_HOLD   // Guarantee times for other PHY’s...
          && ((event = test_event(SPEED_SIGNAL_RECEIVED)) == 0)   // ...or wait for speed signal
      ;
   if (event == 0) {                         // Speed signal was not observed
      event = wait_event(  SPEED_SIGNAL_RECEIVED | DATA_STARTED   // Await normal start of packet...
                         | IDLE_DETECTED | DATA_END_DETECTED | RESET_DETECTED);  // ...or lack of data
      if (((event & (IDLE_DETECTED | DATA_END_DETECTED | RESET_DETECTED)) != 0)
         return;                             // There is no incoming packet
   }
   tx_speed = rx_speed;                      // Get speed of packet to repeat
   if (rx_speed == S100)
      rx_dribble_bits = 2;                   // Need for FIFO empty test
   else

Table 7-23 — Data reception and repeat actions (Sheet 2 of 2)
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The value of all dribble bits, except for the last dribble bit, is unspecified. A PHY shall not depend upon the value of any
dribble bit except the last. The last dribble bit shall be zero when the preceding packet is terminated by DATA_END and
one when terminated by DATA_PREFIX.

NOTE—The description of the FIFO buffer in tables 7-21 and 7-22 assumes that the PHY strips dribble bits from incoming packets and
regenerates them for repeated packets. Alternate implementations, e.g., one which repeats dribble bits, may be valid so long as no
dribble bits are transferred to the link.

7.10.3 Arbitration

The cable environment supports the immediate, priority, isochronous and fair arbitration classes. Immediate arbitration is
used to transmit an acknowledge immediately after packet reception; the bus is expected to be available. Priority arbitra-
tion is used by the root for cycle start requests or may be used by any node to override fair arbitration. Isochronous arbi-
tration is permitted between the time a cycle start is observed and the subaction gap that concludes an isochronous period;
isochronous arbitration commences immediately after packet reception. Fair arbitration is a mechanism whereby a PHY
succeeds in winning arbitration only once in the interval between arbitration reset gaps.

Some of these arbitration classes may be enhanced as defined by this supplement. Ack-accelerated arbitration permits a
PHY to arbitrate immediately following an observed acknowledge packet; this enhancement can reduce the arbitration
delay by a subaction gap time. Fly-by arbitration permits a transmitted packet to be concatenated to the end of a packet
for which no acknowledge is permitted: acknowledge packets themselves or isochronous packets. A PHY shall not use
fly-by arbitration to concatenate an S100 packet after any packet of a higher speed.

Cable arbitration has two parts: a three phase initialization process (bus reset, tree identify and self identify) and a normal
operation phase. Each of these four phases is described using a state machine, state machine notes and a list of actions and
conditions. The state machine and the list of actions and conditions are the normative part of the specification. The state
machine notes are informative.

      rx_dribble_bits = (rx_speed == S200) ? 4 : 8;
   if ((event & SPEED_SIGNAL_RECEIVED) != 0) {  // Repeat the speed signal (if it was observed)
      for (i = 0; i < NPORT; i++)
         if (active[i] && i != receive_port) {
            speed_OK[i] = (tx_speed <= max_peer_speed[i]);
            if (speed_OK[i])
               portTspeed(i, tx_speed);      // Receiver can accept, send speed intentions
         }
      wait_time(SPEED_SIGNAL_LENGTH);
      for (i = 0; i < NPORT; i++)
         if (active[i] && i != receive_port)
            portTspeed(i, S100);             // Go back to normal signal levels
      wait_time(DATA_PREFIX_HOLD);           // Finish data prefix
      event = wait_event(  DATA_STARTED      // Wait for decoder to start...
                         | DATA_END_DETECTED | IDLE_DETECTED | RESET_DETECTED);  // ...or error
   }
   if (event == DATA_STARTED)                // Actually receiving a packet?
      for (i = 0; i < 2 * rx_dribble_bits - 1; i++)   // Buffer enough bits to allow for variation
         wait_event(PH_CLOCK.indication);    // in clock frequencies (same value as for dribble
                                             // bits) and for the dribble bits themselves
}

Table 7-24 — Start data reception and repeat actions (Sheet 2 of 2)
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7.10.3.1 Bus reset

The bus reset process starts when a bus reset signal is recognized on an active port or generated locally. Its purpose is to
guarantee that all nodes propagate the reset signal. This supplement defines two types of bus reset, long bus reset (identi-
cal to that specified by IEEE Std 1394-1995) and arbitrated (short) bus reset. The PHY variable reset_time controls
the length of the bus reset generated or propagated.

7.10.3.1.1 Bus reset state machine notes

Transition All:R0a. This is the entry point to the bus reset process if the PHY experiences a power reset. On power reset,
PHY register values and internal variables are set as specified in this section; in particular all ports are marked discon-
nected. A solitary node transitions through the reset, tree identify and self-identify states and enters A0: Idle as the root
node.

Transition All:R0b. This is the entry point to the bus reset process if the PHY senses BUS_RESET on any connected
port’s arbitration signal lines (see table 4-28 in IEEE Std 1394-1995).

Transition All:R0c. This is the entry point to the bus reset process if this node is initiating the process. This happens
under the following conditions:

1) Serial Bus management makes a PH_CONTROL.request that specifies a long reset;

2) The PHY detects a disconnect on its parent port; or
3) The PHY stays in any state (except the idle state A0: Idle, T0: Tree-ID Start or a state that has an explicit time-out)

for longer than MAX_ARB_STATE_TIME.

With the exception of the last condition, the initiation of a bus reset cannot occur until a state’s actions have been com-
pleted.

State R0:Reset Start. The node sends a BUS_RESET signal whose length is governed by reset_time. In the case of
a standard bus reset, this is long enough for all other bus activity to settle down (RESET_TIME is longer than the worst
case packet transmission plus the worst case bus turn-around time). SHORT_RESET_TIME for an arbitrated (short) bus
reset is significantly shorter since the bus is already in a known state following arbitration.

Transition R0:R1. The node has been sending a BUS_RESET signal long enough for all its connected neighbors to
detect it.

Figure 7-16 — Bus reset state machine

R1: Reset Wait
reset_wait_actions()

arb_timer >= reset_time

R0: Reset Start
reset_start_actions()

initiated_reset = TRUE
reset_time = RESET_TIME

reset_detected()

initiated_reset = FALSE

Arbitration state time-out
|| ibr

|| PH_CONTROL.request(Reset)

arb_timer >= reset_time + RESET_WAIT

All:R0b

All:R0c

R0:R1

R1:R0

to T0:reset_complete()
R1:T0 Tree-ID Start

reset_time = RESET_TIME

reset_time = 0;
arb_timer = 0;

Power reset

initiated_reset = TRUE
reset_time = RESET_TIME

All:R0a

TX:R0from TX: Transmit 



High Performance Serial Bus (Supplement) P1394a Draft 1.5
February 28, 1998

104 This is an unapproved standards draft, subject to change © 1997, 1998 IEEE

State R1:Reset Wait. The node sends out IDLEs, waiting for all its active ports to receive IDLE or
RX_PARENT_NOTIFY (either condition indicates that the connected PHYs have left their R0 state).

Transition R1:R0. The node has been waiting for its ports to go idle for too long (this can be a transient condition caused
by multiple nodes being reset at the same time); return to the R0 state again. This time-out period is a bit longer than the
R0:R1 time-out to avoid a theoretically possible oscillation between two nodes in states R0 and R1.

Transition R1:T0. All the connected ports are receiving IDLE or RX_PARENT_NOTIFY (indicating that the connected
PHYs are in reset wait or starting the tree ID process).

7.10.3.1.2 Bus reset actions and conditions

Table 7-25 — Bus reset actions and conditions (Sheet 1 of 3)

boolean connection_in_progress[NPORT];    // Not referenced outside of the reset state machines

void connection_status() {          // Continuously monitor port status in all states
   timer bias_timer;                // Timer for bias filter
   boolean filter_bias[NPORT];      // TRUE when applying hysteresis to bias_detect crivuit
   int active_ports = 0, i, suspended_ports = 0;

   isolated_node = TRUE;            // Remains TRUE if no active port(s) found
   for (i = 0; i < NPORT; i++) {
      if (active[i]) {
         active_ports++;            // Necessary to deduce boundary node status
         isolated_node = FALSE;     // ALL ports must be inactive at an isolated node
      } else if (connected[i] && !disabled[i])
         suspended_ports++;         // Other part of boundary node definition
      boundary_node = (active_ports > 0 && suspended_ports > 0);
   }
   for (i = 0; i < NPORT; i++) {
      if (bias_filter[i]) {
         if (bias_detect[i] == bias[i])   // Has bias detect changed since timer started?
            bias_timer = 0;            // If so, restart the filtering timer
         else if (bias_timer >= BIAS_FILTER_TIME)
            bias_filter[i] = FALSE;    // Done filtering
            bias[i] = bias_detect[i];  // Confirm new value in PHY register bit
         }
      } else if (bias_detect[i] != bias[i]) {   // Detected bias differs from reported bias?
         bias_filter[i] = TRUE;        // Yes, start a filtering period
         bias_timer = 0;
      }
      if (connection_in_progress[i]) {
         if (!connect_detect[i])
            connection_in_progress[i] = FALSE;  // Lost attempted connection
         else if (connect_timer >= CONNECT_TIMEOUT) {
            connection_in_progress[i] = FALSE;
            connected[i] = TRUE;    // Confirmed connection
         }
      } else if (!connected[i]) {
         if (connect_detect[i]) {   // Possible new connection?
            connect_timer = 0;      // Start connect timer
            connection_in_progress[i] = TRUE;
         }
      } else if (connect_detect_valid[i] && !connect_detect[i]) {
         connected[i] = FALSE;      // Detect disconnect instantaneously
         if (int_enable[i] && !port_event) {
            port_event = TRUE;
            if (link_active && LPS)
               PH_EVENT.indication(INTERRUPT);
            else
               PH_EVENT.indication(LINK_ON);
         }
      }
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   }
}

boolean reset_detected() {          // Qualify BUS_RESET with port status / history
   int i;

   if (PHY_state == R0 || PHY_state == R1)   // Ignore while in reset states themselves
      return(FALSE);
   for (i = 0; i < NPORT; i++)
      if (disabled[i])              // Ignore completely if disabled
         continue;
      else if (bias[i] && portR(i) == BUS_RESET)   // More than 20 ns (transient DS == 11)
         if (connection_in_progress[i]) {
            reset_time = 0;
            if (isolated_node)
               reset_time = SHORT_RESET_TIME;
            else if (connect_timer >= RESET_DETECT)
               reset_time = RESET_TIME;
            if (reset_time != 0) {
               connection_in_progress[i] = FALSE;
               connected[i] = TRUE
               return(TRUE);
            }
         } else if (active[i]) {
            reset_time = (PHY_state == RX) ? SHORT_RESET_TIME : RESET_TIME;
            return(TRUE);
         } else if (resume[i]) {
            reset_time = (boundary_node) ? RESET_TIME : SHORT_RESET_TIME;
            return(TRUE);
         }
   return(FALSE);
}

void reset_start_actions() {     // Transmit BUS_RESET for reset_time on all ports
   int i;

   root = FALSE;
   if (isolated_node)
      force_root = FALSE;        // No point in waiting to become root if isolated
   PH_EVENT.indication(BUS_RESET_START);  // Optional upon reentry to R0 from R1
   ibr = isbr = FALSE;           // Don’t replicate resets!
   phy_response = ping_response = FALSE;  // Invalidate stale information
   breq = NO_REQ;                // Discard any and all link requests for the bus
   children = physical_ID = 0;
   if (!bus_initialize_active) {
      bus_initialize_active = TRUE:
      if (gap_count_reset_disable)  // First reset since setting gap_count?
         gap_count_reset_disable = FALSE;  // If so, leave it as is and arm it for next
      else
         gap_count = 0x3F;          // Otherwise, set it to the maximum
   }
   for (i = 0; i < NPORT; i++) {
      if (active[i])             // For active ports, propagate appropriate signal
         portT(i, BUS_RESET);
      else if (bias[i] && resume[i])
         portT(i, BUS_RESET);    // Also propagate on resuming ports
      else                       // Ignore all other ports
         portT(i, IDLE);
      child[i] = FALSE;
      child_ID_complete[i] = FALSE;
      max_peer_speed[i] = S100;  // Reset default speed for all ports
   }
   arb_timer = 0;                // Start timer
}

Table 7-25 — Bus reset actions and conditions (Sheet 2 of 3)
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7.10.3.2 Tree identify

The tree identify process configures the bus into a tree with a singular root node and labels each node’s active ports as
connected either to the node’s parent or to one of its children.

NOTE—This state machine does not include bus reset if it occurs during tree ID, since the state diagram would be difficult to
comprehend. See the All:R0 transitions in figure 7-16.

void reset_wait_actions() {      // Transmit IDLE
   int i;

   for (i = 0; i < NPORT; i++)
      portT(i, IDLE);
   arb_timer = 0;                // Restart timer
}

boolean reset_complete() {       // TRUE when all ports idle or in tree-ID
   int i;

   for (i = 0; i < NPORT; i ++)
      if (active[i] && (portR(i) != IDLE) && (portR(i) != RX_PARENT_NOTIFY))
         return(FALSE);
   rx_speed = S100;              // For leaf node’s self-ID packet(s)
   return(TRUE);                 // Transition to tree identify
}

Figure 7-17 — Tree ID state machine

Table 7-25 — Bus reset actions and conditions (Sheet 3 of 3)
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7.10.3.2.1 Tree ID state machine notes

State T0: Tree-ID Start. In this state, a node waits up to a CONFIG_TIMEOUT period to receive the
RX_PARENT_NOTIFY signal from at least all but one of its active ports. When RX_PARENT_NOTIFY is observed,
that port is marked as a child port.

Transition T0:T0. A node stuck in this state waiting for a RX_PARENT_NOTIFY on more than one port means that the
user has configured the bus in a loop. This error condition prevents completion of the tree identify process.

Transition T0:T1. If a node detects the RX_PARENT_NOTIFY signal on all of its ports, or all but one of its ports, it
knows it is either the root or a branch; it can start the handshake process with its children. Leaf nodes (those with only
one connected port) or root nodes (RX_PARENT_NOTIFY on all ports) take this transition immediately. If the force_root
flag is set, the test for the “all but one port” condition is delayed long enough that all other nodes on the bus will have
transitioned at least to state T1 so all the ports should then be receiving the RX_PARENT_NOTIFY signal (this extra
delay is the FORCE_ROOT_TIMEOUT value).

State T1: Child Handshake. All ports that have been labled as child ports transmit the TX_CHILD_NOTIFY signal.
This allows the nodes attached to this node’s child port(s) to transition from T2 to S0. Leaf nodes have no children, so
they exit this state immediately via transition T1:T2. If all ports are labeled as child ports, then the node knows it is the
root.

Transition T1:T2. When all of a node’s children stop sending TX_PARENT_NOTIFY, it then observes the
RX_CHILD_HANDSHAKE signal on all of its child ports. It then knows they have all transitioned to the self-ID start
state, so the node can now handshake with its own parent.

State T2: Parent Handshake. At this point, a node is waiting to receive RX_PARENT_HANDSHAKE signal (the result
of the node sending TX_PARENT_NOTIFY and its parent sending TX_CHILD_NOTIFY). This step is bypassed if the
node is root (receiving RX_PARENT_NOTIFY on all connected ports). Another way this state can be exited is if it
receives the RX_ROOT_CONTENTION signal from its parent.

Transition T2:S0. When the node receives the RX_PARENT_HANDSHAKE signal, it starts the self-ID process by send-
ing the IDLE signal (see State S0: Self-ID Start, below). It also takes this transition if it is root, since it doesn’t have a
parent.

Transition T2:T3. If a node receives a RX_PARENT_NOTIFY signal on the same port that it is sending a
TX_PARENT_NOTIFY signal, the merged signal is called RX_ROOT_CONTENTION. This can only happen for a
single pair of nodes if each bids to make the other node its parent.

State T3: Root Contention. At this point, both nodes back off by sending an IDLE signal, starting a timer, and picking a
random bit. If the random bit is one, the node waits longer than if it is a zero. When the timer has expired, the node sam-
ples the contention port once again.

Transition T3:T2. If a node receives an IDLE signal on its proposed parent port at the end of the delay, it once again
sends the TX_PARENT_NOTIFY signal. If the other node is taking longer it takes the T3:T1 transition and allows this
node to exit state T2 via the self-ID start path. Otherwise the two nodes again see the RX_ROOT_CONTENTION signal
and repeat the root contention process with a new set of random bits..

Transition T3:T1. If a node receives a RX_PARENT_NOTIFY signal on the proposed parent port at the end of the delay
it means the other node has already transitioned to state T2, so this node returns to state T1 and becomes the root.
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7.10.3.2.2 Tree ID actions and conditions

7.10.3.3 Self identify

The self identify process has each node uniquely identify itself and broadcast its characteristics to any management ser-
vices.

Table 7-26 — Tree ID actions and conditions

void child_handshake_actions() {
   int i;

   root = TRUE;                  // Remains TRUE if all the ports are child ports
   for (i = 0; i < NPORT; i++)
      if (active[i])             // Only the connected, active ports participate
         if (child[i])
            portT(i, TX_CHILD_NOTIFY);    // Tell peer PHY, “You are my child”
         else {
            portT(i, TX_PARENT_NOTIFY);   // Ask peer PHY, “Please be my parent”
            parent_port = i;              // Only one parent port possible
            root = FALSE;                 // Tentative---see root contention
         }
}

boolean child_handshake_complete() {   // TRUE once all active children are in S0: Self ID Start
   int i;

   for (i = 0; i < NPORT; i++)
      if (active[i] && child[i] && portR(i) != RX_CHILD_HANDSHAKE)
         return(FALSE);                // One as yet uncompleted handshake...
   return(TRUE);                       // All child ports have finished their handshakes
}

void root_contend_actions() {
   int i;

   contend_time = (random_bool() ? ROOT_CONTEND_SLOW : ROOT_CONTEND_FAST);
   for (i = 0; i < NPORT; i++)
      if (active[i] && child[i])    // Only the connected, active ports matter
         portT(i, TX_CHILD_NOTIFY); // Continue to tell peer PHY, “You are my child”
      else
         portT(i, IDLE);            // Withdraw “Please be my parent” request
   arb_timer = 0;                   // Restart arbitration timer
}

void tree_ID_start_actions() {
   int i;

   arb_timer = 0;                // Start timer (to detect loop)
   do {
      children = 0;              // Count the kids afresh on each loop
      for (i = 0; i < NPORT; i++)
         if (!active[i]) {       // Child if disabled, disconnected or suspended
            child[i] = TRUE;
            children++
         } else if (portR(i) == RX_PARENT_NOTIFY) {
            child[i] = TRUE;     // Child if other PHY asks us to be the parent
            children++
         }
   } while (children < NPORT - 1);
}
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7.10.3.3.1 Self ID state machine notes

State S0: Self ID Start. At the start of the self-ID process, the PHY is waiting for a grant from its parent or the start of a
self-ID packet from another node. This state is also entered whenever a node is finished receiving a self-ID packet and all
its children have not yet finished their self identification.

Transition S0:S1. If a node is the root, or if it receives a RX_SELF_ID_GRANT signal from its parent, it enters the Self-
ID Grant state.

Transition S0:S2. If a node receives a RX_DATA_PREFIX signal from its parent, it knows that a self-ID packet is
coming from a node in another branch in the tree.

Figure 7-18 — Self-ID state machine
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State S1: Self-ID Grant. This state is entered when a node is given permission to send a self-ID packet. If it has any uni-
dentified children, it sends a TX_GRANT signal to the lowest numbered of those. All other connected ports are sent a
TX_DATA_PREFIX signal to warn them of the start of a self-ID packet.

Transition S1:S2. When the PHY receives a RX_DATA_PREFIX signal  from its lowest numbered unidentified child, it
enters the Self-ID Receive state.

Transition S1:S4. If there are no more unidentified children, it immediately transitions to the Self-ID Transmit state.

State S2: Self-ID Receive. As data bits are received from the bus they are passed on to the link layer as PHY data indi-
cations. This process is described in clause 4.4.1.2 of IEEE Std 1394-1995. Note that multiple self-ID packets may be
received in this state. The parent PHY must also monitor the received speed signal whenever RX_IDENT_DONE is
received from the child. Because of resynchronization delays in repeating the packet, the parent PHY may not complete
retransmission of the packet data and data end signal for up to 144 ns after the start of the RX_IDENT_DONE signal.
Since the child sends its speed signal for no more than 120 ns from the start of the RX_IDENT_DONE signal, the parent
could miss the speed signal from the child if it entered S3 before completing a speed signal sample.

Transition S2:S0. When the receive port goes IDLE, gets a RX_SELF_ID_GRANT or observes RX_DATA_PREFIX for
a unconcatenated packet it enters the Self-ID Start state to continue the self-ID process for the next child. The last case
guards against a possible failure to observe IDLE.

Transition S2:S2. Multiple self-ID packets are received by the PHY and self_ID_receive_actions reinvoked for each one.

Transition S2:S3. If the PHY gets an RX_IDENT_DONE signal from the receiving port, it flags that port as identified
and starts sending the speed capabilities signal. It also starts the speed signaling timer and sets the port speed to the S100
rate.

State S3: Send Speed Capabilities. If a node is capable of sending data at a higher rate that S100, it transmits on the
receiving child port its speed capability signals as defined in clause 4.2.2.3 of IEEE Std 1394-1995 for a fixed duration
SPEED_SIGNAL_LENGTH. The parent PHY must also monitor the received speed-signal whenever RX_IDENT_DONE
is received from the child.

Transition S3:S0. When the speed signaling timer expires, any signals sent by the child have been latched, so it is safe to
continue with the next child port.

State S4: Self-ID Transmit. At this point, all child ports have been flagged as identified, so the PHY can now send its
own self-ID packet (see clause 7.5) using the process described in clause 4.4.1.1 of IEEE Std 1394-1995. When a non-
root node is finished, it sends a TX_IDENT_DONE signal while simultaneously transmitting a speed capability signal (as
defined in clause 4.2.2.3 of IEEE Std 1394-1995) to its parent and IDLE to its children. The speed capability signal is
transmitted for a fixed time duration of SPEED_SIGNAL_LENGTH. Simultaneously it monitors the bus for a speed capa-
bility transmission from the parent. The highest indicated speed is recorded as the speed capability of the parent. The root
node just sends IDLE to its children. Note that the children will then enter the Idle state described in the next clause, but
they will never start arbitration since an adequate arbitration gap will never open up until the Self-ID process is completed
for all nodes.

While transmitting the TX_IDENT_DONE signal in the S4 state, the child monitors the received speed-signal from the
parent. The child PHY then transitions to the A0:Idle state when it receives an RX_DATA_PREFIX signal from its parent.
The parent PHY will be in the S2:Self-ID-Receive state to receive the self-ID packet(s) from the child. When the parent
PHY receives an RX_IDENT_DONE signal from the child PHY, the parent transitions to the S3:Send-Speed-Capabilities
state. In the S3 state, the parent transmits a speed-signal for 100-120 ns to indicate its own speed capability, and monitors
the received speed-signal from the child. The highest indicated speed is recorded as the speed capability of the child.
After transmitting its own speed-signal the parent PHY transitions to the S0:Self-ID-Start state.

Transition S4:A0b. The PHY then enters the Idle state described in the next clause when the self-ID packet has been
transmitted and if either of the following conditions are met:
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1) The node is the root. When the root enters the Idle state, all nodes are now sending IDLE signals and the gap 
timers will eventually get large enough to allow normal arbitration to start.

2) The node starts to receive a new self-ID packet (RX_DATA_PREFIX – 10). This will be the self-ID packet
for the parent node or another child of the parent. This event shall cause the PHY to transition immediately
out of A0:Idle into A5:Receive.

7.10.3.3.2 Self-ID actions and conditions

Table 7-27 — Self ID actions and conditions  (Sheet 1 of 3)

boolean all_child_ports_identified; // Set if all child ports have been identified
int lowest_unidentified_child;      // Lowest numbered active child that has not sent its self-ID

void self_ID_start_actions() {
   int i;

   all_child_ports_identified = TRUE;     // Will be reset if any active children are unidentified
   concatenated_packet = FALSE;           // Prepare in case of multiple self-ID packets
   for (i = 0; i < NPORT; i++)
     if (child_ID_complete[i])
        portT(i, TX_DATA_PREFIX);         // Tell identified children to prepare to receive data
     else {
        portT(i, IDLE);                   // Allow parent to finish
        if (child[i] && active[i]) {      // If active child
           if (all_child_ports_identified)
              lowest_unidentified_child = i;
           all_child_ports_identified = FALSE;
        }
     }
}

void self_ID_grant_actions() {
   int i;

   for (i = 0; i < NPORT; i++)
      if (!all_child_ports_identified && (i == lowest_unidentifed_child))
         portT(i, TX_GRANT);        // Send grant to lowest unidentified child (if any)
      else if (active[i])
         portT(i, TX_DATA_PREFIX);  // Otherwise, tell others to prepare for packet
}

void self_ID_receive_actions() {
   int i;

   portT(receive_port, IDLE);             // Turn off grant, get ready to receive
   receive_actions();                     // Receive (and repeat) packet
   if (!concatenated_packet) {            // Only do this on the first self-ID packet
      if (physical_ID < 63)               // Stop at 63 if malconfigured bus
         physical_ID = physical_ID + 1;   // Otherwise, take next PHY address
      for (i = 0; i < NPORT; i++)
         portT(i, IDLE);                  // Turn off all transmitters
   }
}

void self_ID_transmit_actions() {
   int last_SID_pkt = (NPORT + 4) / 8;
   int SID_pkt_number;              // Packet number counter
   int port_number = 0;             // Port number counter
   quadlet self_ID_pkt, ps;

   receive_port = NPORT;            // Indicate that we are transmitting (no port has this number)
   for (SID_pkt_number = 0; SID_pkt_number <= last_SID_pkt; SID_pkt_number++) {
      start_tx_packet(S100);           // Send data prefix and 98.304 Mbit/sec speed code
      PH_DATA.indication(DATA_START, S100);
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      selfID.dataQuadlet = 0;       // Clear all zero fields in self ID packet
      selfID.type = 0b10;
      selfID.phy_ID = physical_ID;
      if (SID_packet_number == 0) { // First self ID packet?
         selfID.L = LPS && Link_active;   // Link active or not?
         selfID.gap_cnt = gap_count;
         selfID.sp = PHY_SPEED;
         selfID.del = PHY_DELAY;
         selfID.c = CONTENDER;
         selfID.pwr = POWER_CLASS;
         selfID.i = initiated_reset;
      } else {
         selfID.seq = 1;            // Indicates second and subsequent packets
         selfID.n = SID_pkt_number - 1;   // Sequence number
      }
      ps = 0;                   // Initialize for fresh group of ports
      while (port_number < ((SID_pkt_number + 1) * 8 - 5)) {    // Concatenate port status
         if (port_number >= NPORT)
            ;                   // Unimplemented
         else if (!active[port_number])
            ps |= 0b01;         // Disabled, disconnected or suspended
         else if (child[port_number])
            ps |= 0b11;         // Active child
         else
            ps |= 0b10;         // Active parent
         port_number++;
         ps <<= 2;              // Make room for next port’s status
      }
      selfID |= ps;
      if (SID_pkt_number == last_SID_pkt) { // Last packet?
         tx_quadlet(selfID);
         tx_quadlet(~selfID);
         stop_tx_packet(TX_DATA_END, S100); // Yes, signal data end
         PH_DATA.indication(DATA_END);
         breq = NO_REQ;         // Cancel pending requests (only fair and priority possible here)
      } else {
         selfID.m = 1;          // Other packets follow, set “more” bit
         tx_quadlet(self_ID_pkt);
         tx_quadlet(~self_ID_pkt);
         stop_tx_packet(TX_DATA_PREFIX, S100);  // Keep bus for concatenation
         PH_DATA.indication(DATA_PREFIX);
      }
   }
   if (!ping_response) {        // Skip if self-ID packet was in response to a ping
      for (port_number = 0; port_number < NPORT; port_number++)
         if (root || port_number != parent_port)
            portT(port_number, IDLE);           // Turn off transmitters to children
         else
            portT(port_number, TX_IDENT_DONE);  // Notify parent that self-ID is complete
      if (!root) {                           // If we have a parent...
         portTspeed(parent_port, PHY_SPEED); // Send speed signal (if any)
         wait_time(SPEED_SIGNAL_LENGTH);
         portTspeed(parent_port, S100);      // Stop sending speed signal
      }
      initiated_reset = FALSE;               // Clear in case of future pings
      PH_EVENT.indication(SELF_ID_COMPLETE, physical_ID, root);  // Register 0
   }
}

Table 7-27 — Self ID actions and conditions  (Sheet 2 of 3)



P1394a Draft 1.5 High Performance Serial Bus (Supplement)
February 28, 1998

© 1997, 1998 IEEE This is an unapproved standards draft, subject to change 113

void tx_quadlet(quadlet quad_data) {               // Send a quadlet...
   int i;

   breq = NO_REQ;                                  // Cancel any request (keep in step with the link)
   for (i = 0; i < 32; i++) {                      // ...a bit at a time
      tx_bit(quad_data & 0x80000000);              // From the most significant downwards
      PH_DATA.indication(quad_data & 0x80000000);  // Copy our own self-ID packet to the link
      quad_data <<= 1;                             // Shift to next bit
   }
}

Table 7-27 — Self ID actions and conditions  (Sheet 3 of 3)
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7.10.3.4 Normal arbitration

Normal arbitration is entered as soon as a node has finished the self identification process. At this point, a simple request-
grant handshake process starts between a node and its parent (and all parents up to the root).

Figure 7-19 — Cable arbitration state machine
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7.10.3.4.1 Normal arbitration state machine notes

State A0: Idle. All inactive nodes stay in the idle state until an internal or external event. All ports transmit the IDLE
arbitration signal. Transitions into this state from states where idle was not being sent reset an idle period timer.

Transition A0:A0. If a subaction gap or arbitration reset gap occurs, the PHY notifies the link layer. In addition, if this is
the first subaction gap after a bus reset it signals the completion of the self-identify process and the PHY notifies the node
controller. The detection of an arbitration reset gap marks the end of a fairness interval; the PHY sets the arbitration
enable flag.

Transition A0:A1. If the PHY has a queued request (other than an immediate request) from its own link or receives an
RX_REQUEST signal from one of its children (and is not the root), it passes the request on to its parent. The arb_OK()
function qualifies asynchronous requests according to the time elapsed since A0: Idle was last entered. In particular,
notice that the test for a subaction gap is performed for a single value (equality), not a greater than comparison. If arbitra-
tion were to be initiated at other times between the detection of a subaction gap and an arbitration reset gap, some nodes
could mistakenly observe an arbitration reset gap.

Transition A0:A2. If, on the other hand, the PHY receives a RX_REQUEST signal from one of its children, has no
queued requests from its own link and is the root, it starts the bus grant process.

Transition A0:A2. If, on the other hand, the PHY receives a RX_REQUEST signal from one of its children, has no
queued requests from its own link and is the root, it starts the bus grant process.

Transition A0:PH. If an extended PHY packet (other than the ping packet) has been received, a response is required.

Transition A0:TX. If the PHY has a queued request and is the root or if the PHY has a queued immediate request (gen-
erated during packet reception if the link layer needs to send an acknowledge), the PHY notifies the link layer that it is
ready to transmit and enters the Transmit state.

Transition A0:S4. In response to the receipt of a PHY “ping” packet, the variable ping_response is set TRUE and a tran-
sition is made to the Self-ID Transmit State to send the self-ID packet(s).

State A1: Request. At this point, the PHY sends a TX_REQUEST signal to its parent and a data prefix to all its con-
nected children. This will signal all children to get ready to receive a packet.

Transition A1:A0. If the PHY receives a RX_GRANT signal from its parent and the requesting child has withdrawn its
request, the PHY returns to Idle state.

Transition A1:A2. If the PHY receives a RX_GRANT signal from its parent and the requesting child is still making a
request, the PHY grants the bus to that child.

Transition A1:RX. If the PHY receives a RX_DATA_PREFIX signal from its parent, then it knows that it has lost the
arbitration process and prepares to receive a packet. If the link layer was making the request, it is notified.

Transition A1:TX. If the PHY receives a RX_GRANT signal from its parent and the link layer has an outstanding
request (asynchronous or isochronous), the PHY notifies the link layer that it can now transmit and enters the Transmit
state.

State A2: Grant. During the grant process, the requesting child is sent a TX_GRANT signal and the other children are
sent a TX_DATA_PREFIX so that they will prepare to receive a packet.

Transition A2:A0. If the requesting child withdraws its request, the granting PHY sees its own TX_GRANT signal
coming back as a RX_REQUEST_CANCEL signal and returns to the Idle state.
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Transition A2:RX. If the data prefix signal is received from the requesting child, the grant handshake is complete and the
node goes into the Receive state.

State PH: PHY Response. When the node has received an extended PHY packet (other than the ping packet) that
requires a response, this state takes the appropriate actions, builds a remote reply or remote confirmation packet and trans-
mits the packet from all active ports. 

Transition PH:A0. After transmitting the PHY response packet, return unconditionally to idle.

State RX: Receive. When the node starts the receive process, it notifies the link layer that the bus is busy and starts the
packet receive process described below. Outstanding fair and priority requests are cancelled—immediately if arbitration
enhancements are globally enabled, otherwise by the receipt of any packet other than an acknowledgement—and the link
will have to reissue them later. Note that the packet received could be a PHY packet (self-ID, link-on or PHY configura-
tion), acknowledge, or normal data packet. PHY configuration and link-on packets are interpreted by the PHY, as well as
being passed on to the link layer. 

Transition RX:A0. If transmitting node stops sending any signals (received signal is ZZ) or if a packet ends normally
when the received signal is RX_DATA_END, the bus is released and the PHY returns to the idle state.

Transition RX:RX. If a packet ends and the received signal is RX_DATA_PREFIX (10), then there may be another
packet coming, so the receive process is restarted.

Transition RX:TX. If fly-by arbitration is enabled and an acknowledge packet ends, a queued fair or priority request may
be granted.

State TX: Transmit. Unless an arbitrated (short) bus reset has been requested, the transmission of a packet starts by the
node sending a TX_DATA_PREFIX and speed signal as described in clause 4.2.2.3 of IEEE Std 1394-1995 for 100 ns,
then sending PHY clock indications to the link layer. For each clock indication, the Link sends a PHY data request. The
clock indication – data request sequence repeats until the Link sends a DATA_END. Concatenated packets are handled
within this state whenever the Link sends at least one data bit followed by a DATA_PREFIX. The arbitration enable flag
is cleared if this was a fair request.

Transition TX:A0. If the link layer sends a DATA_END, the PHY shuts down transmission using the procedure
described in clause 4.4.1.1 of IEEE Std 1394-1995 and returns to the Idle state.

Transition TX:R0. If arbitration has succeeded and the reset_time variable has a nonzero value, there is no packet to
transmit. The PHY transition’s to the Reset start state to commence a short bus reset.

Transition TX:TX. The link is holdng the bus in order to send a concatenated packet. Remain in the transmit state and
restart the transmit process for the next packet.

7.10.3.4.2 Normal arbitration actions and conditions

Table 7-28 — Normal arbitration actions and conditions (Sheet 1 of 3)

int requesting_child;               // Lowest numbered requesting child

boolean fly_by_OK() {                  // TRUE if fly-by acceleration OK

   if (!enab_accel)
      return(FALSE);
   else if (receive_port == parent_port)
      return(FALSE);
   else if (speed == S100 && rx_speed != S100)
      return(FALSE);
   else if (breq == ISOCH_REQ)
      return(TRUE);
   else if (ack && accelerating)
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      return(breq == PRIORITY_REQ || (breq == FAIR_REQ && arb_enable));
   else
      return(FALSE);
}

boolean child_request() {              // TRUE if a child is requesting the bus
   int i;

   for (i = 0; i < NPORT; i++)
      if (active[i] && child[i] && (portR(i) == RX_REQUEST)) {
         requesting_child = i;         // Found a child that is requesting the bus
         return(TRUE);
      }
   return(FALSE);
}

boolean data_coming() {                // TRUE if data prefix is received on any port
   int i;

   for (i = 0; i < NPORT; i++)
      if (active[i] && (portR(i) == RX_DATA_PREFIX)) {
         receive_port = i;             // Remember port for later...
         return(TRUE);                 // Found a port that is sending a data_prefix signal
      }
   return(FALSE);
}

void gap_detect_actions() {

  if (arb_timer >= reset_gap_time) {      // End of fairness interval?
     arb_enable = TRUE;                   // Reenable fair arbitration
     PH_DATA.indication(ARBITRATION_RESET_GAP);  // Alert link
  } else if (arb_timer >= subaction_gap_time) {
     PH_DATA.indication(SUBACTION_GAP);   // Notify link
     if (bus_initialize_active) {         // End of self-identify process for whole bus?
        PH_EVENT.indication(BUS_RESET_COMPLETE);
        bus_initialize_active = FALSE;
     }
  }
}

void idle_actions() {
   int i;

   rx_speed = S100;                 // Default in anticipation of no explicit receive speed code
   for (i = 0; i < NPORT; i++)      // Turn off all transmitters
      portT(i, IDLE);
   wait_time(MIN_IDLE_TIME);        // Do not exit A0: Idle before this minimum has elapsed
}

void request_actions() {
   int i;

   for (i = 0; i < NPORT; i++)
      if (active[i] && child[i] && (own_request || i != requesting_child))
         portT(i, TX_DATA_PREFIX);  // Send data prefix to all non-requesting children
   portT(parent_port, TX_REQUEST);  // Send request to parent
}

boolean arb_OK() {               // TRUE if OK to request the bus
   boolean async_arb_OK = FALSE; // Timing window OK for asynchronous arbitration?

   if (arb_timer < subaction_gap_time + arb_delay)    // Only window for accelerations
      async_arb_OK = enab_accel && accelerating && ack;

Table 7-28 — Normal arbitration actions and conditions (Sheet 2 of 3)
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7.10.3.4.3 Receive actions and conditions

   if (arb_timer >= subaction_gap_time && child_request())
      async_arb_OK = TRUE;       // Small window for stealing a child’s request
   else if (arb_timer == subaction_gap_time + arb_delay)
      async_arb_OK = TRUE;       // Window for first fair request and priority requests
   else if (arb_timer >= arb_reset_gap_time + arb_delay)
      async_arb_OK = TRUE;       // Window for all requests (new fairness interval)
   if (breq == ISOCH_REQ)
      own_request = TRUE;
   else if (breq == PRI_REQ)
      own_request = async_arb_OK;
   else if (breq == FAIR_REQ)
      own_request = async_arb_OK && arb_enable;
   else if (isbr)
      own_request = async_arb_OK;
   else
      own_request = FALSE;
   return(own_request);
}

void grant_actions() {
   int i;

   for (i = 0; i < NPORT; i++)
      if (i == requesting_child)
         portT(i, TX_GRANT);        // Send grant to requesting child
      else if (active[i] && child[i])
         portT(i, TX_DATA_PREFIX);  // Send data prefix to all non-requesting children
}

Table 7-29 — Receive actions and conditions (Sheet 1 of 2)

void receive_actions() {
   unsigned bit_count = 0, i, rx_data;
   boolean end_of_data;
   PHY_packet rx_phy_pkt;

   ack = concatenated_packet = FALSE;
   if (!enab_accel && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
      breq = NO_REQ;                   // Cancel the request
      PH_ARB.confirmation(LOST);       // And let the link know
   }
   PH_DATA.indication(DATA_PREFIX);    // Send notification of bus activity
   start_rx_packet();                  // Start up receiver and repeater
   PH_DATA.indication(DATA_START, rx_speed); // Send speed indication
   do {
      rx_bit(&rx_data, &end_of_data);
      if (!end_of_data) {              // Normal data, send to link layer
         PH_DATA.indication(rx_data);
         if (bit_count < 64)           // Accumulate first 64 bits
            rx_phy_pkt.bits[bit_count] = rx_data;
         bit_count++;
         ack = (bit_count == 8);       // For acceleration, any 8-bit packet is an ack
         if (bit_count > 8 && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
            breq = NO_REQ;             // Fly-by impossible
            PH_ARB.confirmation(LOST); // Let the link know (immediately) on 9th bit
         }
      }
   } while (!end_of_data);
   if (!ack && (breq == FAIR_REQ || breq == PRIORITY_REQ)) {
      breq = NO_REQ;                   // Fly-by impossible
      PH_ARB.confirmation(LOST);       // Advise the link
   }

Table 7-28 — Normal arbitration actions and conditions (Sheet 3 of 3)
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7.10.3.4.4 Transmit actions and conditions

   if (portR(receive_port) == BUS_RESET || portR(receive_port) == IDLE) {  // No data?
      ack = FALSE;      // Disable fly-by acceleration
      return;
   } else if (portR(receive_port) == RX_DATA_END) {  // Unexpected end of data...
      ack = FALSE;      // Disable fly-by acceleration
      for (i = 0; i < NPORT; i++)
         if (active[i] && i != receive_port)
            portT(i, TX_DATA_END);
      wait_time(DATA_END_TIME);
      return;
   }
   switch(portR(receive_port)) {       // Send appropriate end of packet indicator
      case RX_DATA_PREFIX:
         concatenated_packet = TRUE;
         PH_DATA.indication(DATA_PREFIX);    // Concatenated packet coming
         stop_tx_packet(DATA_PREFIX, rx_speed);
         break;

      case RX_DATA_END:
         if (fly_by_OK())
            stop_tx_packet(DATA_PREFIX, tx_speed); // Fly-by concatenation
         else {
            PH_DATA.indication(DATA_END);    // Normal end of packet
            stop_tx_packet(DATA_END, tx_speed);
         }
         break;
   }
   if (bit_count == 64) {              // We have received a PHY packet
      for (i = 0; i < 32; i++)         // Check PHY packet for good format
         if (rx_phy_pkt.bits[i] == rx_phy_pkt.checkBits[i])
            return;                    // Check bits invalid - ignore packet
      decode_phy_packet(rx_phy_pkt);   // Parse valid phy packets
   }
}

Table 7-30 — Transmit actions and conditions (Sheet 1 of 2)

void transmit_actions() {        // Send a packet as link transfers it to the PHY

   int bit_count = 0, i;
   boolean end_of_packet = FALSE;
   phyData data_to_transmit;
   PHY_packet tx_phy_pkt;

   if (breq == FAIR_REQ)         // Just used our one fair request per fairness interval?
      arb_enable = FALSE;        // Yes, clear permission (set again on next reset gap)
   breq = NO_REQ;
   tx_speed = speed;             // Assume speed has been set correctly by link...
                                 // (from PH_ARB.request or concatenated packet speed code)
   receive_port = NPORT;         // Impossible port number ==> PHY transmitting
   start_tx_packet(tx_speed);    // Send data prefix & speed signal
   if (isbr)                     // Avoid phantom packets...
      return;
   PH_ARB.confirmation(WON);     // Signal grant on Ctl[0:1]
   while (!end_of_packet) {
      PH_CLOCK.indication();     // Tell link to send data
      data_to_transmit = PH_DATA.request();     // Wait for data from the link
      switch(data_to_transmit) {
         case DATA_ONE:
         case DATA_ZERO:
            tx_bit(data_to_transmit);
            if (bit_count < 64)                 // Accumulate possible PHY packet

Table 7-29 — Receive actions and conditions (Sheet 2 of 2)
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7.10.3.4.5 PHY response actions and conditions

               rx_phy_pkt.bits[bit_count] = data_to_transmit;
            bit_count++;
            break;

         case DATA_PREFIX:
            end_of_packet = link_concatenation = TRUE;
            stop_tx_packet(DATA_PREFIX, tx_speed); // MIN_PACKET_SEPARATION needs to be
            break;      // guaranteed by stop_tx_packet() and subsequent start_tx_packet()

         case DATA_END:
            end_of_packet = TRUE;         // End of packet indicator
            link_concatenation = FALSE;
            stop_tx_packet(DATA_END, tx_speed);
            break;
      }
   }
   ack = (bit_count == 8);    // Used elsewhere to (conditionally) accelerate
   if (bit_count == 64) {     // We have transmitted a PHY packet
      for (i = 0; i < 32; i++)            // Check PHY packet for good format
         if (tx_phy_pkt.bits[i] == tx_phy_pkt.checkBits[i])
            return;                       // Check bits invalid - ignore packet
      decode_phy_packet(tx_phy_pkt);      // Parse any valid transmitted packet
   }
}

Table 7-31 — PHY response actions and conditions (Sheet 1 of 2)

PHY_packet phy_resp_pkt;                  // Create remote confirmation or reply packet here

void decode_phy_packet(PHY_packet phy_pkt) {
   int i;

   if (phy_pkt.type == 0b10)              // Self-ID packet?
      ;                                   // If so, ignore
   else if (phy_pkt.type == 0b01) {       // Link-on packet?
      if (phy_pkt.phy_ID == physical_ID && !(link_active && LPS))
         PH_EVENT.indication(LINK_ON);
   } else if (phy_pkt.R != 0 || phy_pkt.T != 0) {  // PHY configuration packet?
      if (phy_pkt.R)                      // Set force_root if address matches
         force_root = (phy_pkt.phy_ID == physical_ID)
      if (phy_pkt.T) {                    // Set gap_count regardless of physical ID
         gap_count = phy_pkt.gap_count;
         gap_count_reset_disable = TRUE;
      }
   } else if (phy_pkt.ext_type == 0)      // Ping packet?
      ping_response = (phy_pkt.phy_ID == physical_ID);
   else if ((phy_pkt.ext_type == 1 || phy_pkt.ext_type == 5) && phy_pkt.phy_ID == physical_ID)
      remote_access(phy_pkt.page, phy_pkt.port, phy_pkt.reg);
   else if (phy_pkt.ext_type == 8 && phy_pkt.phy_ID == physical_ID)
      remote_command(phy_pkt.cmnd, phy_pkt.port);
   else if (phy_pkt.ext_type == 0xF)      // Resume packet?
      for (i = 0; i < NPORT; i++)
         if (!active[i] && !disabled[i] && connected[i])
            resume[i] = TRUE;             // Resume all suspended/suspending ports
}

void remote_access(int page, int port, int reg) {  // Current value of remotely read register
   phy_resp_pkt.dataQuadlet = 0;
   phy_resp_pkt.phy_ID = physical_ID;
   phy_resp_pkt.ext_type = (phy_pkt.ext_type == 1) ? 3 : 7;
   phy_resp_pkt.page = page;
   phy_resp_pkt.port = port;

Table 7-30 — Transmit actions and conditions (Sheet 2 of 2)
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   phy_resp_pkt.reg = reg;
   phy_resp_pkt.data = read_phy_reg(page, port, reg);
   phy_response = TRUE;
}

void remote_command(int cmnd, int port) {          // Conditionally execute requested command
   phy_resp_pkt.dataQuadlet = 0;
   phy_resp_pkt.phy_ID = physical_ID;
   phy_resp_pkt.ext_type = 0x0A;
   phy_resp_pkt.port = port;
   phy_resp_pkt.ok = TRUE;
   if (cmnd == 1))               // Disable port
      if (port == receive_port)  // What? Disable the port that received the packet?
         phy_resp_pkt.ok = FALSE;   // No, we’re not going to lock ourselves out...
      else if (active[port])     // Active, TX_DISABLE_NOTIFY to peer PHY first
         disable_notify[port] = TRUE;
      else                       // Otherwise (inactive), just mark disabled
         disabled[port] = TRUE;
   else if (cmnd == 2)           // Suspend port
      if (!active[port] || resume_in_progress() || suspend_in_progress())
         phy_resp_pkt.ok = FALSE;
      else
         suspend[port] = TRUE;
   else if (cmnd == 4)           // Clear fault condition
      fault[port] = FALSE;
   else if (cmnd == 5)           // Enable port
      disabled[port] = FALSE;
   else if (cmnd == 6)           // Resume port
      if (     active[port] || !connected[port] || disabled[port]
            || resume_in_progress() || suspend_in_progress())
         phy_resp_pkt.ok = FALSE;
      else
         resume[port] = TRUE;
   phy_resp_pkt.fault = fault[port];
   phy_resp_pkt.connected = connected[port];
   phy_resp_pkt.bias = bias[port];
   phy_resp_pkt.disabled = disabled[port];
   phy_resp_pkt.cmnd = cmnd;
   phy_response = TRUE;
}

void phy_response_actions() {
   receive_port = NPORT;                  // We are transmitting (no port has this number)
   start_tx_packet(S100);                 // Send data prefix and 98.304 Mbit/sec speed code
   PH_DATA.indication(DATA_START, S100);  // CC: the link (always)
   tx_quadlet(phy_resp_pkt);
   tx_quadlet(~phy_resp_pkt);
   stop_tx_packet(TX_DATA_END, S100);     // Signal data end
   PH_DATA.indication(DATA_END);          // And also inform the link
   if (     phy_resp_pkt.ext_type == 0x0A
         && (disable_notify[phy_resp_pkt.port] || phy_resp_pkt.cmnd == 2)
         && phy_resp_pkt.ok) {
      breq = IMMED_REQ;                   // Bus reset active ports if disable or suspend
      isbr = TRUE;
   } else
      breq = NO_REQ;
   phy_response = FALSE;
}

Table 7-31 — PHY response actions and conditions (Sheet 2 of 2)
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7.10.4 Port connection

The port connection state machines operate independently for each port, i, where i is a positive integer less than NPORT.
While a port is in the active state its arbitration, data transmission, reception and repeat behaviors are specified by the
state machines in clause 7.10.3. When a PHY port is in any state other than active it is permissible for it to lower its
power consumption; the only functional components of a PHY required to be active in these states that shall be active in
all states is are the bias detect and physical connection detect circuits.

One of the critical procedures that is an input to these state machines is connection_status() in table 7-32. This
procedure runs constantly and monitors observed TpBias and, when a port is inactive, the connect detect circuitry. The C
code describes how new connections are debounced and how the bias detection circuit output is filtered before the corre-
sponding Bias bit in the PHY registers is updated.

NOTE—The C code is an imperfect abstraction which does not capture the fact that Bias_Detect shall not be sampled while speed
signalling is active (see 4.2.2.2 in IEEE Std 1394-1995, “Common mode voltage”) nor the implicit requirements for a noise filter (see
4.2.2.6 in IEEE Std 1394-1995, “Noise”).

Figure 7-20 — Port connection state machine
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7.10.4.1 Port connection state machine notes

Transition All:P0. A power reset of the PHY initializes each port as disconnected.

Transition All:P6. The local link may immediately disable a port by setting the Disabled bit to one. This transition may
also be caused by a remote command packet, in which case the port, if active, shall transmit TX_DISABLE_NOTIFY
before the port is disabled.

State P0: Disconnected. The generation of TpBias is disabled and the outputs are in a high-impedance state. The PHY
may place most of the port’s circuitry in a low-power consumption state. The connection detect circuit shall be active
even if other components of the PHY port are in a low-power state.

Transition P0:P1. When a port’s connection detect circuitry signals that its peer PHY port is physically connected, the
PHY port transitions to the resuming state.

State P1: Resuming. The PHY port tests both the connection status and the presence of TpBias to determine if normal
operations may be resumed. If the port is connected, TpBias is present and there are no other active ports, the PHY waits
five seven RESET_DETECT intervals before any state transitions. Otherwise, in the case of a boundary node with one or
more active ports, the PHY waits two three RESET_DETECT intervals before any state transitions. A detected bus reset
overrides either of these waits, otherwise, when the wait elapses the PHY initiates a bus reset.

Transition P1:P0. A resuming PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P1:P2. If the PHY port is both connected, did not fault during the resume handshake and observes TpBias, it
transitions to the active state.

Transition P1:P5. A resuming PHY port that remains connected to its peer PHY port but fails to observe TpBias faults
during the resume handshake transitions to the suspended state. The fault condition is cleared so that subsequent detection
of TpBias may cause the port to resume.

State P2: Active. The PHY port is fully operational, capable of transmitting or receiving and repeating arbitration signals
or clocked data. While the port remains active, the behavior of this port and the remainder of the PHY are subject to the
cable arbitration states specified in clause 7.10.

Transition P2:P3. Upon the loss of bias or the receipt of a PHY remote command packet that sets the suspend variable
to one, the PHY port leaves the active state to start functioning as a suspend initiator. A loss of bias is usually the result
of a physical disconnection or the loss of power to the connected peer PHY port. If the transition is the result of a remote
command packet, the PHY transmits a remote confirmation packet with the ok bit set to one. In the meantime, the suspend
initiator has signaled TX_SUSPEND to its connected peer PHY.

Transition P2:P4. If an active port observes an RX_DISABLE_NOTIFY or RX_SUSPEND signal it becomes a suspend
target and leaves the active state.

State P3: Suspend Initiator. A suspend initiator waits for bias to be zero. If NOTIFY_HOLD BIAS_HANDSHAKE
elapses and the connected peer PHY has not driven TpBias low, the suspend operation has faulted and the Fault bit is set
to one. In either case the suspend initiator disables the generation of first drives TpBias low for BIAS_HANDSHAKE
time and then places the all outputs in a high-impedance state.

Transition P3:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

State P4: Suspend Target. A suspend target sets the suspend variable for all the other active ports, which in turn causes
them to propagate the RX_SUSPEND signal as TX_SUSPEND. In the meantime the suspend target drives its TpBias out-
puts below 0.1 V 0.4 V in order to signal the suspend initiator that RX_SUSPEND was detected. The suspend target then
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waits for TpBias to be driven low, up to a maximum of BIAS_HOLD BIAS. When either the connected peer PHY drives
TpBias low or a BIAS_HANDSHAKE time-out expires (whichever occurs first), the suspend target disables the genera-
tion of TpBias and places the outputs in a high-impedance state.

Transition P4:P5. Upon completion of the actions associated with this state, the PHY port unconditionally transistions to
the suspended state.

State P5: Suspended. The PHY may place most of the port’s circuitry in a low-power consumption state. The connection
detect circuit shall be active even if other components of the PHY port are in a low-power state.

Transition P5:P0. A suspended PHY port that loses its physical connection to its peer PHY port transitions to the discon-
nected state.

Transition P5:P1. Either of two conditions cause a suspended PHY port to transition to the resuming state: a) a nonzero
value for the port’s resume variable or b) the detection of bias if the port’s Fault bit is zero. A port’s resume variable may
be set indirectly as the result of the resumption of other PHY ports.

Transition P5:P5. If the port entered the suspended state in a faulted condition (i.e., TpBias was still present), the fault is
cleared if and when TpBias is removed by the peer PHY.

State P6: Disable. While disabled, the PHY may place most of the port’s circuitry in a low-power consumption state. The
connection detect circuit shall be active even if other components of the PHY port are in a low-power state.

Transition P6:P0. If the Disabled bit is zero and the PHY port is not physically connected to its peer PHY port, it transi-
tions to the disconnected state.

Transition P6:P5. Otherwise, if the Disabled bit is zero and the PHY port is connected it transitions to the suspended
state.
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7.10.4.2 Port connection actions and conditions

Table 7-32 — Port connection actions and conditions (Sheet 1 of 3)

void activate_connect_detect(int i, int delay) {
   tpBias(i, 0);                    // Drive TpBias low
   if (delay != 0) {
      connect_timer = 0;
      while (connect_timer < delay) // Enforce minimum hold time for TpBias low
         ;
   }
   while (!connect_detect[i])       // Wait for connect_detect circuit to stabilize
      ;
   connect_detect_valid[i] = TRUE;  // Signal OK to connection_status()
   tpBias(i, Z);                    // Release TpBias
}

void connection_status() {          // Continuously monitor port status in all states
   timer bias_timer;                // Timer for bias filter
   boolean bias_filter[NPORT];      // TRUE when applying hysteresis to bias_detect circuit
   int active_ports = 0, i, suspended_ports = 0;

   isolated_node = TRUE;            // Remains TRUE if no active port(s) found
   for (i = 0; i < NPORT; i++) {
      if (active[i]) {
         active_ports++;            // Necessary to deduce boundary node status
         isolated_node = FALSE;     // ALL ports must be inactive at an isolated node
      } else if (connected[i] && !disabled[i])
         suspended_ports++;         // Other part of boundary node definition
      boundary_node = (active_ports > 0 && suspended_ports > 0);
   }
   for (i = 0; i < NPORT; i++) {
      if (bias_detect[i] == FALSE) {
         bias_filter[i] = FALSE;    // Cancel filtering (if in progress)
         bias[i] = FALSE;           // Report immediately
      } else if (bias_filter[i]) {  // Filtering positive bias transition?
         if (bias_timer >= BIAS_FILTER_TIME) {
            bias_filter[i] = FALSE; // Done filtering
            bias[i] = TRUE;         // Confirm new value in PHY register bit
         }
      } else if (bias_detect[i] != bias[i]) {   // Detected bias differs from reported bias?
         bias_filter[i] = TRUE;     // Yes, start a filtering period
         bias_timer = 0;
      }
      if (connection_in_progress[i]) {
         if (!connect_detect[i])
            connection_in_progress[i] = FALSE;  // Lost attempted connection
         else if (connect_timer >= CONNECT_TIMEOUT) {
            connection_in_progress[i] = FALSE;
            connected[i] = TRUE;    // Confirmed connection
         }
      } else if (!connected[i]) {
         if (connect_detect[i]) {   // Possible new connection?
            connect_timer = 0;      // Start connect timer
            connection_in_progress[i] = TRUE;
         }
      } else if (connect_detect_valid[i] && !connect_detect[i]) {
         connected[i] = FALSE;      // Detect disconnect instantaneously
         if (int_enable[i] && !port_event) {
            port_event = TRUE;
            if (link_active && LPS)
               PH_EVENT.indication(INTERRUPT);
            else
               PH_EVENT.indication(LINK_ON);
         }
      }
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   }
}

void disabled_actions(int i) {
   if (int_enable[i] && !port_event) {
      port_event = TRUE;
      if (link_active && LPS)
         PH_EVENT.indication(INTERRUPT);
      else
         PH_EVENT.indication(LINK_ON);
   }
   disable_notify[i] = signaled = FALSE;
   disabled[i] = TRUE;
   activate_connect_detect(i, 0);      // Enable the connect detect circuit
}

boolean resume_in_progress() {         // TRUE if any port resuming
   int i;

   for (i = 0; i < NPORT; i++;)
      if (resume[i])
         return(TRUE);
   return(FALSE);
}

void resume_actions(int i) {
   while (suspend_in_progress())       // Let any other suspensions complete
      ;                                // (we’ll resume those ports)
   connect_timer = 0;
   if ((int_enable[i] || resume_int) && !port_event) {
      port_event = TRUE;
      if (link_active && LPS)
         PH_EVENT.indication(INTERRUPT);
      else
         PH_EVENT.indication(LINK_ON);
   }
   connect_detect_valid[i] = FALSE;    // Bias renders connect detect circuit useless
   tpBias(i, 1);                       // Generate TpBias
   if (resume[i] == 0 && !boundary_node)
      for (j = 0; j++; j < NPORT)
         if (!active[j] && !disabled[j] && connected[j])
            resume[j] = TRUE;          // Resume all other suspended ports
   else
      resume[i] = TRUE;                // Guarantee resume_in_progress() returns TRUE
   while (((connect_timer < BIAS_HANDSHAKE) && !bias[i]) || bus_initialize_active)
      ;                                // Wait for peer PHY to generate TpBias
   if (bias[i]) {                      // Connection restored to active state?
      while ((connect_timer < 3 * RESET_DETECT) && !bus_initialize_active)
         ;
      if (!bus_initialize_active) {    // No other node initiated reset?
         if (boundary_node)            // Can we arbitrate?
            isbr = TRUE;               // Yes, don’t wait any longer
         else {
            while ((connect_timer < 7 * RESET_DETECT) && !bus_initialize_active)
               ;                       // Let’s wait a little longer...
            if (!bus_initialize_active)
               ibr = TRUE;             // Sigh! We’ll have to use long reset
         }
      }
   }
   fault[i] = ~bias[i];                // Resume attempt failed if TpBias is absent
   if (fault[i])                       // If so, restore usefulness of connect detect circuit
      activate_connect_detect(i, 0);
   resume[i] = FALSE;                  // Resume attempt complete
}

Table 7-32 — Port connection actions and conditions (Sheet 2 of 3)
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boolean suspend_in_progress() {        // TRUE if any port suspending
   int i;

   for (i = 0; i < NPORT; i++;)
      if (suspend[i])
         return(TRUE);
   return(FALSE);
}

void suspend_initiator_actions(int i) {
   connect_timer = 0;            // Used to debounce bias or for bias handshake
   if (!suspend[i]) {            // Unexpected loss of bias?
      suspend[i] = TRUE;         // Insure suspend_in_progress() returns TRUE
      if (child[i])              // Yes, parent still connected?
         isbr = TRUE;            // Arbitrate for short reset
      else
         ibr = TRUE;             // Transition to R0 for reset
      while (connect_timer < CONNECT_TIMEOUT)
         ;                       // Time for bias to stabilize
   }
   while ((connect_timer < BIAS_HANDSHAKE) && bias[i])
      ;                          // Wait for suspend target to deassert bias
   fault[i] = bias[i]);          // Suspend handshake refused by target?
   activate_connect_detect(i, BIAS_HANDSHAKE);  // Also guarantees handshake timing
}

void suspend_target_actions(int i) {
   int j;

   if (resume_in_progress())     // Other ports resuming?
      resume[i] = TRUE;          // OK, do suspend handshake but resume afterwards
   suspend[i] = TRUE;            // Insure suspend_in_progress() returns TRUE
   if (portR(i) == RX_DISABLE_NOTIFY) {   // Is our peer PHY going away?
      breq = IMMED_REQ;          // Topology change! Reset on other (active) ports
      isbr = TRUE;
   } else if (portR(i) == RX_SUSPEND && !resume[i]) { // Don’t propagate if resume in progress
      for (j = 0; j < NPORT; j++)
         if (active[j])          // Otherwise all active ports become suspend initiators
            suspend[j] = TRUE;
      breq = IMMED_REQ;          // Invoke transmitter to propagate TX_SUSPEND
      isbr = TRUE;               // Alert link that we’re now isolated
   }
   while (portR(i) == RX_DISABLE_NOTIFY || portR(i) == RX_SUSPEND)
      ;                          // Let signals complete before bias handshake
   activate_connect_detect(i, BIAS_HANDSHAKE);
}

void suspended_actions(int i) {
   signaled = suspend[i] = FALSE;
   if (int_enable[i] && !port_event) {
      port_event = TRUE;
      if (link_active && LPS)
         PH_EVENT.indication(INTERRUPT);
      else
         PH_EVENT.indication(LINK_ON);
   }
}

Table 7-32 — Port connection actions and conditions (Sheet 3 of 3)
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8. Asynchronous streams

Asynchronous streams are an extension of IEEE Std 1394-1995 facilities to use an existing primary packet type with dif-
ferent arbitration requirements. As previously defined, packets with a transaction code of A16 were called isochronous
data block packets1 and are subject to the following restrictions:

— An isochronous stream packet is transmitted only during the isochronous period. The isochronous period is con-
trolled by the cycle master, which signals the start of the period with a cycle start packet. The period ends when a
subaction gap is observed, which happens after all isochronous talkers have had a chance to transmit;

— Two resources, bandwidth and a channel number, are allocated from the isochronous resource manager registers
BANDWIDTH_AVAILABLE and CHANNELS_AVAILABLE, respectively; and

— For a given channel number, no more than one talker may transmit an isochronous stream packet with that chan-
nel number each isochronous period.

This extension to IEEE Std 1394-1995 relaxes some of the above requirements in order to create something new: asyn-
chronous stream(s). An asynchronous stream utilizes packets with a transaction code of A16 and is subject to the follow-
ing requirements:

— An asynchronous stream packet shall be transmitted during the asynchronous period, subject to the same arbitra-
tion requirements, including fairness, as other request subactions;

— The channel number shall be allocated from the isochronous resource manager register
CHANNELS_AVAILABLE; and

— Multiple nodes may transmit asynchronous stream packets with the same channel number or the same node may
transmit multiple asynchronous stream packets with the same channel number as often as desired, subject to arbi-
tration fairness.

An advantage of an asynchronous stream is that broadcast and multicast applications that do not have guaranteed latency
requirements may be supported on Serial Bus without the allocation of a valuable resource, bandwidth. An additional
advantage is that asynchronous streams may be easily filtered by contemporary hardware.

1 Throughout this supplement, primary packets with a transaction code of A16 are referred to as stream packets; the arbitration mode
determines whether they are asynchronous or isochronous stream packets. The name “isochronous stream packet” is equivalent to the
IEEE Std 1394-1995 name “isochronous data block packet.”
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8.1 Asynchronous stream packet format

The format of an asynchronous stream packet is identical to that of an isochronous stream packet, as specified by clause
6.2.3.1 of IEEE Std 1394-1995, and illustrated by figure 8-1.

The fields of an asynchronous stream packet shall conform to requirements of this standard and those specified in clause
6.2.4 of IEEE Std 1394-1995.

The data_length field shall specify the length in bytes of the data field in the asynchronous stream packet The number of
bytes in the data field is determined by the transmission speed of the packet and shall not exceed the maximums specified
by table 8-1 (which replaces table 6-4 in clause 6.2.2.3 of IEEE Std 1394-1995).

The tag field shall have a value of zero: unformatted data.

The channel field shall identify the stream and shall be allocated from the isochronous resource manager
CHANNELS_AVAILABLE register.

NOTE—Subsequent to a bus reset, asynchronous stream packets may not be transmitted until the channel number(s) are reallocated.

The tcode field shall have a value of A16. The new name for this transaction code value is stream packet; the context in
which the packet is sent determines whether it is an asynchronous or isochronous stream packet.

The usage of any fields not specified above remains as described by IEEE Std 1394-1995.

Figure 8-1 — Asynchronous stream packet format

Table 8-1—Maximum data payload for asynchronous primary packets

Data rate Maximum payload
(bytes) Comment

S25 128 TTL backplane

S50 256 BTL and ECL backplane

S100 512 Cable base rate

S200 1024

S400 2048

S800 4096

S1600 8192

S3200 16384

channeldata_length tcode sy

header_CRC

data_CRC

zero pad bytes (if necessary)

data field

tag

transmitted last

transmitted first
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8.2 Loose vs. strict isochronous

Although IEEE Std 1394-1995 prohibits the reception of an isochronous stream packet outside of the isochronous period
(strict isochronous), a significant number of contemporary Serial Bus link designs relax this requirement and permit the
reception of an isochronous stream packet at any time (loose isochronous).

This standard removes the IEEE Std 1394-1995 strict isochronous requirement; link designs compliant with this standard
shall receive stream packets (primary packets identified by tcode A16) without regard to whether or not the packet falls
within or without the isochronous period.

NOTE—The reception of isochronous packets at any time is sensible, even without consideration of asynchronous streams. If a cycle
start packet is corrupted and rendered unrecognizable, many applications are able to make valid use of isochronous data that follows so
long as the link permits its reception.
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9. Clarifications and corrigenda

Since the publication of IEEE Std 1394-1995 a number of ambiguities, technical errors and typographical errors have
been identified by implementors and other readers. The impact of most is minor and in many cases a thoughtful reading
of the whole of the standard can lead the reader to the correct interpretation.

This section addresses the more important clarifications and corrigenda in no particular order. Some errors in IEEE Std
1394-1995 were deemed too minor (or their correction too self-evident) to warrant inclusion here.

9.1 Cycle start

The requirements placed upon a cycle master to transmit a cycle start packet are different from the criteria used by recip-
ients to recognize a cycle start packet. The following specifications replace IEEE Std 1394-1995 clause 6.2.2.2.3 in its
entirety. The format of a cycle start packet is shown by figure 9-1.

The tcode field shall be 8.

The source_ID field shall be the node ID of the cycle master that transmits the cycle start packet.

The cycle_time field shall contain the contents of the cycle master’s CYCLE_TIME register (see clause 8.3.2.3.1 of IEEE
Std 1394-1995).

The header_CRC field shall be calculated as specified by clause 6.2.4.15 of IEEE Std 1394-1995.

The cycle master shall signal the start of the isochronous period by transmitting a cycle start packet with the format
defined above. No node except the cycle master shall transmit a cycle start packet.

A cycle start packet shall be recognized if tcode is 8 and the header_CRC is valid; recipients of cycle start packets may
verify the other header fields.

NOTE—The cycle start packet is a write request for data quadlet whose values can be interpreted as a broadcast write to the
CYCLE_TIME register. Although this could be handled in an implementation by the transaction layer and node controller, this standard
assumes that the link layer is responsible for the generation and detection of the start of an isochronous period.

9.2 Read response for data block

This supplement adds an additional requirement to the data_length field specified by clause 6.2.2.3.3 of IEEE Std
1394-1995. When the response code (rcode) is resp_complete, the data_length field in the response packet shall be equal
to the data length specified by the corresponding read request. If data_length is zero no data CRC shall be calculated.

Figure 9-1—Cycle start packet format

cycle_time

zero tcodeFFFF16

F000 020016

F16

header_CRC

transmitted first

transmitted last

FFFF16source_ID
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9.3 Maximum isochronous data payload

Clause 6.2.3.1 of IEEE Std 1394-1995 mandates that the total size of an isochronous stream packet (a primary packet with
a tcode of A16 intended for transmission during the isochronous period) shall not exceed the bandwidth allocated for the
channel. This supplement adds an additional requirement, that the maximum data payload of an isochronous stream
packet is speed-dependent and shall conform to table 9-1.

9.4 Transaction codes (tcode)

Clause 6.2.4.5 of IEEE Std 1394–1995, “Transaction code (tcode)”, defines the meaning of the tcode that identifies pri-
mary packets. This supplement extends the scope of tcode A16 in order to support asynchronous streams and also perma-
nently reserves tcode E16. Table 9-2 below replaces existing table 6-9 in IEEE Std 1394-1995.

Table 9-1—Maximum payload for isochronous stream packets

Data rate Maximum payload
(bytes) Comment

S25 256 TTL backplane

S50 512 BTL or ECL backplane

S100 1024 Cable base rate

S200 2048

S400 4096

S800 8192

S1600 16384

S3200 32768

Table 9-2—Transaction code encoding

Code Header size
(quadlets) Name Comment

0 5 Write request for data quadlet Request subaction, quadlet payload

1 5 Write request for data block Request subaction, block payload

2 4 Write response Response subaction for both write requests types, no payload

3 Reserved

4 4 Read request for data quadlet Request subaction, no payload

5 4 Read request for data block Request subaction, quadlet (data_length) payload

6 5 Read response for data quadlet Response subaction to read request for quadlet, quadlet payload

7 5 Read response for data block Response subaction to read request for block, block payload

8 5 Cycle start Request to start isochronous period, quadlet payload

9 5 Lock request Request subaction, block payload

A16 2 Stream data Asynchronous or isochronous subaction, block payload

B16 5 Lock response Response subaction for lock request, block payload

C16 — Reserved for future standardization.

D16 — Reserved for future standardization.

E16 — Utilized internally by some link designs; not to be standardized

F16 — Reserved for future standardization.
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9.5 Response codes (rcode)

Clause 6.2.4.10 of IEEE Std 1394–1995, “Response code (rcode)”, defines the meaning of the rcode returned in a split
transaction request. The table, identified as table 6-11 in the current standard, is reproduced below for convenience of ref-
erence.

Despite the intended sufficiency of IEEE Std 1394-1995, discussions in a variety of forums have made it clear that the
usage of the response code is subject to interpretation. This supplement clarifies response code usage in ambiguous cases
so as to assure equivalent behavior, and hence interoperability, of link layer, transaction layer and application implemen-
tations from different vendors. The examples given are not exhaustive nor do they illustrate the common usage already
specified by IEEE Std 1394-1995.

9.5.1 resp_complete

Nodes shall respond with resp_complete in the circumstances described below (this is not an exhaustive list, just some
examples as circumstances for which there might be confusion with other response codes):

A write request is received for a writable address that contains read-only bits or fields. The transaction completes success-
fully and the write effects on the read-only bits are as specified in IEEE Std 1394–1995 or the document that describes
the unit architecture. Generally an address is not considered writable if all bits are read-only; see the discussion of
resp_type_error below.

9.5.2 resp_conflict_error

Nodes shall respond with resp_conflict_error in the circumstances described below:

An otherwise valid request packet is received but the resources required to act upon the request are not available. The
requester may reasonably expect the same packet to succeed at some point in the future when the resources are available.
Note that the distinction between resp_conflict_error and ack_busy_X, ack_busy_A or ack_busy_B hinges upon the pos-
sibility of deadlock. The busy acknowledgments are appropriate for transient conditions of expected short duration that
cannot cause a deadlock. On the other hand, resp_conflict_error shall be returned when an end-to-end retry is necessary
to avoid the possibility of deadlock. Deadlocks may arise when a request cannot be queued and blocks a node’s transac-
tion resources.

9.5.3 resp_data_error

Nodes shall respond with resp_data_error in the circumstances described below:

An otherwise valid request packet is received but there is a data CRC error for the data payload.

Table 9-3—Response code encoding

Code Name Comment

0 resp_complete The node has successfully completed the command.

1 to 3 — Reserved for future standardization.

4 resp_conflict_error A resource conflict was detected. The request may be retried.

5 resp_data_error Hardware error, data is unavailable.

6 resp_type_error A field in the request packet was set to an unsupported or incor-
rect value, or an invalid transaction was attempted (e.g., a write 
to a read-only address).

7 resp_address_error The destination offset in the request was set to an address not 
accessible in the destination node.

8 to F16 — Reserved for future standardization.
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For read requests, an otherwise valid packet is received but a hardware error at the node prevents the return of the
requested data. For example, an uncorrectable memory error shall be reported as resp_data_error.

For write or lock requests, an otherwise valid packet is received but a hardware error at the node prevents the updates
indicated by the data payload from initiation or completion.

9.5.4 resp_type_error

Nodes shall respond with resp_type_error in the circumstances described below:

A request packet is received with a valid tcode (transaction code) value but the extended_tcode field value is reserved by
IEEE Std 1394–1995.

NOTE—If a packet is received with a tcode value that is reserved by IEEE Std 1394–1995, the node shall not respond.

A request packet is received with valid tcode and extended_tcode values, but the referenced address does not implement
the indicated request. An example of this is a write request to an address that is entirely read-only (note that this is dis-
tinct from a write request that references read-only bits or fields at an otherwise writable location). Another example is a
transaction whose tcode specifies a lock operation but the destination address supports only read and write operations.

A request packet is addressed to a valid destination_ID, the destination_offset references an address implemented by the
node but the alignment of the destination offset does not match the node’s alignment requirements. For example, a quadlet
register is implemented but cannot respond to a one byte data block request.

9.5.5 resp_address_error

Nodes shall respond with resp_address_error in the circumstances described below:

A request packet is addressed to a valid destination_ID but the destination_offset references an address that is not imple-
mented by the node.

A block request packet is addressed to a valid destination_ID but the combination of the destination_offset and the
data_length reference addresses some of which are not implemented by the node.

9.6 Tag

Clause 6.2.4.12 of IEEE Std 1394–1995, “Tag”, defines the meaning of the tag field transmitted in an isochronous stream
packet. This supplement defines, by reference to IEC 61883/FDIS, one of the previously reserved tag values. Table 9-4
below replaces existing table 6-12 in IEEE Std 1394-1995.

The tag field provides a label, useful to applications, that specifies the format of the payload carried by a stream packet.

Table 9-4—Tag field encoding

Value Meaning

0 Data field format unspecified

1 Data format and sy field specified by 
IEC 61883-1/FDIS

2 Reserved for future standardization

3 Reserved for future standardization
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9.7 Acknowledge codes (ack_code)

Clause 6.2.5.2.2 of IEEE Std 1394–1995, “Acknowledge code (ack_code)”, defines the meaning of the ack_code trans-
mitted in immediate response to a nonbroadcast request or response packet. This supplement defines three new acknowl-
edge codes, ack_address_error, ack_conflict_error and ack_tardy. Table 9-5 below replaces existing table 6-13 in IEEE
Std 1394-1995.

An ack_complete shall not be sent in response to a read or lock request.

Although a resource conflict or an address error in a request packet is usually detected by the transaction or higher appli-
cation layer, there may be circumstances in which the link is capable of detecting these errors within the time permitted
for a unified response to a request subaction. The new acknowledge codes ack_conflict_error and ack_address_error are
defined to provide the same utility as the existing resp_conflict_error and resp_address_error.

The ack_tardy code has been defined to enable low power consumption states for Serial Bus devices. Such a device may
be able to place its link layer in a partially functional state and suspend the transaction and all higher application layers.
The link layer shall be able to recognize nonbroadcast request packets whose destination_ID addresses the suspended
node. Upon recognition of such a packet, the link shall send an ack_tardy and shall initiate the resumption of full link and
transaction layer functionality. The recipient of an ack_tardy may retransmit the request packet in a subsequent fairness
interval. The time required for the link and transaction layers to become fully operational is implementation-dependent.

Table 9-5—Acknowledge codes

Code Name Comment

0 reserved Not to be used in any future Serial Bus standard.

1 ack_complete The node has successfully accepted the packet. If the packet was a request sub-
action, the destination node has successfully completed the transaction and no 
response subaction shall follow.

2 ack_pending The node has successfully accepted the packet. If the packet was a request sub-
action, a response subaction will follow at a later time. This code shall not be 
returned for a response subaction.

3 reserved

4 ack_busy_X The packet could not be accepted. The destination transaction layer may accept 
the packet on a retry of the subaction.

5 ack_busy_A The packet could not be accepted. The destination transaction layer will accept 
the packet when the node is not busy during the next occurrence of retry phase 
A (see clause 7.3.5 in IEEE Std 1394-1995).

6 ack_busy_B The packet could not be accepted. The destination transaction layer will accept 
the packet when the node is not busy during the next occurrence of retry phase B 
(see clause 7.3.5 in IEEE Std 1394-1995).

7 — A16 reserved

B16 ack_tardy The node could not accept the packet because the link and higher layers are in a 
suspended state; the destination node shall restore full functionality to the link 
and transaction layers and may accept the packet on a retransmission in a subse-
quent fairness interval.

C16 ack_conflict_error A resource conflict prevented the packet from being accepted.

D16 ack_data_error The node could not accept the block packet because the data field failed the CRC 
check, or because the length of the data payload did not match the length con-
tained in the data_length field. This code shall not be returned for any packet that 
does not have a data block payload.

E16 ack_type_error A field in the request packet header was set to an unsupported or incorrect value, 
or an invalid transaction was attempted (e.g., a write to a read-only address).

F16 ack_address_error The node could not accept the packet because the destination_offset field in the 
request was set to an address not accessible in the destination node
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NOTE—Request subactions are completed by either an ack_pending and a subsequent response packet or by an acknowledgment other
than ack_pending. At the transaction layer both methods are equivalent and the same criteria shall be used in either case to select the
appropriate acknowledgement or response code. Responses indicated by acknowledge packets are preferred over a separate response
packets, since the former utilizes less Serial Bus bandwidth.

9.8 Priority arbitration for PHY packets and response packets

When transmitting a PHY packet or a response packet, a link may use priority arbitration requests. If the node implements
the PRIORITY_BUDGET register (see clause 9.15), priority requests for PHY packets may count but response packets
shall not count against the node’s priority arbitration budget. A PHY packet is any 64-bit packet whose least significant
32 bits are the one’s complement of the most significant 32 bits. A response packet is an asynchronous primary packet
with a tcode of 2, 6, 7 or B16.

If an ack_busy_X, ack_busy_A or ack_busy_B is received in acknowledgment of a response packet, the node shall not
retransmit the response packet until the next fairness interval.

9.9 Transaction layer services

Section 6 of IEEE Std 1394-1995, “Link layer specification”, in the descriptions of the different types of primary Serial
Bus packets, requires that the transaction codes (tcode) used in response to data requests correspond to the original tcode
of the request. That is, a read response for data quadlet shall be sent only in response to a read request for data quadlet, a
read response for data block shall be sent only in response to a read request for data block and a lock response shall be
sent only in response to a lock request. A close examination of clause 7, “Transaction layer specification”, reveals that
insufficient information is communicated to the transaction layer in order for it to meet this requirement.

The portion of section 7 that describes which tcode the transaction layer shall select for a READ or WRITE request man-
dates, at present, that a quadlet tcode shall be used if the data length of the transaction is four, independent of whether or
not the destination offset is quadlet aligned. This is does not conform to the expectations of most Serial Bus implemen-
tors, namely, that quadlet transactions should be used only if the address is quadlet aligned.

There is also ambiguity in IEEE Std 1394-1995 with respect to the source_ID field transmitted in a response packet. A
request addressed to a node is identified by the destination_ID field and may specify a bus ID of either 3FF16 (the local
bus) or the value present in the most significant ten bits of the addressed node’s NODE_IDS register. In order for the
requester’s transaction label matching between requests and responses to operate correctly, the response’s source_ID shall
be identical to the destination_ID field from the request.

Uniform behavior of transaction layer implementations shall be achieved by conformance to the specifications given
below. Briefly, the specifications:

a) Require that the source node ID in a response packet be equal to the destination node ID from the corresponding
request;

b) Limit the use of quadlet READ and WRITE transactions to the case where the data length is four and the
destination offset is quadlet aligned;

c) Optionally permit the use of block READ and WRITE transactions in the case where the data length is four and
the destination offset is quadlet aligned;

d) Add new parameters to a transaction layer data service so that quadlet responses may be properly generated for
quadlet requests and block responses for block requests; and

e) Emphasize that support for quadlet transactions is mandatory in all Serial Bus implementations but that support
for block transactions is optional.
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9.9.1 Transaction data request (TRAN_DATA.request)

In clause 7.1.2.1, two new parameters are added to the list of parameters communicated to the transaction layer via this
service:

a1) Local bus ID. When TRUE, this indicates that the link shall use 3FF16 as the bus ID component of source_ID;
otherwise the most significant 16 bits of the NODE_IDS register shall be used as source_ID.

a2) Packet format. In the case of READ or WRITE transactions with a data length of four and a quadlet aligned
destination address, this parameter shall govern the type of tcode, quadlet or block, generated by the transaction
layer. This parameter shall have a value of BLOCK TCODE or QUADLET TCODE.

9.9.2 Transaction data response (TRAN_DATA.response)

In clause 7.1.2.4, two new parameters are added to the list of parameters communicated to the transaction layer via this
service:

a1) Local bus ID. When TRUE, this indicates that the link shall use 3FF16 as the bus ID component of source_ID;
otherwise the most significant 16 bits of the NODE_IDS register shall be used as source_ID.

a2) Packet format. In the case of READ or WRITE transactions, this parameter shall indicate the type of tcode,
quadlet or block, received by the transaction layer. This parameter shall have a value of BLOCK TCODE or
QUADLET TCODE.

9.9.3 Sending a transaction request

Clause 7.3.3.1.2, under the heading “State TX1: Send Transaction Request”, describes how the transaction code parameter
(communicated to the link layer via LK_DATA.request) is to be selected. The nonprocedural list that follows the first
paragraph is replaced with:

— Write request for data quadlet, if the transaction type value in the transaction data request is WRITE, the data
length is four, the destination address is quadlet aligned and the packet format value is QUADLET TCODE;

— Write request for data block, if the transaction type value in the transaction data request is WRITE, the data
length is four, the destination address is quadlet aligned and the packet format value is BLOCK TCODE;

— Write request for data block, if the transaction type value in the transaction data request is WRITE and the
data length is not four or the destination address is not quadlet aligned;

— Read request for data quadlet, if the transaction type value in the transaction data request is READ, the data
length is four, the destination address is quadlet aligned and the packet format value is QUADLET TCODE;

— Read request for data block, if the transaction type value in the transaction data request is READ, the data
length is four, the destination address is quadlet aligned and the packet format value is BLOCK TCODE;

— Read request for data block, if the transaction type value in the transaction data request is READ and the data
length is not four or the destination address is not quadlet aligned; or

— Lock request, if the transaction type value in the transaction data request is LOCK.

9.9.4 Sending a transaction response

Clause 7.3.3.1.3, under the heading “State TX2: Send Transaction Response”, describes how the transaction code param-
eter (communicated to the link layer via LK_DATA.request) is to be selected. The nonprocedural list that follows the first
paragraph is replaced with:

— Write response for data quadlet, if the transaction type value in the transaction data request is WRITE, the
data length is four and the packet format value is QUADLET TCODE;

— Write response for data block, if the transaction type value in the transaction data request is WRITE and the
data length is not four or the packet format value is BLOCK TCODE;
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— Read response for data quadlet, if the transaction type value in the transaction data request is READ, the data
length is four and the packet format value is QUADLET TCODE;

— Read response for data block, if the transaction type value in the transaction data request is READ and the
data length is not four or the packet format value is BLOCK TCODE; or

— Lock response, if the transaction type value in the transaction data request is LOCK.

9.9.5 CSR Architecture transactions mapped to Serial Bus

In IEEE Std 1394-1995 clause 7.4, below Table 7-10, “CSR Architecture / Serial Bus transaction mapping”, a paragraph
describes alignment and minimal transaction requirements for Serial Bus nodes. That paragraph is replaced with the fol-
lowing language:

All Serial Bus nodes shall implement support for transaction data requests with a transaction type of READ or WRITE, a
data length of four, a destination address that is quadlet aligned and a packet format of QUADLET TCODE. These corre-
spond to the read4 and write4 requests of the CSR Architecture.

All other transaction support, i.e., transaction data requests with a data length other than four, a destination address that is
not quadlet aligned or lock requests, is optional.

NOTE—Transaction support for block reads or writes for some arbitrary data length n does not necessarily imply transaction support
for any other length block read or write.

9.10 Serial Bus control request (SB_CONTROL.request)

A Serial Bus reset has the potential to disrupt isochronous data flow. Isochronous devices may be designed to compensate
for anticipated disruptions but until equilibrum is reestablished may be more vulnerable to disruption. Any additional bus
resets that occur during this time increase the likelihood that users perceive an interrupton in isochronous data flow.

For this reason, applications, the bus manager or the node controller should not make an SB_CONTROL.request that
specifies a Reset action until two seconds have elapsed subsequent to the completion of the self-identify process that fol-
lows a bus reset.

9.11 Serial Bus event indication (SB_EVENT.indication)

The definition of the DUPLICATE CHANNEL DETECTED and UNEXPECTED CHANNEL DETECTED bus event
parameters in clause 8.2.3 of IEEE Std 1394-1995 are replaced with the following:

— DUPLICATE CHANNEL DETECTED (Optional). A stream packet was received with a channel number
equal to one of the node’s active, transmit isochronous channels.

— UNEXPECTED CHANNEL DETECTED (Optional, available only at the active isochronous resource
manager). The isochronous resource manager observed a stream packet whose channel number is not
specified in the Expected Channel List.

NOTE—The above events shall not be reported for a stream packet (transaction code A16) observed after the subaction gap that
terminates the isochronous period and before the cycle start packet that initiates the next isochronous period.

9.12 NODE_IDS register

The following specifications replace IEEE Std 1394-1995 clause 8.3.2.2.3 in its entirety.
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The NODE_IDS register reports and permits modification of a node’s bus ID and physical ID. Together these form a 16-
bit node ID used by the link to determine if a primary packet is addressed to the node. Serial Bus reserves the 16-bit bus-
dependent field, as indicated by the shaded field within figure 9-2.

The 10-bit read/write bus_ID field provides software with a mechanism for reconfiguration of the initial node address
space. The bus_ID field permits node addresses on one bus to be distinguished from those on another. All nodes on a bus
shall have identical bus_ID values.

NOTE—A bus consists of all physically connected nodes that are within the same arbitration domain, i.e., nodes that receive their
arbitration grant(s) from the same root node.

The 6-bit offset_ID field shall have a value generated as a side-effect of the bus initialization process. Within this stan-
dard, the value of NODE_IDS.offset_ID is also known as the physical ID of the node. This field is read-only in the cable
environment and read/write in the backplane environment.

NOTE—The CSR Architecture requires that if there are any side-effects of a nonbroadcast write transaction to a register, the affected
node shall delay the return of a transaction response until all effects of the write are complete. In the case of the NODE_IDS register,
a return of resp_complete indicates that the node recognizes transactions to the newly assigned NODE_IDS value. The contents of the
source_ID field of the response packet shall be equal to the most significant 16 bits of the NODE_IDS register.

9.13 SPLIT_TIMEOUT register

Split-transaction error detection requires that all nodes on Serial Bus share the same time-out value and that requester and
responder behave in complementary fashion. The following specifications replace IEEE Std 1394-1995 clause 8.3.2.2.6 in
its entirety.

The SPLIT_TIMEOUT register establishes the time-out value for the detection of split-transaction errors. The value of
SPLIT_TIMEOUT is the maximum time permitted for the receipt of a response subaction after the transmission of a
request subaction. After this time, a responder shall not transmit a response for the request subaction and a requester shall
terminate the transaction with a request status of TIMEOUT. For a requester the time-out period commences when an
ack_pending is received in response to a request subaction. A responder starts the time-out period when an ack_pending
is transmitted. Figure 9-3 illustrates the portions of the SPLIT_TIMEOUT register implemented on Serial Bus.

Figure 9-2—NODE_IDS format
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NOTE—A requester should not reuse the transaction label from an expired request subaction in a subsequent request subaction to the
same node unless at least twice the split time-out period has elapsed since the initiation of the expired subaction.

The sec field, in units of seconds, and the cycles field, in units of 125 µs, together specify the time-out value. The value
of cycles shall be less than 8000. The bus manager, if present, shall insure that all nodes on the bus have identical values
in their SPLIT_TIMEOUT registers.

The minimum timeout value is 0.1 second. If a value smaller than this is written to the SPLIT_TIMEOUT register it may
be ignored or rounded up to 0.1 second.

NOTE—The Serial Bus definition of the SPLIT_TIMEOUT register differs from that of the CSR Architecture. Serial Bus interprets the
most significant 13 bits of the SPLIT_TIMEOUT_LO register as units of 1/8000 second, rather than a true binary fraction of a second
with units of 1/8192 second. Since precise time-outs are not necessary, the bus manager may ignore this difference when calculating
values for use within the SPLIT_TIMEOUT_LO register.

9.14 Command reset effects

A write to the RESET_START register (command reset) shall have no effects upon any of the Serial Bus-dependent reg-
isters defined either in this document or in clause 8.3.2.3 of IEEE Std 1394-1995.

9.15 PRIORITY_BUDGET register

Reserved, backplane environment.

Optional, cable environment. This register shall be implemented on nodes capable of using asynchronous priority arbitra-
tion for certain primary packets and shall be located at offset 21816 within initial register space.

Figure 9-3—SPLIT_TIMEOUT format
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The PRIORITY_BUDGET register permits the bus manager to configure a node’s asynchronous arbitration behavior.
This register provides a mechanism for a node to be granted permission to use priority arbitration during the asynchro-
nous period. The definition is given by figure 9-4 below.

The pri_max field shall specify the maximum value the node expects to be stored in pri_req. If a write request attempts
to update pri_req to a larger value, the result is unspecified.

The pri_req field shall specify the maximum number of certain priority arbitration requests the link is permitted to make
of the PHY during a fairness interval. The primary packet transaction codes for which priority arbitration may be used are
specified by table 9-6; PHY packets and response packets may also use priority arbitration (see clause 9.8). A Serial Bus
fairness interval exists between the occurrence of an arbitration reset gap and the first subsequent arbitration reset gap.
The pri_req default value of zero is equivalent to the fair arbitration behavior specified by IEEE Std 1394-1995; any pri-
ority requests enabled by a nonzero value of pri_req are in addition to the fair arbitration request permitted each node.

Each time a link receives PHY status of ARB_RESET_GAP, it shall reset an internal variable, priority_request_count, to
the value of pri_req. Except in one case, the link may use priority asynchronous arbitration for any of the transaction
codes specified by table 9-6 so long as priority_request_count is nonzero. Even if priority_request_count is nonzero, if a
node receives an ack_busy_X, ack_busy_A or ack_busy_B in acknowledgment of a request subaction, the node shall not
retransmit the request packet until the next fairness interval. Each time a priority arbitration request is granted for one of
the transaction codes specified, the link shall decrement priority_request_count.

NOTE—IEEE Std 1394-1995 specifies only one use for the priority arbitration request from the link to the PHY to arbitrate for the bus
in order to transmit a cycle start packet. This supplement does not change that use of a priority request and it does not count against the
priority_request_count maintained by the link.

The bus manager shall ensure that the sum of the values of pri_req in the PRIORITY_BUDGET registers of all nodes on
the local bus is less than or equal to 63 minus the number of nodes.

Figure 9-4—PRIORITY_BUDGET format
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1 Write request for data block Request subaction, block payload
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9 Lock request Request subaction, block payload
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9.16 NETWORK_CHANNELS register

The CSR architecture reserves a range of addresses in initial register space for bus-dependent uses; clause 8.3.2.3 in IEEE
Std 1394-1995 defines registers within that range for use by Serial Bus. This supplement defines a new register,
NETWORK_CHANNELS, within that address space whose format and usage is to be specified by the Internet Engineer-
ing Task Force (IETF). This register is optional and if implemented shall be a quadlet register at offset FFFF F000 023416
within initial node space.

9.17 Unit registers

Clause 8.3.2.4 in IEEE Std 1394-1995 reserves a range of addresses in initial units space for Serial Bus-dependent or
other uses, notably the TOPOLOGY_MAP and SPEED_MAP registers defined by that standard. Additional portions of
that address space have been utilized both by this supplement and by other draft standards. Table 9-7 below replaces
existing table 8-4 in IEEE Std 1394-1995.

Except as specified by IEEE Std 1394-1995, this supplement or future Serial Bus standards, unit architectures shall not
implement any CSRs that fall within the above address space.

9.17.1 SPEED_MAP_REGISTERS (cable environment)

The paragraph in IEEE Std 1394-1995 clause 8.3.2.4.2 that describes the speed_code entries is replaced with the follow-
ing definition:

The three least-significant bits of the speed_code bytes specify one of the data transfer speeds S100, S200 or S400, S800,
S1600 or S3200. The speed_code bytes use the same encoding as the PHY register Max_speed field defined in table 6-1.
The remaining most-significant five bits are reserved for future standardization and may not be relied upon to be read as
zeros.

9.17.2 TOPOLOGY_MAP registers (cable environment)

The definition of the TOPOLOGY_MAP is unchanged from the current standard but implementors are advised that PHYs
compliant with this supplement transmit a minimum of two self-ID packets during the self-identify process.

Table 9-7—Serial Bus-dependent registers in initial units space

Offset Name Notes

80016 — 8FC16 Reserved for Serial Bus

90016 OUTPUT_MASTER_PLUG Specified by IEC 61883-1/FDIS

90416 — 97C16 OUTPUT_PLUG Specified by IEC 61883-1/FDIS

98016 INPUT_MASTER_PLUG Specified by IEC 61883-1/FDIS

98416 — 9FC16 INPUT_PLUG Specified by IEC 61883-1/FDIS

A0016 — AFC16 Reserved for Serial Bus

B0016 — CFC16 FCP command frame Specified by IEC 61883-1/FDIS

D0016 — EFC16 FCP response frame Specified by IEC 61883-1/FDIS

F0016 — FFC16 Reserved for Serial Bus

100016 — 13FC16 TOPOLOGY_MAP Present at the bus manager, only.

140016 — 1FFC16 Reserved for Serial Bus

200016 — 2FFC16 SPEED_MAP Present at the bus manager, only

300016 — FFFC16 Reserved for Serial Bus
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9.18 Configuration ROM Bus_Info_Block

Several new fields are specified for the Bus_Info_Block in order to support enhanced capabilities defined by this stan-
dard:

— Immediately subsequent to a bus reset nodes might generate a flurry of quadlet read requests to ascertain the iden-
tity, by means of the EUI-64, of nodes whose physical ID may have been reassigned in the self-identify process.
The volume of read requests may be minimized if it is not necessary to reread all (or a significant part) of a node’s
configuration ROM. A new field, generation, has been added whose purpose is to indicate whether or not config-
uration ROM has changed from one bus reset to the next;

— Outside of IEEE P1394a standardization activities, work is underway to define power management for Serial Bus.
A new entity, the power manager, will manage power distribution and consumption in the cable environment. A
new bit, pmc, is defined to identify nodes capable of power management;

— IEEE Std 1394-1995 does not specify how both the link and the PHY maximum speed capabilities shall be report-
ed when they differ—nor does it require all link and PHY combinations to support the same speed capabilities.
This supplement adds a new field, link_spd, to the Bus_Info_Block to permit the speeds to be reported indepen-
dently;

The revised format of the Bus_Info_Block is shown in figure 9-5; this replaces existing figure 8-20 in clause 8.3.2.5.4 of
IEEE Std 1394-1995.

With the exception of max_rec, the definitions of all fields previously specified by IEEE Std 1394-1995 are unchanged.

The max_rec field defines the maximum data payload size that the node supports. The data payload size applies to block
write requests or asynchronous stream packets addressed to the node and to block read responses transmitted by the node.
The maximum data payload is equal to 2max_rec+1 bytes, as specified by table 9-8.

Figure 9-5—Bus_Info_Block format
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The maximum isochronous data payload supported by the node, either as a talker or listener, is not governed by max_rec.

The pmc bit when set to one indicates the node is power manager capable. A node that sets its pmc bit to one shall also
set its bmc bit to one to indicate bus manager capabilities. The capabilities and responsibilities of a power manager capa-
ble node are beyond the scope of this standard.

Upon the detection or initiation of a bus reset, the generation field (abbreviated as g in the figure above) shall be modi-
fied if any portion of configuration ROM has changed since the prior bus reset. Configuration ROM includes not only the
first kilobyte of ROM (quadlets in the address range FFFF F000 040016 through FFFF F000 07FC16, inclusive) but any
directories or leaves that are indirectly addressed from the first kilobyte. The CRC in the first quadlet of configuration
ROM shall be recalculated each time the generation field is updated.

The link_spd field shall report the maximum speed capability of the node’s link layer; the encoding used is the same as
for the PHY register Max_speed field defined in table 6-1.

9.19 Node_Unique_ID

The requirements of clauses 8.3.2.5.5.3 and 8.3.2.5.7.1 of IEEE Std 1394-1995 for a Node_Unique_ID leaf and a root
directory entry to address it are removed. Since the same information is required in the Bus_Info_Block, the node unique
ID leaf is obsoleted.

9.20 Determination of the bus manager

Clause 8.4.2.5 of IEEE Std 1394-1995 describes the use of the BUS_MANAGER_ID register to determine the identity of
the bus manager subsequent to a bus reset. The text is misleading where it describes the return of an old_value of 3F16 as
the only way in which a candidate bus manager is confirmed as the new bus manager. If a candidate bus manager success-
fully completes a lock (compare and swap) request to the BUS_MANAGER_ID register but the response packet is cor-
rupted the candidate shall retry the lock request as described. In this case the old_value returned is not the anticipated
3F16 but is instead the physical ID of the bus manager.

If the response to a successful lock (compare and swap) request to the BUS_MANAGER_ID register returns an old_value
of either 3F16 or the physical ID of the candidate bus manager, the candidate is confirmed as the new bus manager.

9.21 Gap count optimization

A bus manager or, in the absence of a bus manager, an isochronous resource manager may optimize Serial Bus perfor-
mance by transmitting a PHY configuration packet (see clause 7.5.3) with the gap_cnt field set to a value less than 63 and
the T bit set to one.

A16 2048

B16 4096

C16 8192

D16 16384

E16 to F16 Reserved

Table 9-8—Encoding of max_rec field (Continued)

Code Maximum data payload
(bytes)
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A node that transmits a PHY configuration packet with the T bit set to one shall initiate a bus reset as soon as possible
after the PHY configuration has been sent. This is essential so that the gap_count_reset_disable variable at all
node(s) is cleared to FALSE. Without this precaution, the subsequent addition of a new node to the bus could result in
different values of gap_count at different nodes and resultant unpredictable arbitration behavior.

Any node that issues a bus reset as described in the preceding paragraph shall verify the self-ID packets generated as a
result. If the gap_cnt field in all the self-ID packets is not identical, the node shall initiate another bus reset. This addi-
tional bus reset should cause all nodes to have the same value for gap_count, 63. If a more optimal gap count value is
still desired, the node may retransmit a PHY configuration packet and follow it with a bus reset.

NOTE—Differences in the reset state machines between PHYs compliant with IEEE Std 1394-1995 and those compliant with this
supplement may result in different gap counts (subsequent to a bus reset preceded by a PHY configuration packet) when a mixture of
devices is present. The probability of this inconsistency may be reduced by asserting BUS_RESET for 166.6 µs instead of the arbitrated
(short) bus reset specified by this supplement. This heuristic does not guarantee uniform values for gap_count at all nodes; never the
less, because of the probabilistic nature of the problem, success is likely after a modest number of attempts.

9.22 Automatic activation of the cycle master

As defined by IEEE Std 1394-1995, the operations of an incumbent cycle master may resume immediately after a bus
reset. The intent is to disrupt isochronous operations as little as possible when a bus reset occurs. However, because of
Serial Bus topology changes, there may be a new root node subsequent to a bus reset. As specified by IEEE Std
1394-1995, the new root shall not commence cycle master operations until enabled by either the bus manager or isochro-
nous resource manager. If the new root is cycle master capable, it would be desirable for it to commence cycle master
operations automatically.

Cycle master operations are controlled by the cmstr bit in the STATE_SET register defined in clause 8.3.2.2.1 of the cur-
rent standard. The paragraphs that specify the behavior of cmstr are replaced with the following definition:

Cycle master capable nodes shall implement the cmstr bit. The cmstr bit enables the node as a cycle master. A cmstr
value of one enables cycle master operations while a zero value disables cycle master operations. Only the bus manager
or, in the absence of a bus manager, the isochronous resource manager may change the state of cmstr by means of a write
transaction. Any request that attempts to set cmstr to one shall be ignored if the node is not the root.

In the cable environment, the value of cmstr subsequent to a bus reset is determined as follows:

a) If this node is not the root, the cmstr bit shall be cleared to zero; else

b) If this node had been the root prior to the bus reset, cmstr shall retain its prior value; else

c) Otherwise cmstr shall be set to the value of the cmc bit (from the bus information block).

9.23 Abdication by the bus manager

This clause provides an orderly method for a bus manager to yield its role to another bus manager candidate. Although
the new intended bus manager is presumably more capable, in some fashion, than the current bus manager, the details are
beyond the scope of this supplement.
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In order to support the procedures described here, a new bus-dependent bit is defined for the STATE_CLEAR register, as
illustrated below.

The four shaded r bits are reserved for future definition by Serial Bus.

The gone and linkoff bits are specified by IEEE Std 1394-1995.

The cmstr bit is specified by clause 9.22 above.

The abdicate bit shall be implemented by bus manager-capable nodes; it controls the behavior of the node during conten-
tion for the role of bus manager. When abdicate is zero, the incumbency of the node prior to a bus reset determines the
amount of time the node waits before contending to become the bus manager. As specified by IEEE Std 1394-1995, the
incumbent manager contends immediately after the first subaction gap that follows a bus reset while nonincumbent, bus
manager-capable nodes wait one second before contending. When abdicate is one, the node shall wait one second before
contending—whether incumbent or not.

A bus manager-capable node that wishes to assume the role of bus manager shall proceed as follows:

a) The candidate bus manager shall set the abdicate bit in the incumbent bus manager’s STATE_SET register;

b) The candidate bus manager shall initiate a Serial Bus reset;

c) Subsequent to the bus reset, the candidate bus manager shall attempt to become the bus manager in accordance
with the procedures in IEEE Std 1394-1995, with one exception. The candidate bus manager shall not wait 125 ms
before making a lock transaction to the BUS_MANAGER_ID register at the isochronous resource manager node
but shall attempt to become the bus manager immediately upon the completion of the self-identify process; and

d) If the candidate bus manager fails to become the bus manager, it shall transmit a PHY configuration packet with
the R bit set to one, the root_ID field set to the value of the candidate’s own physical ID and the T bit cleared to
zero. The effect of this PHY configuration packet is to clear the force_root variable of other nodes to zero while
leaving the gap_count at its present value. The candidate bus manager shall set it’s own force_root variable to
one, initiate a Serial Bus reset and attempt to become the bus manager as described in c) above.

Figure 9-6—STATE_CLEAR. bus_depend field
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NOTE—The last step is necessary to wrest control of the bus manager role from an incumbent bus manager that is the root and does
not implement the abdicate bit. When the candidate bus manager becomes the root after the bus reset it has the highest arbitration
priority of all the nodes on the bus and should be able to be the first to complete a lock transaction to the BUS_MANAGER_ID
register.

The means by which a candidate bus manager determines that it is more capable than the incumbent bus manager are not
specified by this supplement. The candidate may interrogate the incumbent bus manager’s CSRs for the presence or
absence of advanced features or the two nodes may engage in some negotiation to determine which is more capable.

9.24 Internal device physical interface

Annex C of IEEE Std 1394-1995 specifies a physical interface suitable for Serial Bus devices mounted internal to a mod-
ule’s enclosure. When this optional interface is utilized, all clauses of annex C are normative with the exception of clause
C.1, “Overview”. The overview is informative and describes the rationale for the internal device physical interface speci-
fied by the remainder of the annex.

This supplement retitles clause C.1 “Overview (informative)” and replaces the clause in its entirety with the text that fol-
lows. The other clauses of annex C are not affected.

The cable media attachment specification in clause 4.2.1 of IEEE Std 1394-1995 is suitable to external, box-to-box applica-
tions. (An example would be a computer, printer and video camera connected via Serial Bus; the computer and printer are
powered from different AC outlets while the camera takes power from the Serial Bus cable.) The external cable also pro-
vides power to all PHYs on the bus so that they can maintain their bus repeater capability even when their local power is off.
When necessary to accommodate different power domains (i.e., from different AC power sources), each node provides iso-
lation between the its local AC power and external cable power. The external environment requires mechanically strong
shielded cables and connectors.

Iinternal devices may not have the same design criteria as external, box-to-box applications; they may be optimized for low
cost, low power, minimum components and minimum package size (e.g., mass storage devices). Internal devices usually
share a common power domain with other devices packaged within the enclosure and may not require mechanically strong
or shielded connectors and cables. Internal devices may require other packaging options, such as hot-plug, auto-dock, blind-
mate; they may need various connector methodologies, such as cable or board attachment with such connector systems as
surface mount or card edge.

A goal of the internal device interface is to allow implementation options for both the device vendor and the system inte-
grator. These options enable Serial Bus internal devices to accommodate a wide range of applications in a cost-effective
manner. Device options include a second port that can be configured as either as a repeater (bus) or as a second indepen-
dent port (dual path). Packaging options include cable attachment, board attachment, or a combination of the two. Pins are
allocated in the internal device connector to support these options.

9.25 Transaction integrity safeguards

IEEE Std 1394-1995 makes little provision for facilities or implementation constraints that enhance resistance to tamper-
ing by malicious agents. Because Serial Bus may be connected to external gateways (such as cable network interface
units) which may be reprogrammable from a remote location, there is a desire to provide building blocks upon which
more tamper-resistant systems may be constructed. In particular it is important for Serial Bus modules to possess unforge-
able identities and to not be able to snoop asynchronous request or response packets addressed to other nodes.

A module compliant with this supplement shall meet the following requirements at the time of manufacture:

— If a node’s unique ID, EUI-64, is read from the configuration ROM bus information block by quadlet read
requests, the value returned shall be the EUI-64 assigned by the manufacturer. In particular, the EUI-64 so
returned shall not be alterable by software;
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— A node shall not originate an asynchronous request or response packet with a source_ID field that is not
equal to either a) the most significant 16 bits of the node’s NODE_IDS register or b) the concatenation of
3FF16 and the physical ID assigned to the node’s PHY during the self-identify process; and

— A node’s link shall not receive nor make available to the transaction layer or any other application layer an
asynchronous request or response packet unless the destination_ID field is equal to either a) the
concatenation of the most significant 10 bits of the node’s NODE_IDS register and either the physical ID
assigned to the node’s PHY during the self-identify process or 3F16, or b) the concatenation of 3FF16 and
either the physical ID assigned to the node’s PHY during the self-identify process or 3F16.

All exceptions to these requirements, if any, shall be explicitly specified in future standards developed and approved
through the IEEE standards development process. At the time of writing, the only anticipated exceptions are for Serial
Bus to Serial Bus bridges, which work is in progress in the IEEE P1394.1 working group.
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Annex A  

(normative)

Cable environment electrical isolation

This annex replaces IEEE Std 1394-1995 annex A, “Cable environment system properties”, in its entirety. That annex
defines specifications in the following areas:

1) External shielded cable interconnection;
2) Internal unshielded interconnection;
3) Cable power sourcing and connection;
4) Powering PHY integrated circuits (ICs) and devices; and
5) Electrical isolation requirements.

Systems designers have concluded that, with the exception of the last item, the areas above are either adequately specified
in other clauses of IEEE Std 1394-1995 or else are outside of the scope of the standard.

Although electrical isolation is an important system design issue for many Serial Bus devices, it is not possible to specify
uniform isolation requirements for all devices. Electrical isolation is not a normative requirement of this standard. In
addition to the elimination of the normative requirements of prior annex A, clause 4.2.1.4.8 of IEEE Std 1394-1995,
“Shield ac coupling,” is deleted.

Designers are cautioned that particulars of their application, e.g., industrial or medical usage, may require electrical isola-
tion to comply with applicable standards. In other cases, the lack of electrical isolation may cause grounding problems
that in turn make it difficult to comply with agency requirements.

A.1 Grounding characteristics of AC powered devices

AC-powered devices whose power cords provide for a connection to ground are typically wired as shown below.

The ground wire is electrically connected to the metal chassis and does not carry power current to or from the powered
device. The neutral wire is connected to earth ground but must also carry the full current used by the powered device;
neutral wires exhibit significant voltages due to IR drops across them. In the event of an internal short-circuit of the hot
wire to the chassis, significant current flows through the ground wire to ground and causes the activation of a current lim-
iting device in the hot wire circuit. This arrangement is intended to reduce the user’s risk of electrocution.

Figure A-1 — AC power supply with ground
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NOTE—Many consumer electronic products have power cords with only two conductors, hot and neutral, but they typically have
insulated cases that protect against shock hazards.

A consequence of the grounding scheme illustrated above is that the device chassis potential floats to the local ground
voltage level. For a number of reasons, e.g., the return of large currents to earth by nearby, unrelated equipment, lightning
strikes or as the result of different power transformer supply domains, earth ground potential may vary by many volts.
System designers are cautioned not to assume that the ground wire from different pieces of equipment connects to the
same earth ground at the same voltage.

A.2 Electrical isolation

The cables and connectors specified by IEEE Std. 1394-1995 provide three ways in which chassis-to-chassis ground cur-
rents may flow:

— The ground wire returns ground current to a chassis with a non-isolated power supply that provides cable power;

— The ground wire returns ground current to the chassis via the logic circuits of the receiving PHY in the case where
the PHY is not electrically isolated from the rest of the logic circuitry in a node (e.g., the link or other ICs); or

— The outer shield the cable makes electrical connection, through the connector shield, to all connected chassis. Al-
though this blocks RF emissions it introduces another problem: a DC connection that forms a direct ground loop.
The secondary problem may be solved by the use of RC circuits between the shield and the chassis that limit pow-
er line frequency currents while passing RF frequency currents.

The alternate cables and connectors standardized in this supplement, which have no power and ground conductors, pose
an additional problem: that of providing a return path to the PHY for common mode speed signalling currents through
their shields while still blocking power line currents. There are two solutions:

— Limit alternate cables to S100 operation—in which case common mode speed signalling currents do not arise; or

— Carefully manage the connector shield returns provide adequate RF emissions shielding and no power line fre-
quency conductance at the same time preserving recognizable speed signals for the PHY.

A.3 Agency requirements

The information below provides guidance, valid at the time of publication of IEEE Std 1394-1995, for safety aspects
relating to the interconnection and power distribution for Serial Bus devices. Because the standard permits cable power
distribution at voltages greater than 24V international safety standards apply.

The cabling and interconnection requirements are applicable to installations of information-processing or business equip-
ment intended for or capable of permanent or cord connection (during operation) to 600 V or lower potential branch cir-
cuits when such equipment is intended for installations covered under the National Electric Code, ANSI/NFPA 70. The
equipment may also be installed according to the Standard for the Protection of Electronic Computer/Data-Processing
Equipment, ANSI/NFPA 75.

Examples of the types of equipment covered by these recommendations include but are not limited to: accounting and cal-
culating machines, cash registers, copiers, data-processing equipment, dictating and transcribing machines, duplicators,
erasers, modems and other data communication equipment, motor driven filing cabinets including cassette, CD, and tape
accessing equipment, printers, staplers, tabulating machines, postal machines, typewriters and other electrically operated
equipment that separately or assembled in systems will accumulate, process and store data.

Specifically not covered by these guidelines are equipment covered by other safety standards including but not limited to
the following: HVAC systems, sensors, alarms, and other equipment for the detection and signalling of conditions capable
of causing damage or injury to persons, fire extinguishing systems and electrical power-supply equipment such as motor-
generator sets, and branch-circuit supply wiring. Separate safety standards apply to this kind of equipment, and the
cabling and distribution must be modified in accordance to the specifications covering that kind of equipment, in force in
the location of the installed equipment.
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Reference documents applicable in the United States include:

Information Processing and Business Equipment, UL 478 

National Electric Code, ANSI/NFPA 70

Standard for the Protection of Electronic Computer/Data-Processing Equipment, ANSI/NFPA 75

Reference documents applicable in Japan include:

Electronic Equipment Technology Criteria by the Ministry of Trading and Industry (Similar to NFPA 70)

Wired Electric Communication Detailed Law 17 by the Ministry of Posts and Telecom Law for Electric Equipment

Dentori law made by the Ministry of Trading and Industry 

Fire law made by the Ministry of Construction

An more accurate equivalent citation of the Japanese references is given by the text below:

Reference documents applicable in Europe include materials to secure the European Union CE marking as follows:

Telecommunications Terminal Equipment (91/263/EEC)

EMC Directive (89/339/EEC) 

CE Marking Directive (93/68/EEC) 

LOW Voltage Directive (73/23/EEC) as amended by the CE Marking Directive (The CE Marking Directive is recommended 
as the basis for compliance)

The documents cited above provide reference information for selection and installation of cabling in walls, temporary par-
titions, under floors, in overhead or suspended ceilings or in adverse atmospheres.
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Annex B  

(informative)

Serial Bus cable assembly test procedures

This annex both amends and supplements IEEE Std 1394-1995 annex K, “Serial Bus cable test procedures.” Except as
stated in the clauses that follow, existing annex K remains unchanged. The updated test procedures attempt to characterize
completely the electrical performance of the Serial Bus cable assembly and are intended to provide results of maximum
relevance to system implementer(s).

The procedures presented in this annex provide an “end-to-end” characterization of the Serial Bus cable and connector
system. This includes the cable itself, two assembled cable plugs, two printed circuit boards assembled with sockets and
a length of controlled impedance printed circuit board traces relevant for practical applications. Although only the cable
assembly itself is under test, the sockets, the printed circuit board and its traces are included in the test fixtures. The limit
specifications and the test procedures described in this annex apply to complete cable assemblies of any length.

The measuring equipment listed in the following text or shown in the figures is provided for completeness and to guaran-
tee maximum reproducibility of measurements. Equipment of equal capabilities may be used, although the procedures
described in this annex may have to be modified accordingly.

B.1 Differential test fixture

The test procedures utilize two different test fixtures, one described by IEEE Std 1394-1995 annex K and one described
below. Each provides a transition between a Serial Bus board-mounted socket (which may receive the cable assembly
under test) and 50Ω SMA connectors (which may be connected to standard 50Ω coaxial test equipment).

The fixture specified by figure K-1 in IEEE Std 1394-1995 provides an SMA connector to interface the Serial Bus socket
pin (VG) to test equipment but does not isolate the socket shield from the fixture ground plane. A total of six SMA con-
nectors port all socket pins to the test equipment.
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The differential test fixture, illustrated by figure B-1, provides a controlled RC shunt between the socket shield and the
fixture ground plane while isolating them. The equivalent RC circuit values were chosen in accordance with those
depicted by figure 3-30 in IEEE Std 1394-1995.

Construct the fixture using a multilayer board enclosed in a metal case. Isolate the case and the five SMA connector
shields from direct contact to the shield of the Serial Bus socket but interface through a distributed RC shunt.

The Serial Bus socket is surface mounted to the board. Connect the four signal pins of the socket (TPA, TPA*, TPB and
TPB*) to the four SMA connectors using microstrip lines with a characteristic impedance of (55 ± 3)Ω. It is important
that the length of the connections be less than 50 mm and that the length mismatch between any two of the four connec-
tions be less than 2 mm. Minimize crosstalk within the fixture by using the ground plane to isolate the connections corre-
sponding to different signal pairs.

Connect only one power pin on the Serial Bus socket (VP) to an SMA connector via a trace with a characteristic imped-
ance of less than 30Ω. Other power pin trace considerations remain the same as in the test fixture specified by annex K.

The differential test fixture is optimized for non-power pair crosstalk measurements and true differential impedance mea-
surements (see the updated test procedures in the clauses that follow).

Two test fixtures of the same type are used for every cable assembly test; their electrical performance becomes an integral
part of the test results. The effect of the test fixtures upon the test results is not calibrated out during the test setup. Con-
sequently, the test fixtures should be maintained in conditions representative for reasonable practical system usage. The
socket should be replaced at least every 1000 connections.

Figure B-1 — Differential test fixture schematic
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The graphic symbol of the differential test fixture used in the test configuration diagrams contained in this annex is shown
in figure B-2.

The construction of the test fixture raises the issue of impedance matching between a pair of single-ended 50 Ω coaxial
connectors and the differential mode 110 Ω Serial Bus signal lines. In order to assume there is reasonable differential
mode matching between the connectors and the Serial Bus socket and cable assembly, it is necessary for the signal line
connection traces within the fixture to be single-ended 55 Ω and have matched electrical lengths. This shifts the imped-
ance matching problem to the level of the SMA connectors, where matching circuits may be added.

In order to improve accuracy, some of the tests use a minimum loss-resistive matching pad. The schematic diagram of
such a pad is shown by IEEE Std 1394-1995 figure K-3.

The test configurations may contain precision 20 dB attenuators, which isolate the test equipment from the cable/connec-
tor mismatch. Due to the relative low level of mismatch and the isolation of the attenuator, the matching pads may be
omitted at the expense of a slight increase in the frequency domain ripple. This effect may be removed by data filtering
algorithms available with the suggested test equipment.

If impedance matching pads are utilized, always included them in the test calibration setup to eliminate their effect upon
the final test result.

B.2 Signal pairs characteristic impedance

This clause supplements IEEE Std 1394-1995 clause K.3 by adding connector tests to the cable assembly tests specified
by the existing standard. A description of the use of differential time domain relectometry (TDR) equipment, in addition
to single-ended TDR equipment, is also incorporated.

Although a complete cable assembly including both cable and connector parts is specified, individual impedance evalua-
tions select either cable or connector parts as a consequence of time-of-flight into the assembly. Measure the differential
mode characteristic impedance for the cable section in the time domain using a single-ended TDR with an edge rate of
less than 0.2 ns. The differential mode impedance value is calculated from the single-ended measurements described in
the following clauses. Calculate the result of each single-ended measurement as the average of the impedance measured
at two points along the cable. Select these points at 1 ns and 2.5 ns along the cable from the plug closest to the launching
connector. Because the TDR displays the round-trip propagation delay, make the measurements at 2 ns and 5 ns from the
plug closest to the launching connector as measured by the TDR instrument. Repeat this test for both signal pairs.

The differential mode discrete impedance, through the connector section, is measured in the time domain using a differ-
ential TDR with an equivalent edge rate of 0.5 ns.

Figure B-2 — Differential test fixture graphic symbol
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A TDR will typically establish an equivalent edge rate by establishing a filter algorithm within its data processing soft-
ware. This allows for a wide range of equivalent rise times to be evaluated. A representative TDR of this type is the Tek-
tronix 11801B configured with TDR sampling heads. The differential mode impedance value is displayed directly once
the 0.5 ns filter algorithm is selected.

True differential mode impedance will be evaluated at three discrete points beyond the plane of signal insertion into the
Serial Bus socket. Select these points at 50 ps, 100 ps and 150 ps into the connector. Again, since the TDR displays the
round-trip propagation delay, take the measurements at 100 ps, 200 ps and 300 ps beyond the plane of signal insertion.

Evaluate each of the three connector section impedance values individually against the range of differential impedance
allowed over the defined 100 ps exception window (50 ps to 150 ps). Repeat this for both signal pairs.

B.2.1 Signal pairs impedance setup calibration—short and load

The procedures for this calibration are unchanged from IEEE Std 1394-1995 clause K.3.1 except that the calibration need
not be performed when using the suggested differential TDR equipment, Tektronix 11801B or equivalent.

B.2.2 Signal pairs impedance test procedure (connector)

Using the test configuration described in figure B-3 and the connection matrix shown in table B-1, measure the discrete
differential impedances of the signal wires through the connector section at three points and compare the results to the
allowed limits through the exception window.

Table B-1 — Connection matrix for signal pairs impedance tests (connector)

The true differential mode discrete impedance of connector signal pair TPAconn is displayed as ZTPAconn. The true differ-
ential mode discrete impedance of connector signal pair TPBconn is displayed directly as ZTPBconn.

Figure B-3 — Signal pairs impedance measurement configuration (connector)
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B.2.3 Signal pairs impedance limits (connector)

The test limits, for the 100 ps exception window, are

ZTPAconn = (110 ± 25)Ω
ZTPBconn = (110 ± 25)Ω

B.3 DC resistance test procedure

The erroneous reference in IEEE Std 1394-1995 clause K.7.5 to table K-2 is corrected to refer to table K-3, “Connection
matrix for power pair resistance tests.”

B.4 Crosstalk

The provision of IEEE Std 1394-1995 clause K.8 that crosstalk is measured in the frequency of range of 1 MHz to
500 MHz is changed by this supplement. Measure pair-to-pair crosstalk in the frequency domain using a network analyzer
in the frequency range of 1 MHz to 75 MHz. Other provisions of IEEE Std 1394-1995 clause K.8 that specify how to
measure crosstalk between a signal pair and the power pair are unchanged.

NOTE—Although described as a measurement of pair-to-pair crosstalk, the test configurations are single-ended. The phrase “pair-to-
pair” refers only to the location of the designated driven line and quiet line.

B.4.1 Crosstalk test procedure (between power and signal pairs)

The test procedures specified by IEEE Std 1394-1995 clause K.8.2 are modified so that they apply only to crosstalk
between the power pair and a signal pair. Table B-2 below replaces table K-4 in its entirety. The test fixtures referenced
are specified by figure K-1.

The crosstalk limits between power and signal pairs specified by IEEE Std 1394-1995 clause K.8.3 are unchanged.

Table B-2 — Connection matrix for crosstalk tests between power and signal pairs

Measured value
Fixture 1 Fixture 2

VP TPA TPA* TPB TPB* VG VP TPA TPA* TPB TPB* VG

Crosstalk between VP 
and TPA (XPA)

Out 50 Ω 50 Ω 50 Ω 50 Ω 0 Ω 50 Ω In 50 Ω 50 Ω 50 Ω 0 Ω

Crosstalk between VP 
and TPA* (XPA*)

Out 50 Ω 50 Ω 50 Ω 50 Ω 0 Ω 50 Ω 50 Ω In 50 Ω 50 Ω 0 Ω

Crosstalk between VP 
and TPB (XPB)

Out 50 Ω 50 Ω 50 Ω 50 Ω 0 Ω 50 Ω 50 Ω 50 Ω In 50 Ω 0 Ω

Crosstalk between VP 
and TPB* (XPB*)

Out 50 Ω 50 Ω 50 Ω 50 Ω 0 Ω 50 Ω 50 Ω 50 Ω 50 Ω In 0 Ω

Crosstalk between VG 
and TPA (XPA)

0 Ω 50 Ω 50 Ω 50 Ω 50 Ω Out 0 Ω In 50 Ω 50 Ω 50 Ω 50 Ω

Crosstalk between VG 
and TPA* (XPA*)

0 Ω 50 Ω 50 Ω 50 Ω 50 Ω Out 0 Ω 50 Ω In 50 Ω 50 Ω 50 Ω

Crosstalk between VG 
and TPB (XPB)

0 Ω 50 Ω 50 Ω 50 Ω 50 Ω Out 0 Ω 50 Ω 50 Ω In 50 Ω 50 Ω

Crosstalk between VG 
and TPB* (XPB*)

0 Ω 50 Ω 50 Ω 50 Ω 50 Ω Out 0 Ω 50 Ω 50 Ω 50 Ω In 50 Ω
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B.4.2 Crosstalk test procedure (between signal pairs)

In addition to the change to the frequency domain, this supplement modifies the procedure to measure crosstalk between
the signal pairs. To evaluate crosstalk between the signal pairs, substitute the differential test fixture specified by figure B-
2 for that shown in IEEE Std 1394-1995 figure K-13. Then perform the tests described by clause K.8.2 but use the con-
nection matrix shown in table B-3.

B.4.3 Crosstalk limits (between signal pairs)

The test limits for crosstalk between the signal pairs are:

XAB ≤ -26 dB

XAB* ≤ -26 dB

XA*B ≤ -26 dB 

XA*B* ≤ -26 dB

Table B-3 — Connection matrix for crosstalk tests between signal pairs

Measured value
Fixture 1 Fixture 2

VP TPA TPA* TPB TPB* VP TPA TPA* TPB TPB*

Crosstalk between TPA 
and TPB (XAB)

0 Ω Out 50 Ω 50 Ω 50 Ω 0 Ω In 50 Ω 50 Ω 50 Ω

Crosstalk between TPA 
and TPB* (XAB*)

0 Ω Out 50 Ω 50 Ω 50 Ω 0 Ω 50 Ω In 50 Ω 50 Ω

Crosstalk between TPA* 
and TPB (XA*B)

0 Ω 50 Ω Out 50 Ω 50 Ω 0 Ω In 50 Ω 50 Ω 50 Ω

Crosstalk between TPA* 
and TPB* (XA*B*)

0 Ω 50 Ω Out 50 Ω 50 Ω 0 Ω 50 Ω In 50 Ω 50 Ω
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Annex C  

(informative)

Serial Bus topology management (cable environment)

The capabilities of Serial Bus devices, cables used to interconnect them and the topology of their arrangement can all
affect usability in two important areas:

— Power distribution. A number of things are necessary if cable-powered devices are to be able to user power: a) the
path between them and a power source cannot be blocked by devices that do not repeat power, b) the electrical re-
sistance of the path cannot be so large as to reduce voltage to unusable levels and c) a correlation between power
user(s) and power provider(s) is necessary in order to budget available power; and

— Performance. Bandwidth available for data transfer can be increased by a rearrangement of the devices and, for a
particular topology, by tuning the PHY gap count.

This annex provides recommendations for the practical management of Serial Bus topologies with respect to power and
performance.

C.1 Power distribution

Analysis of power distribution for a particular bus topology is based upon the electrical characteristics of the cables, con-
nectors and devices. These characteristics are normatively specified by IEEE Std 1394-1995 and this supplement; for con-
venience of reference they are summarized below:

— Power pair dc resistance. IEEE Std 1394-1995 clause 4.2.1.4.6 specifies that the dc resistance of the power wires,
VP and VG, is less than or equal to 0.333Ω. This annex assumes that connector plug to socket resistance is less
than or equal to 0.6Ω for the assembly (both connectors) and that this is included in the 0.333Ω total.

— Output current per port. Clause 7.3 in this supplement limits output current to a maximum of 1.5 A.

— Voltage drop through cable assembly. The product of 1.5 A and 0.333Ω yields a maximum voltage drop of 0.5 V
for a mated cable assembly.

— Voltage drop through node. Clause 7.3 in this supplement limits the resistance between any two of a node’s con-
nector sockets to a maximum of 0.5Ω. In combination with 1.5 A current per port, the maximum voltage drop
through a node is 0.75 V.

— Device power requirements. The minimum power needed on VP for a cable powered PHY to be operable is 3 W
at 8 V.

The cable material performance requirements can be met by the reference design illustrated in IEEE Std 1394-1995 clause
4.2.1.2.1. The reference design assumes a maximum cable assembly length of 4.5 meters and the use of 22 AWG (7x30)
for power and ground. It may be possible to construct longer cables with a larger wire gauge so long as the power pair dc
resistance criterion of 0.333Ω for the cable assembly is met.

NOTE—Cable assembly requirements of IEEE Std 1394-1995 clause 4.2.1.2.2 that specify the connection of VG to the inner cable
shields at both ends effectively lower the resistance of VG to 0.167Ω.

Ground difference potential is not addressed by IEEE Std 1394-1995 but may be of concern for safety reasons. Ground
difference potential is measured in the same way as power: through a mated cable assembly with the measurements taken
at the printed circuit board side of the connector sockets. Ground difference potential in excess of 0.5 V may be reason for
concern.
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Table C-1 below is derived based upon the preceding characteristics. For each of the three common classes of power pro-
vider (as identified by POWER_CLASS in the self-ID packets), the table shows the greatest hop count at which a mini-
mum of 3 W are available at a minimum of 8 V (assuming that there are no other power consumers on the path from the
power provider to the intended power consumer). The last column in the table shows the maximum current available to
the power consuming device at the wattage provided by the power source.

Given the characteristics of a particular power provider, wattage and launch voltage, it is possible to calculate the power
available to a power consumer according to the number of hops that separate the two. The aggregate resistance between
the power provider and consumer may be calculated as  and the result used in the formulas

 and .

Table C-1 — Power provider ranges by POWER_CLASS and launch voltage

POWER_CLASS Launch voltage Maximum hops Maximum current available

0012
(15 W)

20 V 19 0.750 A

24 V

23

0.625 A

26 V 0.577 A

30 V 0.500 A

33 V 0.455 A

0102
(30 W)

20 V 9 1.500 A

24 V 15 1.250 A

26 V 18 1.150 A

30 V
23

1.000 A

33 V 0.909 A

0112
(45 W)

30 V 17 1.500 A

33 V 22 1.360 A

Figure C-1 — Power distribution example
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An example power analysis is provided for the configuration illustrated by figure C-1, which shows a power provider sep-
arated by three hops from the power consumer. Kirchoff’s law is used to determine the voltage available at VP for each
node.

Assume the power provider is POWER_CLASS two (30 W) with a launch voltage of 26 V; the VP measurements are
taken at the printed circuit board side of the connector socket. All the cables are assumed to be 4.5 meters and constructed
per the reference designs in IEEE Std 1394-1995. The power consumer is assumed to draw 1.15 A.

The voltage drop across VP in the cable that connects nodes P and A is equal to the current multiplied by the resistance
of the wire and connector ( ). Given a current of 1.15 A, a mated cable assembly resistance of 0.33Ω, the voltage
drop across this cable is 0.383 V.

After the cable, the current passes through node A. The maximum port to port resistance of node A, X, yields a voltage
drop of 0.575 V.

The voltage drops in the remaining cables, from node A to node B and from node B to node C, are identical to the voltage
drop in the first cable. The voltage drop through node B is also the same as through node A. The aggregate voltage drop
for these two cables and node B is 1.341 V. The cumulative voltage drop from the power provider to the power consumer
is 2.299 V.

Thus, the net voltage available to the power consumer at the printed circuit board side of the connector socket is the
launch voltage, 26 V, less the all of the intermediate voltage drops, 2.299 V. In other words, 23.7 V. It is left to the
designer to calculate the losses in printed circuit board traces within the power consumer and arrive at the net usable volt-
age available to the device’s circuitry.

In a like fashion, the power available to the power consumer may be obtained from . Calculate the power drop for
each cable assembly and for each node through which the power passes. Subtract the aggregate power loss from the
power provided by the source to yield 27.4 W available to the power consumer.

C.2 Performance optimization

There are three ways to improve the performance of a Serial Bus configuration:

- Rearrange the devices to minimize the longest round-trip delay between any two leaf nodes. This may involve either
minimizing the number of hops (cable connections) between the farthest devices, reducing cable lengths or both;

- Group devices with identical speed capabilities next to one another. This avoids the creation of a “speed trap” when
a slower device lies along the path between two faster devices; and

- Set the PHY gap count parameter to the lowest workable value for a particular topology.

The first two methods likely yield the most dramatic results, but they depend upon the designer of the topology (in those
cases, such as inside an equipment enclosure, where it is fixed) or else upon the user’s willingness to reconfigure the bus.
An application that analyzes the self-ID packets and offers suggestions for better arrangements likely would be of great
value to naive users.

The third method may be employed with or without changes to bus topology. The bus manager or, in the absence of a bus
manager, the isochronous resource manager should optimize performance by setting the gap count according to the rec-
ommendations of this annex. Note that failure to optimize the gap count nullifies the benefit of a topology chosen to min-
imize round-trip delays.

Because of cable and PHY propagation delays, it is highly unlikely that any two nodes observe idle gaps between packets
of precisely the same duration. A node that completes data transmission and releases the bus will observe idle sooner than
a node farther away. However, for different nodes’ arbitration state machines to interact correctly it is necessary for all
nodes to observe the same type of gap, either an arbitration reset gap or a subaction gap. Each type of gap has a minimum
and maximum time which is derived from gap count, as specified by IEEE Std 1394-1995 table 4-33. The idle time occu-
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pied by arbitration reset and subaction gaps is not available for either arbitration or data transfer, so it is reasonable to
minimize this wasted time by choosing the smallest workable gap count. The only constraint is that gap count never be
reduced to a value where some nodes perceive an arbitration reset gap while others observe a subaction gap.

The worst disparity between observed idle times occurs between whichever two nodes have the greatest round-trip delay
for data transmission between them. According to IEEE Std 1394-1995, round-trip delay may be obtained from the fol-
lowing formula:

With knowledge of the topology and individual PHY delays derived from the self-ID packets (and an assumed value for
cable delay), the bus manager may use the preceding formula to calculate round-trip delay between all possible combina-
tions of leaf nodes. The maximum round-trip delay may in turn be used to derive an optimal gap count. This method is
approximate and may be improved by actually measuring the round-trip delay(s). Clause 7.5.4.1 of this supplement adds
a new facility, the “ping” packet, which permits direct measurement of round-trip delay.

The bus manager may measure all leaf-to-leaf delays even if it is not itself a leaf. The possible topologies resolve into
three categories:

1) The bus manager is a leaf and the round-trip delay is to be measured to another leaf;

2) The bus manager is not a leaf but is on the path that connects two leaves whose round-trip delay is to be
measured; or

3) The bus manager is neither a leaf nor on the path that connects two leaves whose round-trip delay is to be
measured.

In all cases, the bus manager first measures propagation time(s) between itself and target node(s), then calculates the
desired round-trip delay from the separately measured propagation times. The bus manager measures propagation time by
transmitting a ping packet and timing the return of the first self-ID packet transmitted in response. This presupposes that
the bus manager link hardware has a timer of sufficient accuracy and granularity to autonomously time the interval. The
minimum and maximum propagation times may be calculated as follows:

Propagation time is the aggregate cable and PHY delay adjusted for jitter; delay caused by arbitration or the PHY/link
interface is subtracted out. The ping time, measured by link hardware, starts when the most significant bit of the ping
packet is transferred from the link to the PHY and ends when a data prefix indication is signaled by the PHY. The con-
stants are obtained from table 5-17 and table 7-14. The term for PHY jitter is the sum of individual PHY jitter for each of
the repeating PHYs on the path between the bus manager and the pinged node; this can be obtained by a remote read of
the PHY registers (see clauses 6.1 and 7.5.4.2 in this supplement). The resultant round-trip delay is expressed in units of
microseconds; convert all values appropriately.

NOTE—The propagation time may be measured for any PHY packet that provokes a response from the addressed PHY, not only the
ping packet. For example, a remote access packet may be used both to obtain PHY jitter from another PHY and measure the
propagation time in the same step.

Round-trip delay 2 Hops 1–( )× Cable delay PHY delay+( )× 2 Cable delay×+=

Propagation timemin Ping time DATA_END_TIMEmax LINK_TO_BUS_DELAYmax ARB_RESPONSE_DELAYmax

RESPONSE_TIMEmax BUS_TO_LINK_DELAYmax

+ +

+ +

(

)

–

2 PHY jitter( )∑×–

=

Propagation timemax Ping time DATA_END_TIMEmin LINK_TO_BUS_DELAYmin ARB_RESPONSE_DELAYmin
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)

–
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The three different cases for the derivation of leaf-to-leaf round-trip delays are illustrated by figure C-2 below; the bus
manager is labeled M.

In the first case, imagine that nodes β, γ and δ are not present—that the bus manager and node α are both leaf nodes. The
round-trip delay is the propagation time measured from the bus manager to node α, as already described.

For the second case, assume that the round-trip delay is to be calculated between nodes α and γ. The bus manager first
measures the propagation time from itself to node α and then from itself to node γ. The round-trip delay between the two
leaf nodes also needs to account for the bus manager’s PHY delay and is expressed by:

In the formula above, all of the times are maxima; the bus manager’s PHY delay is obtained from its own PHY registers.

The last case, for which the round-trip delay between nodes γ and δ is derived, is the most involved because the bus man-
ager is not on the path between the two leaf nodes. First the bus manager measures propagation times to both nodes γ
andδ. Then the bus manager measures the propagation time to the node closest to the bus manager that is also on the path
between the leaf nodes—node β in this example. These measurements can be combined to eliminate the propagation time
from the bus manager to node β and the excess PHY delay for node β (measured twice in the propagation times for nodes
γ andδ) as follows:

In this last case, the propagation times measured for nodes γ and δ are minima while the propagation time measured to
node β is a maximum. The PHY delay for node β is obtained by remote access to that node’s PHY registers.

Once round-trip delays have been measured between all possible leaf-to-leaf combinations, select the worst case. The
optimal gap count for the bus is given by the formula below.

Express the worst case round-trip delay and the PHY delay as microseconds but strip the units of measurement; all of the
measurement units cancel in the formula. The PHY delay term accounts for the maximum arbitration response delay of
the two leaf nodes. Since the maximum for ARB_RESPONSE_DELAY is bounded by PHY delay, substitute the worst
case PHY delay of all nodes on the bus. The term  may be replaced with the sum of the maximum arbi-
tration response delays for the two leaf nodes for the worst case path, although it is unlikely that this will affect the cal-
culation of gap count. In any event, round gap count up to the next largest integer; the resultant value may be transmitted
in a PHY configuration packet to optimize Serial Bus performance.

Figure C-2 — PHY pinging and round-trip times

βMα

δ

γ

Round-trip delay α γ( , ) Propagation timeα Propagation timeγ 2 PHY delayM×+ +=

Round-trip delay γ δ( , ) Propagation timeγ Propagation timeδ 2 Propagation timeβ PHY delayβ+( )×–+=

Gap count 8.196 Round-trip delaymax 2 PHY delaymax×+( ) 1.833–×=

2 PHY delaymax×
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The exact formula from which the above was derived is given below:

If the bus manager does not have the link timer necessary to measure propagation delays, it may be appropriate to opti-
mize the gap count in a more approximate fashion. If, by means beyond the scope of this standard, the bus manager
knows that the maximum cable length used in the topology is 4.5 meters and that the maximum PHY delay is 0.144 µs,
the gap count may be obtained from the table C-2 below.

The table above corrects errors known to exist in IEEE Std 1394-1995, clause E.1, “Timing formulas for cable environ-
ment gap control.” If ping times are not available to the bus manager and the less precise table-lookup method is chosen
for gap count optimization, the data in table C-2 should be used in preference over IEEE Std 1394-1995 table E-6

Table C-2 — Gap count as a function of hops

Hops Gap count

1 1

2 4

3 7

4 10

5 12

6 15

7 18

8 21

9 23

10 26

11 29

12 32

13 34

14 37

15 40

16 43

17 45

18 48

19 51

20 53

21 56

22 59

23 62

BASE_RATEmin BASE_RATEmax× Round-trip delay 2 PHY_DELAYmax×+( )× 51 BASE_RATEmin× 29 BASE_RATEmax×+–( )
32 BASE_RATEmin× 20 BASE_RATEmax×–

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


